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Species misidentification and adulteration are major concerns in authenticating herbal
medicines. Radix Astragali (RA), the roots of Astragalus membranaceus, is a traditional
herbal medicine used for treating diabetes. However, it is often substituted by Radix
Hedysarum (RH), the roots of Hedysarum polybotrys from the same plant family
Fabaceae, which possesses different bioactivities. Current authentication methods,
focusing on the chemical composition differences of herbal medicines based on
small molecules, have limitations when these chemical markers are found in many
species. Herein, we describe a rapid and general method using matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), coupled with
multivariate analyses to differentiate herbal medicines. We used cysteine-rich peptide
(CRP) fingerprinting, a method that exploits an underexplored chemical space between
2 to 6 kDa and which is populated by highly stable CRPs. To show the generality of the
method, we screened 100 medicinal plant extracts and showed that CRP fingerprints
are unique chemical markers. In addition, CRP fingerprinting was many-fold faster than
the conventional authentication method using ultra-performance liquid chromatography
(UPLC). Multivariate analyses showed that it has comparable classification accuracy as
UPLC fingerprinting. Together, our findings revealed that CRP fingerprinting coupled with
multivariate analyses is a rapid and general method for authentication and quality control
for natural products in medicinal plants.

Keywords: herbal medicine, Radix Astragali, Radix Hedysarum, fingerprinting, cysteine-rich peptides,
multivariate analysis, MALDI-TOF MS

INTRODUCTION

Misidentification of plant species is a major concern in the quality control of herbal medicines
(Ekor, 2014). The confusion in the identity of the herbs may caused by several reasons:
similar morphology, similar name, multiple sources, the presence of counterfeit and adulterants.
A traditional way to authenticate herbal products is to quantify the major or most abundant
compounds using chromatographic methods. Often, a single chemical marker is used as an
indicator for quality assessment (Gad et al., 2013). However, this approach does not reflect the
complexity of herbal products, and the chemical marker might not be unique to one herb.
Another method employed for authentication is DNA barcoding, which is based on variations
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in the sequence of short standard DNA region(s). But the
application of DNA barcoding has limitations because the DNA
region in one plant is identical across many species, making it
not a unique pattern (Pradhan et al., 2015). To overcome these
limitations, fingerprint analysis, which reflects the unique pattern
of chemical compositions in an herb, was adopted by global
regulatory authorities such as the United States Food and Drug
Administration (FDA), State Food and Drug Administration of
China (SFDA) and the European Medicines Agency (EMEA)
(Agency, 2001; Food and Drug Administration, 2004; Chinese
Pharmacopoeia Commission, 2015). These chemical fingerprints
can be obtained by spectroscopic or chromatographic techniques,
such as high-performance liquid chromatography (HPLC), thin-
layer chromatography (TLC), gas chromatography, capillary
electrophoresis, and Raman spectroscopy (Liang et al., 2010;
Tam et al., 2015). Among these techniques, chromatographic
fingerprints obtained from HPLC are widely used due to its
precision, sensitivity, and reproducibility. However, laborious
sample preparation, relatively long analytical run-times and
the large volume of organic solvents consumption in HPLC
hinder its application as a high-throughput screening technique
(Wong et al., 2014).

Mass spectrometry is an analytical technique used to detect
the mass-to-charge ratio (m/z) of ions derived from analytes
molecules, which can provide both qualitative and quantitative
information about samples (Ho et al., 2003). The ability of
mass spectrometry for analyzing non-volatile, thermally labile,
intact and large biomolecules is due to the development
of soft ionization techniques such as Matrix-Assisted Laser
Desorption/Ionization (MALDI) and Electrospray Ionization
(ESI) techniques (Jackson et al., 2000). Both ionization techniques
provide a simple and efficient way for the routine mass
spectroscopic analysis of peptides and proteins. However, direct
infusion of ESI-MS is manual and need to inject one by one,
which is time-consuming whereas MALDI is automatic. In
addition, MALDI usually produces singly charges ions showing
lower spectral complexity than ESI and is more robust in terms
of their higher tolerance for salts than ESI (El-Aneed et al.,
2009). Coupled with time-of-flight mass spectrometry (TOF
MS), MALDI-TOF MS has been widely applied in various fields
especially in the identification of large molecular compounds
without prior chromatographic separation (Cai and Liu, 2014).
Fingerprint analysis using MALDI-TOF MS has been employed
to identify fungi species such as Neoscytalidium and Penicillium
(Packeu et al., 2014). Furthermore, it has been applied to the
quality control of food products such as Brazil grape species
(Fraige et al., 2014) and Campania white wines. Peptidomic
profiles derived from wine protein tryptic digests showed the
unique fingerprinting of the samples (Chambery et al., 2009).
Compared to HPLC, in addition to being faster and simpler,
MALDI-TOF MS also has a larger detection range, has a higher
tolerance to salts and buffers and requires minimal amounts of
analytes (Cai and Liu, 2014).

The roots of Astragalus membranaceus Radix Astragali
(RA), known as Huang Qi in Chinese, are popular herbal
medicines used in traditional Chinese medicine (TCM)
to increase overall vitality, treat diabetes and metabolic

diseases (Cho and Leung, 2007). However, these roots are
often misidentified or substituted by the roots of Hedysarum
polybotrys (Radix Hedysarum, RH), a closely related species to
A. membranaceus, which has similar morphology and Chinese
name (Hong Qi). In addition, both species belong to the Fabaceae
family, making it hard to distinguish RA from RH. However, the
chemical constituents present in both species are different (Liu
et al., 2012). It is reported that RH has been shown to possess a
weaker antidiabetic activity in vivo compared to RA (Liu et al.,
2010). In clinical practice, RH is employed to disperse swelling
by external use, and incorrect use of RH in patients with diabetes
may lead to fatal outcomes (Song et al., 2000).

Irrespective of the authentication methods, the major
chemical markers are small-molecule secondary metabolites,
generally with molecular weight < 1 kDa. These practices are
well-documented in the Pharmacopoeia of the People’s Republic
of China (PPRC) (Chinese Pharmacopoeia Commission, 2015)
and Hong Kong Chinese Materia Medica Standards (Phase III)
(HKCMMS Volume I and VIII, Hong Kong), the identification
of medicinal herbs is based on quantification of their standard
compounds using HPLC. The standard chemical markers of RH
are ononin and formononetin while calycosin-7-O-β-D-glucoside
is the standard compound to authenticate RA. Previously
multiple methods were applied to detect the different chemical
composition of RA and RH. A capillary HPLC (cHPLC)
coupled with diode array detection (DAD) and MS method
showed that ononin, calycosin, and formononetin are present
in both species but with a significantly different amount (Zhao
et al., 2008). In addition, the presence of secondary metabolites
such as flavonoids and saponins in RA and RH have been
comprehensively analyzed by HPLC–UV and HPLC–ELSD,
which confirmed that saponins such as formononetin, calycosin,
ononin are found in both species while calycosin-7-O-β-D-
glucoside is present only in RA (Liu et al., 2012). Another study
performed by HPLC showed that ononin, isomucronulatol 7-
O-glucoside, calycosin and formononetin are found in RA and
RH while medicarpin is the unique compound present in RH
samples (Lee et al., 2012). Moreover, DNA barcoding based
on internal transcribed spacers (Lee et al., 2012) and 5S-rRNA
spacer domains (Ma et al., 2000), have been used for identifying
RA and RH.

