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The vegetative phase change in flowering plants is controlled by microRNA156 (miR156)
under transcriptional regulation. However, the developmental signals upstream of
miR156 are not well understood. The glutathione/glutathione disulfide (GSH/GSSG)
ratios and GSH levels decline significantly during phase change, which is consistent
with miR156 expression in apple (Malus domestica Borkh.). Here, we found that
the content of protein conjugated glutathione was remarkably higher in chloroplasts
and nuclei of adult than juvenile phase apple hybrids. The decrease in miR156
expression was most relevant to the activities of serine acetyltransferase (SAT) and
soluble γ-glutamyl transpeptidase (GGT), and the expressions of MdGGT1 or MdSATs.
Transgenic apples over-expressing MdMIR156 or miR156-mimetic (MIM156) did not
alter MdGGT1 expression or the soluble GGT activity. Inhibition of GGT activity with
serine-borate complex or acivicin led to significant reduction in GSH content, the
GSH/GSSG ratio, and the expressions of MdMIR156a5, MdMIR156a12, and miR156.
Depletion of GSH with diethyl maleate without altering GGT activity caused a dramatic
decrease in the expression of MdMIR156a5, MdMIR156a12, and miR156. Manipulating
GGT activity and GSH homeostasis by transgenic over-expressing or RNAi MdGGT1
increased or decreased MdMIR156a5 and MdMIR156a12 levels, respectively. These
data provided novel evidence that MdGGT1 participates in transcriptional level of
transcription regulation of miR156 precursors during ontogenesis.

HIGHLIGHTS

- MdGGT1 affects thiol redox status and indirectly participates in the regulation of
miR156 expression during vegetative phase change.

Keywords: glutathione, γ-glutamyl transpeptidase, Malus domestica Borkh., microRNA, miR156, thiol redox,
vegetative phase change

Abbreviations: Acivcin, α-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid; A, adult phase; Cys, cysteine; CS, cysteine
synthase; DEM, diethyl maleate; GSH, reduced glutathione; GSH/GSSG, glutathione/glutathione disulfide; GGT,
Gamma (γ)-glutamyl transpeptidase; GCL, glutamate-cysteine ligase; J, juvenile phase; LSD, least significant difference;
MIM156, miR156-mimetic; miR156, microRNA156; ROS, reactive oxygen species; SAT, serine acetyltransferase; SEB,
serine-borate complex.
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INTRODUCTION

Flowering is a critical life-history trait for the reproductive
success of plants (Wang et al., 2009; Wang, 2014; Wei
et al., 2017). The initiation of flowering is controlled by both
environmental cues and endogenous regulation (Zhou et al.,
2013). Phase change from the juvenile to the adult vegetative
phase is a typical endogenous pathway (Poethig, 1990; Poethig,
2003). microRNA156 (miR156) has been identified as a key
factor regulating phase change and is highly conserved in
the plant kingdom (Carrington and Ambros, 2003; Wu and
Poethig, 2006; Chuck et al., 2007; Wang et al., 2009, 2011;
Xie et al., 2012; Bergonzi et al., 2013; Yoshikawa et al., 2013;
Zhou and Wang, 2013).

miR156 is under transcriptional regulation. In Arabidopsis,
the expression level of miR156 is attributed to the transcriptional
level of the precursor genes, MIR156A and MIR156C (Yang
et al., 2013). The double stranded RNA-binding protein
HYPONASTIC LEAVES1 (HYL1) is required for the processing
of mature miR156 from its primary transcripts pri-miR156a,
HYL1 expression in adult Arabidopsis plants increased as over
three times higher than its juvenile phase, but the mature
miR156 decreased significantly in adult phase, showing that
miR156 is mainly regulated under transcription level (Li
et al., 2012). In the apple (Malus domestica Borkh.) genome,
seven putative MdMIR156 genes were dominantly expressed
and the transcription of MdMIR156a5 and MdMIR156a12
decreased significantly in leaves and shoot tips, respectively,
during the vegetative phase change, which was consistent
with the changes in mature miR156 level (Jia et al., 2017).
No substantial changes were detected in MdHYL1 expression
during the vegetative phase change (Jia et al., 2017). The
transcription levels of pre-miR156 were regulated by upstream
signals derived from the leaf primordia in Arabidopsis (Yang
et al., 2011). Although sugar promotes vegetative phase
change in A. thaliana by repressing the expression of
miR156, sugar is likely not the unique upstream signal in
perennials (Proveniers, 2013; Yang et al., 2011, 2013; Yu S.
et al., 2013). The Arabidopsis mutant gin2-1, which lacks
HEXOKINASE 1 (HXK1), is only slightly precocious in the
transition to the adult phase, which indicates that sugar
may not be the only factor that regulates miR156 expression
(Yang et al., 2013).