Cysteine-rich peptides (CRPs) are generally hyperstable. They
have well-defined structures stabilized by three or more cross-
linking disulfide bridges that render them resistant to thermal,
chemical and enzymatic degradation (Tan et al., 2017). However,
the chemical spaces based on the molecular mass of CRPs of the
plant-derived natural products have not been seriously used as
authentication standards (Wong et al., 2016). The hyper-stability
of CRPs is essential as putative compounds in herbal medicine
because they generally require decoction or other processing
steps., Our laboratory are particularly interested in CRPs with
molecular weights ranging from 2 to 6 kDa, and which are readily
detected by MALDI-TOF MS, a space which is uncluttered
by small-molecule metabolites. Another advantage of CRPs is
that they are well-annotated because they are grouped into
families, such as thionins, defensins, hevein-like and knottin-type
peptides based on their cysteine motifs and disulfide connectivity
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(Wong et al., 2017b). In addition, our studies on CRPs showed
that they are widely distributed in planta and could used for
authentication (Kini et al., 2015, 2017; Kumari et al., 2015;
Nguyen et al., 2015a,b; Wong et al., 2016, 2017a,b; Tan et al.,
2017; Tam et al., 2018; Shen et al., 2019). In our previous
study, we characterized a group of CRPs from RA (Huang
et al., 2019). We hypothesized that the unique chemical space of
CRPs is suitable for discriminating different plant species, and
thus can authenticate RA and differentiate it from its closely
related species RH.

In addition to the instrumental analyses, multivariate data
analysis techniques were introduced for the quality control
because of the complexity of herbal medicines to detect minor
differences between closely related species. Instead of relying
on the comparison to a reference compound or on quantifying
a particular chemical marker, multivariate analyses usually
combine mathematical and statistical techniques to increase
the understanding of chemical data and also to correlate
the quality parameters of physical properties of the analytical
instrument data (Biancolillo and Marini, 2018). The pattern
recognition models in multivariate analyses can improve the
overall classification efficiency based on the chromatographic or
spectroscopic fingerprint obtained.

Here, we describe a CRP fingerprinting method to differentiate
RA and RH. To show the generality of our method, we
screened 100 herbs and herbal products and showed that the
CRP fingerprinting produces consistent results. In a case of
RA and RH, we used MATLAB and classification built-in
tools to extract and analyze the spectra from MALDI-TOF MS
and chromatograms from UPLC. Our results suggest that this
combination can provide a powerful tool for differentiating
closely related plant species and herbal products.

MATERIALS AND METHODS

Solvent and Chemicals
Medicarpin (>98%), formononetin (>98%), calycosin-7-O-β-D-
glucoside (>98%), and calycosin (>98%) were purchased from
Chengdu Biopurify Phytochemicals, Ltd. (Chengdu, China).
Ononin (>98%) was purchased from Sigma-Aldrich (St. Louis,
MO, United States). HPLC-grade acetonitrile and trifluoroacetic
acid were obtained from Thermo Fisher Scientific (Singapore).
Milli-Q water was purified by a Milli-Q water purification system
from Millipore (MA, United States).

Plant Materials
Hundred plants and herbal medicines were collected and
purchased from various region of China and Singapore
(Supplementary Table S1). 40 RH and 51 RA samples
were collected from herbal pharmacies in various regions
of China and Singapore (Supplementary Table S2). The
taxonomic identification was carried out macroscopically and
microscopically according to the descriptions mentioned in
the PPRC (Chinese Pharmacopoeia Commission, 2015). The
samples were authenticated by an experienced registered TCM
physician from Nanyang Technological University, Singapore,

and voucher specimens were deposited at the Nanyang
herbarium, School of Biological Sciences, Nanyang Technological
University, Singapore.

CRP Fingerprinting
Each dried sample was ground using a pulverizer and passed
through a No. 180 (177 µm) sieve. Then, 150 mg of each sample
from the two species was accurately weighed and extracted with
1.5 mL of Milli-Q water or 50% ethanol. The mixture was
vortexed at room temperature for 1 h before being centrifuged
at 10,000 × g for 15 min. The supernatant was filtered through
Whatman No. 1 filter paper under vacuum. A Strata-X Polymeric
Reversed Phase micro elution 96-well plate (Phenomenex, CA,
United States) was used for sample preparation of the crude
extracts for mass spectrometry analysis. Each well was percolated
with water and the filtrate of the samples was loaded onto
different wells under vacuum. The desired peptides were eluted
with 80% (v/v) acetonitrile. Prior to MALDI TOF-MS analysis,
0.5 µL of matrix containing a saturated solution of α-cyano-
4-hydroxycinnamic acid in 80/20 (v/v) acetonitrile/water was
mixed with each sample (0.5 µL). The mixture was then spotted
onto a MALDI plate and dried at room temperature. Mass spectra
of the samples were obtained with an ABI 4800 MALDI-TOF
MS mass spectrometer (Applied Biosystem, MA, United States).
The MALDI-TOF MS was operated in positive ion reflector
mode, acquiring 2000 shots (20 positions per spot; 100 shots per
position) with a laser intensity at 5500. The accelerating and grid
voltages were set at 20 and 16 kV, respectively. The extraction and
MS scan were performed in triplicate for each sample.

Isolation and Characterization of CRPs
From RH and RA
Dried RA (1 kg) was homogenized in 10 L of Milli-Q water
and stirred for 2 h at room temperature. The homogenate was
then centrifuged at 8,000 × g for 15 min and the supernatant
was loaded onto a C18 reversed-phase (RP) flash column. An
increasing concentration of ethanol (20-80%) was used for
sample elution. Fractions with the desired peptides were pooled
and purified by multiple runs of preparative RP-HPLC using a
C18 column (particle size, 5 µm, 250 × 21 mm; Phenomenex,
CA, United States) on a Shimadzu HPLC system (Shimadzu,
Kyoto, Japan). A linear gradient from buffer A (Milli-Q water
with 0.1% trifluoroacetic acid) to buffer B (acetonitrile with 0.1%
trifluoroacetic acid) was applied.

The primary sequences of CRPs obtained from RA were
determined as described previously (Huang et al., 2019). Briefly,
Astratides (10 µg) were reduced by incubating with 50 mM
dithiothreitol in 20 mM ammonium bicarbonate buffer (pH
7) at 37◦C for 1 h. The reduced peptide was then alkylated
with 100 mM iodoacetamide at 37◦C for 1 h. Subsequently,
the sample was desalted using a C18 Zip-tip and lyophilized.
The peptide was redissolved in 0.1% formic acid and analyzed
by a Dionex UltiMate 3000 UPLC system (Thermo Fisher
Scientific, Bremen, Germany) coupled with an Orbitrap Elite
mass spectrometer. Peptide separation was performed with
a 60 min gradient using buffer A (0.1% formic acid) and
buffer B (90% acetonitrile/0.1% formic acid). LTQ Tune Plus
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software (Thermo Fisher Scientific, Bremen, Germany) was set
to a positive mode for data acquisition. A Michrom’s Thermo
CaptiveSpray nanoelectrospray ion source (Bruker-Michrom,
Auburn, CA, United States) was used to generate the spray.
The data were acquired by alternating the Full FT-MS/MS as
previously described (Wong et al., 2016). PEAKS studio version
7.5 (Bioinformatics Solutions, Waterloo, ON, Canada) was used
to process the data acquired from the LC/MS-MS analysis.
A Parent error tolerance of 10 ppm and a fragment error tolerance
of 0.05 Da were applied.

The isolation of CRPs from RH was performed in the
same manner as performed for RA. The primary sequence
of hedytides isolated from RH was determined by MALDI-
TOF MS/MS. Peptides (10 µg) were reduced with 50 mM
dithiothreitol in 20 mM ammonium bicarbonate buffer (pH 7)
at 37◦C for 1 h. Subsequently, hedytides were digested with
trypsin or chymotrypsin (Roche, Basel, Switzerland) at a ratio
of 1:5 (enzyme: hedytide) in 10 mM hydrochloric acid at 37◦C
for 30 min. The peptide fragments obtained were then subjected
to MALDI TOF MS/MS analysis. The primary sequence was
determined by interpreting the b- and y-series ions formed
during the MS/MS fragmentation.

Sample Preparation for UPLC Analysis
The method used was modified from the Hong Kong Chinese
Materia Medica Standards (Phase III) (HKCMMS Volume I and
VIII, Hong Kong) and previous studies on the chromatographic
analyses of RA and RH. Each sample (50 mg) of RA and RH was
weighed and extracted with 1 mL of 80% methanol. The mixture
was sonicated for 1 h before being centrifuged at 3000 × g for
5 min, and the supernatant was filtered through a 0.45 µm PTFE
filter. All sample preparation was performed in triplicate. All of
the extracts were evaporated to dryness for approximately 3 h
in an Eppendorf Concentrator PlusTM (Eppendorf, Hamburg,
Germany). The dried residues were redissolved in 100 µL of
80% methanol in a sonication bath and were centrifuged at
8000 rpm for 10 min. Then, the supernatant was stored in a glass
scintillation vial at−20◦C prior to chromatographic analysis.

UPLC Analysis
The analysis was carried out using the Nexera X2 UPLC system
(Shimadzu, Kyoto, Japan) coupled with an Aeries TM PEPTIDE
XB-C18 column (3.6 µm, 100 mm × 2.1 mm, Phenomenex,
CA, United States). A binary gradient elution method at a flow
rate of 0.3 mL min−1 was employed using 0.1% trifluoroacetic
acid in Milli-Q water as buffer A and 0.1% trifluoroacetic acid
in acetonitrile as buffer B, as follows: 10% B at 0.00–3.00 min,
10–30% B at 3.00–20.00 min, 30–38% B at 20.00–42.00 min,
38–80% B at 42.00–42.01 min, 80% B at 42.01–44.00 min,
80–10% B at 44.00–44.01 min, and 10 − 10% B at 44.01–
46.00 min. The detection wavelength was set to 230 nm. The
chromatograms were documented and analyzed by Shimadzu
LabSolutions Data software.

UPLC Validation
The validation of the UPLC method such as linearity, range,
accuracy, and precision was performed according to the

guideline of the International Conference on Harmonization of
Technical Requirements for Registration of Pharmaceuticals for
Human Use (ICH) (International Council for Harmonisation
of Technical Requirements for Pharmaceuticals for Human
Use Guideline, 2005). To evaluate the linearity and range of
the method, serial dilutions of standard compounds including
medicarpin, formononetin, calycosin-7-O-β-D-glucoside,
calycosin and ononin with 80% methanol were used to generate
calibration curves. Each calibration curve was established
by running the authentic standard compound at more than
10 concentrations (0.02–3000 µg mL−1) in triplicate. The
calibration curve was obtained by plotting the average peak area
versus the concentration of each standard compound. According
to the ICH guideline, the limit of detection (LOD) was calculated
using the formula 3.3∗σ/slope and the limit of quantification
(LOQ) was calculated as 3.3∗σ/slope while σ was defined as the
standard deviation.

The accuracy and precision were measured by analyzing in
triplicate the quality control (QC) samples at low QC (LQC),
medium QC (MQC), and high QC (HQC) concentrations
(calycosin-7-O-β-D-glucoside: 250, 500, and 1000 µg mL−1;
formononetin: 50, 100, and 200 µg mL−1; calycosin: 160, 320,
and 640 µg mL−1; medicarpin: 200, 400, and 800 µg mL−1; and
ononin 375, 750, and 1500 µg mL−1). The intraday precision
and accuracy of each standard were determined by injecting
standards at different QC concentrations six times within 1 day.
By analyzing the QC samples on three consecutive days, in which
the standards were injected six times daily, the interday precision
and accuracy were determined. The relative standard deviation
[RSD (%)] was used to show the precision, whereas accuracy
was expressed as the relative error [RE (%)]. The formulas were
determined as:

Relative standard deviation (RSD) % =

standard deviation (SD)

mean
× 100

Accuarcy % =

mean observed concentration− spiked concentration
spiked concentration

× 100

Data Preprocessing
MALDI-TOF MS Data Matrix
The spectra obtained from the MALDI-TOF MS were converted
to data points in ASCII format using Data Explorer V4.9 (Applied
Biosystem, MA, United States). The number of data points
per sample was set as 30935. The mean of the three spectra
obtained from each sample was used as the final data set and
combined to form a MALDI-TOF MS data matrix consisting of
91 rows (number of samples) and 30935 columns (number of
data points per sample). Several preprocessing techniques were
applied to the raw MALDI-TOF MS data matrix. To smooth the
matrix, a peak alignment procedure called correlation optimized
warping (COW) was applied. An algorithm for choosing the
ideal reference spectrum and the best segment length and slack
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number proposed by Skov et al. (2006) was applied to optimize
the procedure. Other preprocessing programs such as standard
normal variate were used to remove slope variation among
spectra. Mean cantering was also used to remove the column
mean from each variable of the corresponding column.

The data matrix was divided into a calibration set and
validation set based on the Kennard-Stone algorithm
(Daszykowski et al., 2002), which was applied to the RH
and RA samples separately. Generally, 60% of the samples with
the greatest deviations were selected as the calibration set while
the remaining 40% samples were used as the validation set.
Additionally, mean-centering, standard normal variate, and
normalization were applied onto the data matrices to enhance
the signal-to-noise ratio and the interpretability of the models.
The effects of various preprocessing steps on partial least square
discriminant analysis (PLS-DA) models were evaluated and
compared. The model showing the best classification ability was
selected for further analysis.

UPLC Data Matrix
In a chromatographic analysis, a retention time shift may occur
due to the changes in mobile phase composition, operator
handling and instrumental instability (Wong et al., 2013). Thus,
similar to the MALDI-TOF MS data matrix preprocessing, COW
was applied to align the peaks in the UPLC data matrix while
the baseline elevation was eliminated by subtracting a blank
chromatogram. Standard normal variate and mean centering
were performed before classification analysis. The Kennard-
Stone algorithm was used to separate the data matrix into
calibration and validation sets as in the same manner performed
on the MALDI-TOF MS data set.

Multivariate Analyses
Unsupervised Multivariate Analyses
Principal component analysis (PCA)
Principal component analysis is an unsupervised multivariate
analysis used for separating a pool of variables into different
clusters in predictive models and for exploratory data analysis.
Generally, PCA reduces large data sets by projecting them
onto lower dimensions called principal components, aiming to
determine the best trend of the data using a limited number
of principal components (Varmuza and Filzmoser, 2016). In
this study, prior to model calibration, PCA was performed on
the MALDI-TOF MS and UPLC data matrices for outliner
determination and sample classification. The optimal principal
components for the MALDI-TOF MS and UPLC matrices were
both determined to be 3.