Age-associated changes in reactive oxygen species (ROS)
and antioxidant levels have been found in many species,
including Drosophila melanogaster, Musca domestica, and
mice (Mus musculus) (Cochemé et al., 2011; Sohal and Orr,
2012). During the phase change in apple, the content of
H2O2 increased remarkably, which is not robustly consistent
with the decrease in miR156 expression (Du et al., 2015; Jia
et al., 2017). Glutathione (γ-glutamyl-cysteinyl-glycine) is an
essential metabolite with multiple functions in plants (Noctor
et al., 2012). Reduced glutathione (GSH) is continuously
oxidized to a disulfide form (GSSG) that is recycled to
GSH by NADPH-dependent glutathione reductase (GR)
(Figure 1). Glutathione/glutathione disulfide (GSH/GSSG)
ratios declined in the brain tissue of aging mice compared

to young mice (Rebrin et al., 2007). Identically, the decline
of GSH/GSSG ratio during aging has also been reported
in Caenorhabditis elegans (Brys et al., 2007). Similarly, in
apple, we found that the GSH content and the GSH/GSSH
ratio decreased significantly during ontogenesis, which is
consistent with the changes in the expressions of MdMIR156a5,
MdMIR156a12, and mature miR156 (Du et al., 2015; Jia
et al., 2017). Notably, when redox homeostasis was altered by
exogenous L-2-oxothiazolidine-4-carboxylic acid or buthionine
sulphoximine treatments in vitro, MdMIR156a5, MdMIR156a12,
and mature miR156 expressions changed correlated with
GSH levels and the GSH/GSSG ratio but did not correlate
with H2O2 content (Du et al., 2015; Jia et al., 2017). No
substantial differences in the content of H2O2 and GSH were
observed between the transgenic Nicotiana benthamiana lines
MdMIR156a6-overexpressing, miR156-mimetic (MIM156),
and the untransformed wild type (Jia et al., 2017). These
results implied that the regulation of GSH is upstream
of MdMIR156s.

Cellular GSH potential is precisely controlled via its
biosynthesis, subcellular compartmentalization, catabolism, and
reutilization of the oxidized products (Figure 1; Noctor et al.,
2012). The rate-limiting reaction of glutathione biosynthesis
is catalyzed by glutamate-cysteine ligase (GCL) (Hicks et al.,
2007). Besides GCL activity, cysteine (Cys) availability is
another dominant factor affecting glutathione biosynthesis
and thus regulating cellular GSH homeostasis (Noctor et al.,
2012). Cys availability is determined by both the de novo
synthesis of Cys and Cys recycling. The de novo biosynthesis
of Cys is catalyzed by cysteine synthase (CS) and serine
acetyltransferase (SAT) (Figure 1; Wirtz and Hell, 2007). Gamma
(γ)-glutamyl transpeptidase (GGT) enzymes are responsible for
the breakdown of GSSG or S-glutathionylated proteins and
provide free cysteine residue for reutilization, thereby enabling
the cells to maintain their intracellular GSH levels (Martin
et al., 2007; Hanigan, 2014). GGT is the only enzyme that is
capable of catalyzing the hydrolysis of the unique N-terminal
amide bond between glutamate and cysteine (Martin and
Slovin, 2000). Of the four GGT genes in Arabidopsis, GGT1
and GGT2 are localized at the apoplast side of the plasma
membrane, GGT3 is a pseudogene, and GGT4 is localized in
the vacuole (Figure 1; Grzam et al., 2007; Martin et al., 2007;
Ohkama-Ohtsu et al., 2007; Gigolashvili and Kopriva, 2014).
In Arabidopsis, GGT1 accounts for 80–90% of GGT activity
in all tissue except seeds and GGT1 activity is sensitive to
the apoplast redox environment (Martin et al., 2007; Zhang
and Forman, 2009). GGT1 knockout mutant protoplasts of
A. thaliana are unable to retrieve GSH from the growth
medium, indicating the importance of GGT for GSH recycling
(Ohkama-Ohtsu et al., 2007).