Hierarchical cluster analysis (HCA)
Hierarchical cluster analysis is an unsupervised multivariate
method used for natural grouping among samples characterized
by their features. Strategies for HCA can be classified into two
main categories: agglomerative and partitional. Agglomerative
methods usually start with each object being its own cluster
and pairs of clusters are merged hierarchically into larger
ones, while partitional method begins with a single cluster
containing all objects and splits existing clusters into smaller ones

(Rokach and Maimon, 2005). Usually, agglomerative methods
are more commonly used in chemometric studies. There are
six agglomerative methods which include the nearest neighbor,
furthest neighbor, pair-group average, centroid, median, and
Ward’s method, based on their inter-cluster distance and
linkage rules. In this study, Ward’s method and squared
Euclidean distance were used, which minimized the numbers
of clusters and the deviation of any two clusters for each step
(Chlebda et al., 2016).

Supervised Multivariate Analyses
Partial least square-discriminant analysis (PLS-DA)
In contrast to PCA, PLS-DA is a supervised analysis method
that maximizes the separation between predefined classes rather
than explaining the variation with each class. In PLS-DA, the
data matrices were projected onto latent variables to maximize
the covariance between the original matrix and the predefined
response classes (Rosipal and Krämer, 2005). The predictions
from a PLS-DA model are qualitative and normally coded in
vectors (Wong et al., 2013). The UPLC and MALDI-TOF MS data
matrices were divided into two subgroups, RH and RA, based on
their botanical characteristics. Consequently, RH and RA were
represented by vector numbers 0 and 1 and a y predicted response
value of each unknown sample was calculated. A predicted value
close to 1 indicated that the corresponding sample belonged to
the considered class, while a value close to 0 means that the
sample was rejected as a member of the class. The optimal latent
variables were determined as 2 and 1 in the MALDI-TOF MS and
UPLC data matrix, respectively.

K-nearest neighbors (KNN)
K-nearest neighbors is an instance-based algorithm that utilizes
the distance between samples in the p-space as its primary
criterion. The classification was performed based on the
Euclidean distance between samples. Unknown samples were
classified based on their distance from other data points nearest to
them and the majority vote of the neighbors. K-value, the optimal
number of the nearest neighbor, was determined by leave-
one-out cross-validation (Zadeh, 1965). The optimal K-values
for the UPLC and MALDI-TOF MS data matrices were both
determined as 3.

Classification and regression tree (CART)
Decision trees are used in creating a model that predicts the value
of a target based on the values of independent variables. CART
is a non-parametric decision tree that produces a classification
of regression trees depending on whether the variables are
categorical or continuous, respectively (Frank and Lanteri, 1989).
Since there were only two classes involved, the optimal tree size
was not determined.

Soft independent modeling of class analogy (SIMCA)
Soft independent modeling of class analogy is a supervised
classification method that minimizes the assumptions about the
linearity of relationships between samples and predefined classes
(Wong et al., 2014). To build the model, each class (RH and RA)
needs to be analyzed using PCA separately. Hence, a principal
component model was used to account for most of the variation
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within each class. Because the number of principal components
retained for each class is usually different, the cross-validation set
was used to select the optimal numbers of principal components.
To classify an unknown sample, its matrix was projected to each
established PCA model and the residual distance was calculated.
By comparing the residual variance of the unknown sample to the
average residual variance of the PCA model from each class, the
unknown sample was able to be categorized (Frank and Lanteri,
1989). The optimal principal components for the RA and RH
PCA model were determined to be 5 and 1 in the MALDI-TOF
MS and UPLC data matrix, respectively.

Support vector machine-discriminant analysis (SVM-DA)
Support vector machine-discriminant analysis is a supervised
classification method that is commonly used for binary
classification. In SVM-DA, samples are represented by points in
two classes. Based on this, a hyperplane boundary that separates
all points to place the majority in the same class was calculated
(Wong et al., 2014). The technique aims to determine the optimal
hyperplane that can maximize the distance between the two
separated classes (Yan et al., 2016). In this study, the X-block
compression was set at “none” and the probability estimation was
set at “on.”

Classification Model Performance
Evaluation
All models were cross-validated with Venetian blind and split
into ten blocks (Varmuza and Filzmoser, 2016). Confusion
matrices were used to evaluate and compare the performances
of the classification models. In a confusion matrix, the error
rate (ER), non-error rate (NER), sensitivity, and specificity were
calculated using the following equations:

sensitivity =

Number of True Positive
Number of True Positives+Number of False Negative

Specificity =

Number of True Negative
Number of True Negative+Number of False Positive

NER =
Sensitivity+ Specificity

Number of class

ER = 1− NER

True Positive, RA samples correctly classified as RA; True
Negative, RH samples correctly classified as RH; False Negative,
RA samples wrongly classified as RH; False Negative, RH samples
wrongly classified as RA.

Software
Data processing was performed on MATLAB R2017b (The
MathWorks, MA, United States). Classification modeling was
analyzed on PLS toolbox version 8.5 (Eigenvector Research,

WA, United States) and classification toolbox version 5.1.
The Kennard-Stone and COW algorithms were developed by
Daszykowski et al. (2002) and Skov et al. (2006), respectively.

RESULTS AND DISCUSSION

CRP Fingerprinting of 100 Herbs and
Herbal Products
To show the generality of CRP fingerprinting and that CRPs are
widely present in plant species, we used MALDI-TOF MS analysis
for screening putative CRPs in 100 herbs and herbal products.
They include important herbs such as Panax ginseng, Panax
notoginseng, and Panax quinquefolius. In addition, our screening
included herbs in dried, fresh and processed granule forms. It is
noteworthy to point out that DNA barcoding is not applicable for
herbs in processed granule form. Our results showed that clusters
of peptides within the mass range from 2 to 6 kDa are present in
all 100 herbs and herbal products (Supplementary Figure S1). To
show that they are CRPs, we treated the samples with a disulfide-
reducing agent followed by an S-alkylating agent, a procedure
commonly used in our laboratory. A mass shift before and after
S-reduction of the disulfides with dithiothreitol and S-alkylation
of the free thiols with iodoacetamide, results in a mass increment
of 58 Da for each cysteine, and which confirmes that they are
CRPs (Kini et al., 2015, 2017; Kumari et al., 2015; Nguyen et al.,
2015a,b; Wong et al., 2016, 2017a,b; Tan et al., 2017; Tam et al.,
2018; Shen et al., 2019). All 100 mass spectra showed all these
peaks in the region between 2 to 6 kDa are CRPs. Thus, our results
suggest that CRPs are useful chemical markers with different
molecular weight and amino acid composition that are widely
distributed in planta.

There are three major characteristics to access whether the
fingerprints are well suited for use in the quality control of
herbs: Distinctness, uniformity and stability. Our screening result
of 100 herbs showed the distinctness of the CRP fingerprints
which are unique and clearly distinguishable from the others
in each plants. To confirm the uniformity of CRP fingerprints,
we compared the CRP profiles of Viola yedoensis in different
forms (Supplementary Figure S2). When viewed as a whole
fingerprint, the CRP profiles of V. yedoensis remain relatively
consistent amongst the various forms of the herb. Furthermore,
to be useful in the quality control of plants and herbal products,
the biological fingerprints must be able to survive the harsh
decoction process. To show the stability of CRPs, the aqueous
extracts of Triticum aestivum were placed in a water bath (90◦C)
for 1 h. The CRP fingerprints of T. aestivum were shown to
remain consistent despite the harsh conditions (Supplementary
Figure S3). The distinctness, uniformity and stability of CRPs
underline the usefulness of utilizing CRP fingerprinting for the
quality control of herbs.

Usuallly, most identification of plants are based on visual
analysis of their morphological features, which are subjective
and not accurate when many plants share similar morphological
characteristics. Our results showed that by employing CRP
fingerprints as chemical markers, it can distinguish between
plants with similar morphologies. For example, Portulaca
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oleracea and Portulaca grandiflora are two herbs with similar
morphologies. Using our screening procedure, we obtained the
unique CRP fingerprints of these two plants and the presence
of these “marker” peaks allows us to establish the identity of
each plant (Figure 1). Another common quality control method
is employed based on the different chemical constituents of
the herbs. However, sometimes these chemical markers are
not unique and widely expressed in many species. In our
study, we showed that by employing CRP fingerprinting, it

was able to distinguish between plants with similar chemical
composition. For example, oleanolic acid was expressed in
two herbs, Achyranthes bidentata and Clematis chinensis. By
employing oleanolic acid as a chemical marker according to
the Chinese Pharmacopeia, it is difficult to differentiate these
two species. In contrast, the CRP fingerprints presented in
A. bidentata were distinguishable from the CRP fingerprints
of C. chinensis (Figure 2). Similar results can be observed in
plants from same plant families (Figure 3), which suggests

FIGURE 1 | MALDI-TOF mass spectra of two plants with similar morphology: (A) Portulaca oleracea and (B) Portulaca grandiflora.

FIGURE 2 | MALDI-TOF mass spectra of two plants with similar chemical composition: (A) Achyranthes bidentata and (B) Clematis chinensis.
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FIGURE 3 | MALDI-TOF mass spectra of four plants from Rubiaceae family: (A) Hedyotis auricularia, (B) Hedyotis biflora, (C) Hedyotis chrysotricha, and
(D) Lasianthus tomentosus.

that CRP fingerprinting can differentiate species regardless
of their origins.

To show that CRP fingerprinting can be used for quality
control of complex TCM formulation even in granular
forms, we used Shu-Jing-Huo-Xue-Tang ( ) as an
example. This formulation comprises of 17 herbs, of
which two key herbs are A. bidentata and C. chinensis. A.
bidentata ( ) is often substituted by Cyathula officinalis
( )which bears the same Chinese name ( ). We
showed CRP fingerprints of six Shu-Jing-Huo-Xue-Tang

which were purchased form Singapore vendors (Figure 4).
We identified the peaks in the six samples and found
that the peaks < 3 kDa are saponins of C. chinensis. In
contrast, S-reduction showed that peaks with molecular
mass ranging from 3 to 4 kDa are CRPs from A. bidentata
and designated as achyranthes (Supplementary Figure
S4). De novo sequencing revealed that achyranthes aB1 is a
novel CRP containing six cysteines with the full sequence of
CLESGTSCIPGAPHDCCSGVCIPIVTVFYGKCY. Achyranthes
aB1 belongs to the CRP family known as six-cysteine hevein-like
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FIGURE 4 | MALDI-TOF mass spectra of Shu-Jing-Huo-Xue-Tang obtained from different vendors (A–F). Marker peaks corresponding to Achyranthes bidentata are
shown in blue, while marker peaks corresponding to Clematis chinensis are shown in red.
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peptides (Tam et al., 2015, 2018). Our results illustrates two
important points of CRP fingerprinting in herbal authentication:
(1) not all formulation contains the key ingredient, achyranthes,
and (2) the concentrations of key ingredient varies from batch
to batch. For example, A. bidentata was only found in samples
obtained from venders A, E, and F. Our results demonstrate
the usefulness of CRP fingerprinting in the quality control of
herbal formulations.

CRP Fingerprinting of RH and RA
To further validate the method, RH and RA were used as
examples. A small-scale screening revealed clusters of putative
CRPs with molecular mass ranging from 3 to 5 kDa in both
RH and RA (Figure 5). In the RA samples, two major peaks
with m/z of 3811.8 and 4724.4 Da were observed and designated
as astratide aM1 and bM1, respectively. Previously, our
laboratory has identified these two peaks with the aM1 sequence
as VDCSGACSPFEVPPCGSRDCRCIPIGLVVGFCIYPTG and
the bM1 sequence as CEKPSKFFSGPCIGSSGKTQCAYLCRR
GEGLQDGNCKGLKCVCAC, respectively (Huang et al., 2019).

Similarly, in the RH samples, two major peptide peaks with
m/z of 3944.3 and 4780.1 Da were observed and designated
as hedytides hP1 and hP2. Since the sequences of hP1 and
hP2 have not been reported, we used MALDI-TOF MS/MS
to determine their sequences. After trypsin digestion, hP1
yielded two fragments with m/z of 3416 and 550 Da whereas
hP2 yielded three fragments with m/z of 1433, 2272, and
1121 Da. The amino acid assignment of the digested fragments
was performed based on the b- and y-ions detected during
the tandem MS fragmentation. De novo sequencing of the
digested fragments gave the full sequence of the 37-residue hP1
as QGCNGPCTPFEQPPCGIQSCRCFPEVLFFGRCSTPSG. The
process was repeated to determine the full sequence of the
45-residue hP2 as CEKGSEFFVGACRYSEGTQQCATLCSRGEG
LQGGKCKGVRCYCSC (Supplementary Figures S5, S6).

Plant CRPs are classified into different families such
as defensins, knottins, hevein-like peptides, thionins, and
α-hairpinins, based on their different sequences, cysteine spacing
and disulfide connectivity. Our previous study showed that aM1
belongs to pea albumin 1 b-like peptides, whereas bM1 is a
plant defensin (Huang et al., 2019). Both aM1 and hP1 are
37 amino acids in length and contain six cysteines. Sequence
comparison revealed that they share a 65.7% sequence similarity
and comprise the same cysteine motif of C-X3-C-X7-C-X4-C-
X-C-X9-C. Similarly, both bM1 and hP2 are 45 amino acids in
length with 62.2% sequence identity. They share similar cysteine
motif of C-X10-C-X8-C-X3-C-X10-C-X4-C-X-C-X-C. Based on
the cysteine motif and the sequence identity, we concluded that
hP1 is a pea albumin 1 b-like peptide similar to aM1, and hP2 a
plant defensin similar to bM1.

This intra-family sequence similarity and variability were
frequently observed in the legume family. It was reported that
PA1b-like peptides ranging from 3 to 4 kDa present in more
than 18 species in the Fabaceae family, with sequence identity
ranging from 61% (between soybean and Alysicarpus ovalifolius)
to 86.1% (between aM1 and Glycine max) (Louis et al., 2007).
In addition, defensins have been identified in >10 species from

FIGURE 5 | MALDI-TOF MS profile of (A) RA and (B) RH samples. Two major
CRPs are designated as aM1 and bM1, with a molecular weight of 3811.8
and 4724.4 Da in RA samples, respectively. Similarly, with molecular weights
of 3944.3 and 4780.1 Da, two major CRPs in RH samples were designated
as hP1 and hP2, respectively.

the Fabaceae family with 46.8–86.7% sequence identity (Huang
et al., 2019). Although these CRPs are classified under the same
CRP subfamily, their sequence variability could be used for
distinguishing one plant from another. Furthermore, the ability
to withstand harsh conditions during the processing stage of
crude herbal medicine makes CRPs as suitable chemical markers
for the differentiation of RA and RH.

Chromatographic Method Validation
Limit of detection, LOQ, and calibration curve parameters of
each standard compound were summarized in Supplementary
Table S3. Low LOD and LOQ values of≤0.15 and 0.43 µg mL−1,
respectively, for all five standard compounds were observed.
High correlation coefficients (r2

≥ 0.9990) and a wide linear
range (0.02–3000 µg mL−1) indicated the highly correlated
relationship between the reference compounds and the peak
area. The intraday and interday precision and accuracy for
standard compounds at low, medium, and high concentrations
are shown in Table 1. The average RSDs of intraday LQC, MQC,
and HQC were 0.66, 0.48, and 0.30%, whereas 1.42, 1.09, and
0.93% were the averages for interday, respectively. Moreover, the
average of intraday accuracies at LQC, MQC, and HQC were
2.11, 2.90, and 2.09%, whereas the average interday accuracies
were 1.73, 2.73, and 1.50%, respectively. The results showed
that the developed chromatographic methods had good accuracy
and repeatability.
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TABLE 1 | Validation of the intra- and inter-day accuracies of five standard compounds at low, medium, and high concentrations.