To explore if and how cellular GSH homeostasis regulates
MdMIR156s levels and subsequently controls the vegetative
phase change, we used apple hybrid trees grown from
seeds as a model for the investigation of phase change
in woody perennials. We found that MdGGT1 played an
important role in the regulation of miR156 transcription
during ontogenesis.
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FIGURE 1 | Schematic diagram showing plant cellular glutathione metabolism, recycling, and compartmentalization. Endogenous chemicals are presented in bold
font, enzymes and transporters are in nonbold font, while exogenous inhibitors are in blue colored font. The subscript letters following the chemical abbreviations
indicate the subcellular localizations: apoplast (a), cytosol (c), plastid (p), mitochondrion (m), peroxisome (px), nucleus (n), and vacuole (v). Organelles are marked with
different color, the thick blue open rectangle means plasma membrane, and outside of that rectangle indicates apoplast. Abbreviations used in this figure: ASC,
ascorbate; Acivicin, α-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid; BAG, BCL2-associated athanogene; BSO, buthionine sulfoximine; CAT, catalase; CLT,
chloroquine resistance-like transporter; CS, O-acetylserine sulfhydrylase; Cys, cysteine; DPI, diphenyleneiodonium; γ-EC, γ-glutamylcysteine; GCL, glutamate
cysteine ligase; GGT, γ-glutamyl transpeptidase; Glu, glutamate; Gly, glycine; GR, glutathione reductase; GS, glutathione synthetase; GSH, glutathione; GSSG,
glutathione disulfide; GSSP, S-glutathionylated protein; MRP, multidrug resistance protein; NOX, NADPH oxidase; OAS, O-acetylserine; PRX, peroxiredoxin; SAT,
serine acetyltransferase; SDH, succinate dehydrogenase; SEB, serine-borate complex; Ser, serine; SOD, superoxide dismutase.

MATERIALS AND METHODS

Plant Materials and Chemical Treatments
Three 9 years old trees raised from hybrid seeds of the cross
Malus asiatica “Zisai Pearl” × M. domestica “Red Fuji” were
used as three biological replicates in this study. “Zisai Pearl” is a
Chinese domestic cultivar originating from Hebei. On early May,
2015, newly expanded young leaves and unlignified shoot tips
were collected from 1 year old suckers on the trunk and annual
branches from the canopy top, immediately put into liquid
nitrogen and stored in −80◦C refrigerator. Since the discovery
of miR156 to regulate vegetative phase change, miR156 is now
extensively used as molecular marker to determine juvenile
phase. By using miR156 marker, the samples taken from the 1st
to the 80th nodes were defined as the juvenile phase (J), and those
from the 120th node to the canopy top were defined as the adult
phase (A) (Du et al., 2015; Jia et al., 2017).

Tissue cultured micro-shoots were used for exogenous reagent
treatments; those micro-shoots were derived from juvenile phase
shoot tip meristem and sub-cultured by nodal stem segments
on Murashige and Skoog (MS) media. The redox modulating
reagents were added to the culture media after filtration

sterilization. GGT activity can be impaired by the competitive
inhibitor serine-borate complex (SEB) (S4500/B3545, Sigma-
Aldrich, St. Louis, MO, United States) and the noncompetitive
α-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (acivicin)
(A2295, Sigma-Aldrich, St. Louis, MO, United States) (Dringen
et al., 1997; Ferretti et al., 2008). Here, 10 mM SEB and 50 µM
acivicin were used as the competitive and noncompetitive GGT
inhibitors, respectively (Stole et al., 1994; Destro et al., 2011). The
micro-shoots were treated by adding the abovementioned GGT
inhibitors to the culture media. Ten milli molar diethyl maleate
(DEM) (D97703, Sigma-Aldrich, St. Louis, MO, United States)
was used as a GSH depletor. The concentrations used for
DEM treatments were tested in preliminary experiments
(Supplementary Figure S1).