Compounds Spiked
concentration
(µg mL−1)

Intra-day (n = 6) Inter-day (n = 18)

Observed
concentration (µg

mL−1)a

Precision RSD
(%)b

Accuracy
(%)c

Observed
concentration (µg

mL−1)a

Precision RSD
(%)b

Accuracy
(%)c

calycosin-7-O-
β-D-glucoside

250 252.995 ± 0.914 0.361 1.197 257.999 ± 3.793 1.470 3.199

500 519.093 ± 2.716 0.523 3.818 520.266 ± 2.424 0.466 4.053

1000 967.190 ± 2.325 0.240 −3.281 975.803 ± 7.011 0.718 −2.451

formononetin 50 50.963 ± 0.876 1.719 1.927 50.081 ± 1.116 2.227 0.162

100 98.997 ± 1.349 1.362 −1.002 101.801 ± 2.857 2.806 1.801

200 189.891 ± 1.312 0.691 −5.084 193.855 ± 4.552 2.348 −3.072

calycosin 160 161.065 ± 0.898 0.558 0.666 160.424 ± 0.999 0.623 0.265

320 316.580 ± 0.800 0.253 −1.069 317.512 ± 1.646 0.518 −0.777

640 637.987 ± 2.264 0.355 −0.315 636.471 ± 3.514 0.552 −0.551

medicarpin 200 209.377 ± 0.941 0.449 4.688 204.941 ± 4.969 2.425 2.470

400 372.762 ± 0.470 0.126 −6.810 376.282 ± 3.831 1.018 −5.929

800 789.892 ± 1.051 0.133 −1.271 790.642 ± 3.315 0.419 −1.169

ononin 375 382.684 ± 0.762 0.199 2.049 384.5343 ± 2.083 0.542 2.542

750 763.594 ± 0.921 0.121 1.812 758.200 ± 4.755 0.627 1.093

1500 1507.782 ± 1.069 0.071 0.518 1496.51 ± 9.334 0.623 −0.233

aMean ± standard deviation (SD). bRelative standard deviation (RSD) % = (SD/mean) × 100. CAccuracy % = [(mean observed concentration − spiked
concentration)/spiked concentration] × 100.

UPLC Fingerprinting
According to the method and monographs recorded in PPRC
(Chinese Pharmacopoeia Commission, 2015) and HKCMMS
(Volume I and VIII, Hong Kong), the quality control of RH and
RA samples were accessed based on the UPLC analysis of five
standard compounds: medicarpin, formononetin, calycosin-7-O-
β-D-glucoside, calycosin, and ononin. Methanolic extraction of
RH and RA samples were injected into UPLC for fingerprinting
whereas the same methods were applied for five standard
compounds. Figure 6 shows the representative chromatographs
of the two herbs and the corresponding peaks of the five
standard compounds. The retention times of calycosin-7-O-β-
D-glucoside, ononin, calycosin, formononetin, and medicarpin
were 10.0, 15.0, 17.5, 23.5, and 27.5 min, respectively. The
results showed that ononin, calycosin, and formononetin were
the common constituents in both species. The major difference
between the two species is that calycosin-7-O-β-D-glucoside
only existed in RA, whereas medicarpin was only found in
RH. This finding is consistent with a previous study that
showed that formononetin, ononin, calycosin, formononetin-7-
O-D-glucoside-6′′-O-malonate and soyasaponin are the primary
compounds in RH and RA, while medicarpin was unique in RH
(Liu et al., 2012).

In the sample preparation stage, CRP fingerprinting requires
samples to be extracted in water for 1 h and the crude extracts
are subjected to a reverse-phase micro elution 96-well plate for
further analysis. In contrast, UPLC analysis contained methanol
extraction of samples, dryness, and re-dissolve of the residues
which requires 1 day for preparation. Thus, the preparation

time for MALDI-TOF MS analysis is 10-fold shorter than UPLC
analysis. In addition, the analytical time of MALDI-TOF MS
is approximately 5 s, and which is 500-fold faster than UPLC
analysis with a running time of 46 min.

Data Preprocessing
Peak Alignment
Prior to applying PCA for outlier detection, both MALDI-TOF
MS and UPLC data matrices were preprocessed by COW to
reduce the noise and inconsistency in the data. Figure 7 shows the
chromatograms of forty RH samples and fifty-one RA samples
before and after peak alignment whereas Figure 8 shows the
MALDI-TOF MS spectra before and after peak alignment of both
samples. The reference chromatogram, segment length, and slack
numbers are summarized in Supplementary Table S4, which
were optimized by the method proposed by Skov et al. (2006).

Outliners Detection and Unsupervised Multivariate
Analyses
Outlier detection is an important evaluation before constructing
a classification model since possible anomalous samples in the
data matrices could affect the quality of the model and therefore
should be removed beforehand. In this study, PCA was applied
to identify the presence of outliers and provide an overall idea
about the sample distribution. Prior to PCA analysis, the samples
were preprocessed by COW baseline removal, standard normal
variate and mean centering. The determination of outliners was
accessed by Hotelling’s T square verse Q residuals plot, where
a sample with high Hotelling’s T square and Q residual value

Frontiers in Plant Science | www.frontiersin.org 11 July 2019 | Volume 10 | Article 973

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00973 July 30, 2019 Time: 16:39 # 12

Huang et al. Cysteine-Rich Peptide Fingerprinting

FIGURE 6 | Representative UPLC Chromatograms of samples and standards. (A) Methanolic extract of RH. (B) Methanolic extract of RA. (C)
Calycosin-7-O-β-D-glucoside. (D) Ononin. (E) Calycosin. (F) Formononetin. (G) Medicarpin.

are considered as an outlier. The outlier could donate a greater
influence on the model and has a larger variation compared to
the projected data and thus should be eliminated before further
multivariate analysis. In this study, the MALDI-TOF MS data
matrix was used as the main data source for constructing the
classification model and thus the outlier detection was applied
mainly on the MALDI-TOF MS data. Four outliers (RH22,
RH31, RA24, and RA46) were detected from the data matrix and
removed for subsequent analysis. Figure 9 shows the Hotelling’s
T square versus the Q residuals plot before and after removing the
outliners. It can be observed that four outliners are far from the
sample major cluster (Figure 9A). In contrast, no samples were
detected to have both high Hotelling’s T square and Q residual
values after the outliners were eliminated (Figure 9B). Hence,
the dataset was reduced to 87 samples, including 38 samples of
RH and 49 samples of RA. Figure 9C shows the PC1-PC2 score
plots of the preprocessed data after removing the four outliners,
showing that RH and RA were well separated into two distinct
clusters. The results suggest that these two species have distinct
spectrometric characteristics.

Hierarchical cluster analysis was performed as a continuation
of PCA. With different classification algorithms, it is more
promising to obtain sensitive sample classification (Viapiana
et al., 2016). In this study, Euclidean distance was checked as
a distance similarity measure and Ward’s method was applied.
HCA draws a connection between RA and RH, producing a
dendrogram (Figure 10) in which similar samples are grouped
and this similarity is calculated based on the distance between the
samples. The dendrogram showed that all RA samples and RH

samples are well separated into two major clusters, highlighted in
green and red, respectively. Taken together, our results showed
that the clustering pattern obtained using HCA agreed with
the classification results acquired from PCA, indicating that the
MALDI-TOF MS-based CRP fingerprinting method can deliver
a consistent classification result.

Optimization of Preprocessing Methods
To improve the data quality and reduce the noise in data
matrices, multiple preprocessing algorithms were applied before
constructing the multivariate analysis model. Data preprocessing
can help to significantly improve the interpretability of the
classification models. However, there is no well-established
procedure of applying preprocessing algorithms, and as a result,
optimization of the preprocessing techniques is needed.

In this study, the data matrices were divided into a calibration
set and a validation set based on the Kennard-Stone algorithm.
After eliminating the four outliners, 23 RH and 30 RA samples
constituted the calibration set, whereas the remaining 15 RH
and 19 RA samples were used to generate the validation set.
A PLS-DA model was used to compare and evaluate the effect
of different preprocessing methods and their respective order
on the model’s performance. The data matrices were subjected
to mean-centering, standard normal variate, and normalization
after the preliminary preprocessing such as peak alignment and
baseline correction. Mean-centering aimed at subtracting the
column mean from each variable in the respective column. On
the other hand, the objective of normalization was to divide
each variable by the sum of the absolute value of all variables
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FIGURE 7 | UPLC chromatogram of 40 RH and 51 RA methanolic extracts between retention time between 4.17 and 37.49 min. (A) Raw data and (B) after
Correlation Optimized Warping (COW)-corrected UPLC chromatogram (segment = 148; slack = 1) of RH samples. (C) Raw data and (D) after Correlation Optimized
Warping (COW)-corrected UPLC chromatogram (segment = 149; slack = 22) of RA samples. The chromatograms were zoomed in to show peak alignment after
warping.

(Varmuza and Filzmoser, 2016). Furthermore, standard normal
variate normalized each chromatogram or spectrum by removing
slope variation (Barnes et al., 1989). The effect of different
combinations of preprocessing techniques was evaluated by the
root mean square error of calibration (RMSEC), root mean
square error of cross-validation (RMSECV), root mean square
error of prediction (RMSEP), and correlation coefficient from the
leave-one-out cross-validation as shown in Table 2.

The desired preprocessing method combination should have a
low complexity (the number of latent variables), a low root mean
error, and a high correlation coefficient. According to the results
shown in Table 2, preprocessing with standard normal variate
followed by mean centering and the PLS-DA model showed the

lowest latent variables and the smallest root mean error between
the calibration and validation data set. Thus, this combination of
preprocessing methods was chosen to be applied to the MALDI-
TOF MS and UPLC data matrices in the subsequent analysis.

Comparison of Various Classification Models
The classification of RH and RA were constructed using different
models, including PLS-DA, KNN, CART, SIMCA, and SVM-DA
based on the calibration and validation sets of the preprocessed
MALDI-TOF MS and UPLC data matrices. The calibration set
(53 samples with 23 RH and 30 RA) was selected by the Kennard-
Stone algorithm and used to establish and train the classification
model. On the other hand, the validation dataset (34 samples with
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FIGURE 8 | MALDI-TOF MS profiles of 40 RH and 51 RA between 3600 and 4900 Da. (A) Raw data and (B) after Correlation Optimized Warping (COW)-corrected
MALDI-TOF MS spectrum (segment = 150; slack = 5) of RH samples. (C) Raw data and (D) after Correlation Optimized Warping (COW)-corrected MALDI-TOF MS
spectrum (segment = 151; slack = 4) of RA samples. The chromatograms were zoomed in to show peak alignment after warping.
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FIGURE 9 | PCA plots obtained from preprocessed MALDI-TOF MS data matrix. Hotelling’s Tˆ2 versus Q residuals plot of (A) raw data and (B) after removal of
outliners. (----) line represents 95% confidence interval; (C) PC1-PC2 scores plot after removing outliners.

15 RH and 19 RA) was employed in the final step to evaluate the
predictive ability of the calibrated model.

Tables 3A,B compare different classification models obtained
from the preprocessed MALDI-TOF MS and UPLC data
matrices. In the confusion matrices, the accuracy in the cross-
validation set (CV) and the perdition set (Pred) indicate the
interpretability and predictability of each model, respectively.
Table 3A illustrates that when the classification model was
constructed using the MALDI-TOF MS data matrix, KNN, PLS-
DA, and SVM-DA showed the greatest interpretability (100.00%)
and predictability (100.00%) for both the cross-validation and
prediction data sets, whereas the SIMCA and CART models
provided worse performance. SIMCA was shown to have
higher interpretability (96.20%) with only one misidentification
compared to CART (87.00%), in which 4 RH and 3 RA
were misidentified. However, in the prediction set, with 4
(2 RH and 2 RA) samples not assigned, SIMCA showed
lower predictability (88.90%) than CART (97.00%). Table 3B

summarizes the different classification model results using UPLC
data. KNN analysis provided the best interpretability (100.00%)
and predictability (100.00%) in both the cross-validation and
prediction set. PLS-DA and SVM-DA provided slightly lower
interpretability (96.20%), both with one RH sample misidentified
as the RA sample. Similar to the results obtained from the
MALDI-TOF MS data, SIMCA (89.20%), and CART (96.00%)
provided relatively low performance on the cross-validation
set. With 5 (2 RH and 3 RA) samples not assigned, SIMCA
delivered the worse interpretability. However, all models showed
100.00% predictability on the prediction set, which indicated the
high prediction ability of the UPLC data matrix using different
classification models.

Generally, HPLC or UPLC data will provide a relatively high
prediction ability of classification performance compared with
data obtained from other analytical instruments (Liu et al., 2010).
Thus, it is not surprising that our study provided consistent
results as illustrated in Table 3. UPLC generated a perfect
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FIGURE 10 | Dendrogram representation of HCA performed on MALDI-TOF data matrix using Euclidean distance and Ward’s method. Obtained data can be divided
into two main groups, RH and RA samples at the distance of about 1200 (the black line represents cut-off level).

performance on various classification models in that all RH
and RA samples were correctly categorized in the prediction
set. Interestingly, the classification models constructed using the
MALDI-TOF MS data matrix showed comparable classification
ability to the UPLC data matrix, with prediction accuracies more
than 89.00% in all models. The results suggested that MALDI-
TOF MS can also be applied as a reliable alternative analytical
technique in differentiation samples.

For a better understanding of the classification ability of
different models, sensitivity, specificity, the error rate (ER) and
the non-error rate (NER) of each model on the prediction
set was calculated and compared (Table 3C). Basically, the
four parameters showed the ability to correctly classify samples
belonging to a specific class, and the ability to reject the samples
from all other classes of a classification model. Similar to the
illustration in the confusion matrix, all models showed a perfect

TABLE 2 | Comparison of the statistical performance of PLS-DA model after applying various preprocessing methods on the MAIDI calibration and validation data set.