Chloroplast Fractionation
Chloroplasts were isolated according to the protocols described
by Preuss et al. (2014). Leaves were collected and chopped finely
with a razor blade in homogenization buffer (0.45 M sorbitol,
20 mM Tricine:KOH pH 8.4, 10 mM ethylene diamine tetraacetic
acid (EDTA), 10 mM NaHCO3, 0.1% (w/v) fatty acid-free bovine
serum albumin (BSA), and 1× protease inhibitors). The mixture
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was filtered through cheesecloth and spun at 1,500 × g at
4◦C. Pelleted chloroplasts were suspended in resuspension buffer
(0.3 M sorbitol, 20 mM Tricine: KOH pH 7.6, 5 mM MgCl2,
and 2.5 mM EDTA), layered over a preformed 40% Percoll
gradient, and centrifuged at 5,000 × g (4◦C) with ultracentrifuge
with a swing-bucket rotor. A thin band of intact chloroplasts
were collected, diluted in resuspension buffer, and centrifuged
again at 3,500 × g (4◦C). The pellet was resuspended again in
resuspension buffer. The chloroplast suspension was then kept
on ice in the dark until further use.

Nuclei Fractionation
To isolate nuclei, leaves were harvested and homogenized in the
nuclear isolation buffer at pH 6.0 (10 mM Mes-KOH, 10 mM
NaCl, 5 mM EDTA, 0. 15 mM spermine, 0.5 mM spermidine,
0.6% Triton X-100, 0.25 M Sucrose, pH 6.0) with a blender
equipped with razor blades. The crude homogenate was then
filtered through stainless steel mesh and the nuclei in the filtrate
were collected by centrifugation at 1,500 × g. The nuclei were
further purified twice on 0–50% discontinuous Percoll gradient
(Sakamoto and Nagatani, 1996). The nuclei pellet was finally
resuspended in 60 mM Hepes, 6 mM MgSO4, 20% glycerol, and
10 mM 2-mercaptoethano1, pH 7.0.

Mitochondria Fractionation
Mitochondria were isolated using the method described by
Keech et al. (2005). Leaves were ground finely with a razor
blade in homogenization buffer (0.3 M sucrose, 10 mM N-tris
(hydroxymethyl)-methyl-2-2aminoethanesulphonic, 2 mM
EDTA, 10 mM KH2PO4, 25 mM tetrasodium pyrophosphate,
1 mM glycine, 1% (w/v) polyvinylpyrrolidone-40, 1%(w/v)
defatted BSA, 50 mM sodium ascorbate, 20 mM cysteine,
pH-(KOH) 8.0), then filtered through 20 um nylon mesh.
The extract was centrifuged at 2,500 × g for 5 min and the
resulting supernatant was centrifuged at 15,000 g for 15 min.
The pellet obtained was suspended in 0.5–1.0 mL of wash buffer
[0.3 M sucrose, 10 mM TES, 10 mM KH2PO4, pH-(KOH)
7.5] and very gently homogenized twice, using a chilled glass
homogenizer. A 50% Percoll gradient was centrifuged at 39,000 g
for 40 min in ultracentrifuge with a swing-bucket rotor. The
crude mitochondrial fraction was carefully layered on top of
preformed Percoll gradients. After centrifugation at 15,000 g for
15 min, the mitochondria formed a whitish band close to the
bottom of the tube. The pellet was resuspended in 0.3 M sucrose,
10 mM TES, and 10 mM KH2PO4, pH-(KOH) 7.5.

Analysis of Glutathione Homeostasis and
Enzyme Activity
For tissue samples, free glutathione (the sum of GSH and
GSSG levels) was quantified using a GSH and GSSG assay
kit (Beyotime, Nantong, China) following the manufacturer’s
instructions. The measurements of GSH and GSSG were
monitored by a microplate reader (Model 680, Bio-Rad,
Hercules, CA, United States). The GSH/GSSH ratio was then
calculated. For subcellular compartments, because it’s difficult
to preserve glutathione pool against oxidation during the

conventional extraction and purification procedures required to
obtain subcellular fractions, the absolute concentrations of free
glutathione are not possible to be precisely determined (García-
Giménez et al., 2013; Noctor et al., 2016), the subcellular levels
of free glutathione per gram organelle protein were measured
as ratio of A relative to J by using the thiol-group reaction
strategy with a GSH and GSSG assay kit (Beyotime) (Galkina
et al., 2017). The isolation of soluble and cell wall conjugated
GGT was described by Destro et al. (2011). The activity of
GCL and GGT was determined using a GCL assay kit (Jian
Cheng, Nanjing, China) and a GGT assay kit (Solarbio, Beijing,
China), respectively. The assay of SAT and CS activity was
conducted according to Watanabe et al. (2008) and Nguyen et al.
(2012), respectively.