Preprocessing
method(s)

Latent variable (s)a RMSECb RMSECVc RMSEPd Deviation
between RMSEP
and RMSEC (%)e

r2 calf r2 CVg r2 valh

None 3 0.2260 0.2481 0.1944 −16.2551 0.7966 0.7572 0.7474

standard normal
variate + mean
centering

2 0.0687 0.0749 0.0671 −2.3845 0.9808 0.9772 0.9837

Normalization +
mean centering

2 0.1034 0.1114 0.0938 −10.2345 0.9565 0.9495 0.9654

Mean centering +
normalization

2 0.1538 0.1738 0.1469 −4.6971 0.9046 0.8778 0.9206

Mean centering +
standard normal
variate

2 0.1324 0.1507 0.1518 12.7799 0.9288 0.9076 0.9139

aOptimal number of latent variables; bRoot mean square error of calibration; cRoot mean square error of cross-validation; dRoot mean square error of prediction; eDeviation
between RMSEC and RMSEP; fCorrelation coefficient of calibration set; gCorrelation coefficient of cross-validation set; hCorrelation coefficient of validation set.
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TABLE 3A | The confusion matrices obtained from the prediction set of the preprocessed MALDI-TOF MS data.

CVa Predb

Predicted class Predicted class

True class Nc RH RA NAd Accuracy (%) N RH RA NA Accuracy (%)

KNN RH 23 23 − − 100.00 15 15 − − 100.00

RA 30 − 30 − 19 − 19 −

PLS-DA RH 23 23 − − 100.00 15 15 − − 100.00

RA 30 − 30 − 19 − 19 −

SIMCA RH 23 23 − − 96.20 15 13 − 2 88.90

RA 30 − 29 1 19 − 17 2

SVM-DA RH 23 23 − − 100.00 15 15 − − 100.00

RA 30 − 30 − 19 − 19 −

CART RH 23 19 4 − 87.00 15 14 1 − 97.00

RA 30 3 27 − 19 − 19 −

aVenetian blind cross-validation set; bPrediction set; cNumber of samples; dNot assigned.

TABLE 3B | The confusion matrices obtained from the prediction set of the preprocessed UPLC data.

CVa Predb

Predicted class Predicted class

True class Nc RH RA NAd Accuracy (%) N RH RA NA Accuracy (%)

KNN RH 23 23 − − 100.00 15 15 − − 100.00

RA 30 − 30 − 19 − 19 −

PLS-DA RH 23 22 1 − 96.20 15 15 − − 100.00

RA 30 − 30 − 19 − 19 −

SIMCA RH 23 21 − 2 89.20 15 15 − − 100.00

RA 30 − 27 3 19 − 19 −

SVM-DA RH 23 22 1 − 96.20 15 15 − − 100.00

RA 30 − 30 − 19 − 19 −

CART RH 23 22 1 − 96.00 15 15 − − 100.00

RA 30 1 29 − 19 − 19 −

aVenetian blind cross-validation set; bPrediction set; cNumber of samples; dNot assigned.

TABLE 3C | The classification parameters of the preprocessed UPLC and MALDI-TOF MS data obtained from the prediction set.

MALDI-TOF MS UPLC

RA RA

ERa NERb Specificity Sensitivity ERa NERb Specificity Sensitivity

KNN 0 1 1 1 0 1 1 1

PLS-DA 0 1 1 1 0 1 1 1

SIMCA 0.06 0.94 1 0.89 0 1 1 1

SVM-DA 0 1 1 1 0 1 1 1

CART 0.03 0.97 0.93 1 0 1 1 1

aError rate; bNon-error rate.

score for one for the UPLC data, suggesting that all models
were able to correctly classify the samples based on UPLC
data matrices. For the MALDI-TOF MS data, except for the
SIMCA and CART model, all of the other models showed

perfect classification abilities as well. The low sensitivity value
in SIMCA (0.89) suggested that the model is more preferable
in discriminating RH than RA. In contrast, the low specificity
value in CART (0.93) indicated the greater ability of this model
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to differentiate RA than RH. However, the overall performance
of all models based on the MALDI-TOF MS data was relatively
high, suggesting that MALDI-TOF MS coupled with multivariate
classification analyses is reliable for sample classification.

Previous studies on evaluating the performance of different
classification models also showed similar results. The
differentiation of Puerariae Lobatae Radix and Puerariae
Thomsonii Radix using HTPLC coupled with a seven
classification model showed that the SIMCA model delivered the
worst performance, with a 0.5 error rate and 60.00% accuracy in
predicting the class of samples, compared to KNN, PLS-DA, and
SVM-DA (Wong et al., 2014). Additionally, it also showed that
CART performed less well than the other classification models
with its low sensitivity value (0.38) and its low prediction rate
(64.29%). Another study on the characterization of transgenic
and non-transgenic soybean oil using NIR spectroscopy
conducted by Luna et al. (2013) demonstrated similar findings.
This study showed that the best classification results were
provided by SVM-DA (CV: 100.00%, Pred: 95.00%) and PLS-DA
(CV: 97.50%, Pred: 90.00%). In contrast, SIMCA provided
lower results in class modeling. However, not all studies showed
the same results. For example, a study conducted by Martins
showed that SIMCA exhibited only a 12.00% correct rate when
differentiating Phyllanthus species using HPLC. However,
100.00% of the samples were correctly classified while using
a SIMCA model based on NIR data, whereas the PLS-DA
and KNN model only showed an 80.00% accuracy (Martins
et al., 2011). Overall, it can be revealed that the ability of a
classification model might not be the same when applying
different analytical methods.

Here, KNN showed the greatest classification performance
and was the most preferable algorithm to differentiate RH and
RA since it required minimal data handling procedures and
the shortest running time. However, PLS-DA and SVM-DA are
more suitable when the study is focused on the distribution
of the classes and the relationships between the variables.
Additionally, with slightly lower specificity and accuracy, CART
is less favorable compared to KNN, PLS-DA, and SVM-DA.
Among all the classification models, SIMCA is the least preferable
method for distinguishing RH and RA because of its lowest
accuracy in prediction and requirements in multiple steps for
data optimization.

CONCLUSION

Traditionally, small-molecule metabolites such as saponins and
flavonoids quantified by chromatographic analysis is employed
to differentiate herbs and herbal products. In this study, we report
CRP fingerprinting as a general method for herbal authentication
based on the hyperstable CRPs with molecular weights ranging
from 2 and 6 kDa. The usefulness of CRP fingerprinting
was validated in screening 100 herbs and herbal products.
CRP fingerprinting produces consistent results regardless of the
morphology, chemical composition, and origins of the herbs and
herbal products. This method is also useful to authenticate key
ingredients in complex formulation Shu-Jing-Huo-Xue-Tang,

which contains 17 herbs. In particular, we identified the novel
achyranthes aB1 as a useful CRP marker to authenticate this
complex formulation. In addition, CRP fingerprinting coulpled
with multivariate analyses was employed to differentiate RA
from its closely related species RH. Using the MALDI-TOF MS
technique, we showed that astratides aM1 and aM2 are the unique
CRPs present in RA while hedytides hP1 and hP2 are novel CRPs
that only found in RH species. De novo sequencing revealed that
astratides and hedytides are different in amino acid composition.
Compared to the conventional quality control method using
chromatographic fingerprinting, CRP fingerprinting based on
MALDI-TOF MS analysis is 500-fold faster. Unsupervised
multivariate analyses such as PCA and HCA showed that RA
and RH can be separated into two clusters based on their
CRP fingerprints. In addition, the classification ability of CRP
fingerprinting coupled with five supervised multivariate analyses
had comparable classification accuracy to that of UPLC. In terms
of the performance of classification models, KNN, PLS-DA, and
SVM-DA from CRP fingerprinting showed a perfect correct
classification rate (100.00%) while minor classification errors
(3.00%) were found in the CART model. With 88.90% sensitivity
and 94.00% correct rate of classification, SIMCA performed
the worse and thus became the least preferable classification
model. Overall, with simple handling procedure and accurate
classification results, CRP fingerprinting can be used as a novel
and general approach for quality control and authentication of
herbal and herbal products.
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