Transmission Electron Microscopy and
Immunogold Labeling
Ultrathin sections were prepared and immunogold labeled
according to the protocol described by Zechmann and Müller
(2010). Briefly, the ultrathin sections from J and A leaves were
initially incubated with the primary antibody (anti-glutathione
rabbit polyclonal IgG, Agrisera Corp., Vännäs, Sweden) at a
dilution of 1:3,000 in the dilution buffer. This antibody recognizes
only the conjugated glutathione and GSH but not GSSG. Then
the ultrathin sections were treated with secondary antibody
(goat anti-rabbit IgG antibody conjugated with 10 nm gold,
Sigma-Aldrich, St. Louis, MO, United States) at a dilution
of 1:20. The sections were finally double-stained with uranyl
acetate-lead citrate and examined with a JEM-100S electron
microscope (JEOL, Tokyo, Japan). Micrographs of randomly
photographed immunogold labeled sections were digitized with
computer aided drafting software and gold particles were
manually counted. A minimum of at least 10 different cells
were analyzed for gold particle density per sample. The gold
particle density data in the organelles were normalized against the
cytosolic background.

Free Cysteine Quantification
Free cysteine was quantified using the method described by
Samara et al. (2016) with minor modifications. Briefly, leaves
were harvested and homogenized in isolation buffer at pH 8.0
(10 mM EDTA, 180 mM borate), and centrifuged at 1,118 g
for 5 min. The supernatants were filtered through 0.45 µm
membrane filters. A 200 µL volume of the treated sample was
subsequently subjected to derivatization; 200 µL of a standard
cysteine-mixture (or sample), 100 µL of borate buffer (200 mmol
L-1, pH = 8.0), 100 µL of methyl propiolate (200 mmol L−1),
and 600 µL of EDTA solution (5 mmol L−1) were added to
a heavy-wall borosilicate micro-reaction vial. The sample was
then manually mixed and the reaction was left to proceed at
room temperature for 10 min while protected from light. Cys
was determined by a high performance liquid chromatography
system (Waters1525, MA, United States) equipped with a Waters
2487 Dual Absorbance Detector. The thioacrylates of Cys were
eluted in the isocratic mode, with a mobile phase of 15 mM
(NH4)2HPO4/H3PO4 (pH = 2.2)/methanol (92:8v/v), containing
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1 mM EDTA. The flow rate was 0.2 mL min−1, and the injection
volume was 2 µL. Detection was carried out at 285 nm. Cys
was identified by its retention time and was quantified using an
external standard.

Cloning of Apple MdGGTs
MdGGT genes in the apple genome were searched on the
Rosaceae genome database1 and GenBank2. Primers designed
from the cDNA sequence of apple are shown in Supplementary
Table S1. Total RNA was prepared from apple tissue and
both RT-PCR and PCR were performed as previously described
(Zhang et al., 2004).

Relative Expression Assay
Total RNA were extracted using a modified
cetyltrimethylammonium bromide method followed by DNase
I digestion to remove any DNA contamination (TaKaRa
Biotechnology Co., Ltd.) (Gasic et al., 2004). Complementary
DNA was synthesized from total RNA using a cDNA Synthesis
Kit (Takara)3. Quantitative RT-PCR were performed using
SYBR green reagents (RR820A, Takara, Dalian, China) in an
Applied Biosystems 7500 real-time PCR system. MicroRNA was
extracted by using the RNAiso for Small RNA kit (9753Q, Takara,
Dalian, China) according to the manufacturer’s instruction.
For reverse transcription of miRNA, 2 µg miRNA extract was
diluted in 12 µL diethyl pyrocarbonate (DEPC) water plus
1 µL of dNTPs (10 mmol L−1, Takara, Dalian, China) and
1 µL stem-loop primer (10 µM). The mixture was incubated
at 70◦C for 5 min, and then immediately put on ice for 5 min.
Afterward, 1.25 µL dNTPs (10 mmol L−1, Takara), 2.5 µL
buffer (5×) (Takara), 0.6 µL RNasin, and 1 µL M-MLV (5 U
µL−1, Takara) were added to the extracted solution. Reverse
transcription was accomplished at 42◦C for 1 h, followed by
70◦C for 10 min. miR156 expression level was analyzed by
qRT-PCR with an AB7500 Real-time PCR System and the
SYBR Green fluorescence dye (FP401, TianGen, Beijing, China)
(Xiao et al., 2014).

The sequences of the primer pairs are listed in Supplementary
Tables S2, S3. Relative expression levels were calculated
according to the 2−11ct method (Livak and Schmittgen, 2001).

Subcellular Localization of MdGGT-GFP
The Super promoter: MdGGT-GFP construct was made as
follows. The full-length MdGGT cDNA was fused to the
upstream of the green fluorescent protein (GFP) between
the SwaI (5′end)/KpnI (3′ end) sites in pCAMBIA1300-
GFP vector (3560628, BioVector, China) using primers:
5′-ATTTAAATATGGGGGAGCAGAGCTTGGAA-3′ (forward)
and 5′-GGGGTACCTCATACGGCTGCAGGCCTC-3′(reverse).

Onion epidermal cells were extracted from onion bulbs
and cultured in MS media for 6 h at 22◦C. Using the PDS-
1000 particle delivery system (Bio-Rad, CA, United States),
the fusion constructs were introduced through gold particles

1https://www.rosaceae.org/
2http://www.ncbi.nlm.nih.gov/genbank/
3http://www.takara-bio.com/

into the epidermal cells of onion bulbs; onion epidermal cells
were cultured in the dark at 22◦C for 24 h. GFP fluorescent
signals were examined with a confocal laser-scanning microscope
(Zeiss LSM510 META, Oberkochen, Germany) in the 488 nm
excitation wavelength.

Plant Transformation
MdMIR156a6 (MDC018927.245) was chosen for miR156
precursor overexpressing, and artificial target mimics were
generated by modifying the sequence of the AtIPS1 gene
to knock-down miR156 expression (Xu et al., 2017). The
construction of MdMIR156a6 and MIM156 was provided
by Dr. Xu (Xu et al., 2017). The two constructs were cloned
behind the constitutive CaMV 35S promoter and upstream
of β-glucuronidase (GUS) gene in the pBI121 vector with
GUS. The RNAi vector was offered by Shenyang Agricultural
University. It was constructed by inserting the intron fragment
from pKANNIBAL vector into the multiple cloning site
of a plant overexpression vector-pRI 101-AN (Song et al.,
2017). For constructing the 35S::MdGGT RNAi vector, a
351 bp MdGGT fragment was amplified. The pRNAi -
MdGGT vector was constructed by inserting the 351 bp
forward and reverse fragments of MdGGT into pRNAi-E.
The overexpression construct for MdGGT was made by
cloning the full-length cDNA into the pRI 101-AN vector
downstream of the 35S promoter. Primer sequences are
listed in Supplementary Table S4. Transformation of apple
was conducted by Agrobacterium-mediated transformation
system using in vitro cultured leaflets of GL-3 as explants
(Dai et al., 2013).

GUS Staining
OEMdMIR156 and MIM156 transgenic apple were identified
by GUS staining (Supplementary Figure S2). Histochemical
observations of the OEMdMIR156 and MIM156 transgenic
apple were performed by incubating the plant in GUS-
staining solution [100 mm phosphate buffer (pH 7.5), 1 mm
5-bromo-4-chloro-3-indoylglucuronide (X-Gluc) dissolved in
N,N-dimethylformamide, 10 mm Na2-EDTA, 1 mm potassium
ferricyanide, 1 mm potassium ferrocyanide and 0.1% Triton X-
100] at 37◦C overnight. Stained samples were cleaned with 80%
ethanol and were observed (Supplementary Figure S2).

DNA Identification of Transgenic Plant
Transgenic apple were identified by DNA-PCR identification.
Extraction of genomic DNA was used CTAB methods (Gasic
et al., 2004). Sequences of the primer pairs are listed in
Supplementary Table S5.

Statistical Analysis
This experiment was a randomized block design conducted
on a single plot with three replicates per treatment. All
data are presented as means ± SE of each treatment and
tested with repeated measures ANOVA, followed by least
significant difference (LSD) tests or Duncan’s multiple-range test
Significance was set at P < 0.05.
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RESULTS

Changes in Subcellular GSH
Homeostasis
We previously reported that the GSH level and GSH/GSSG
ratio declined significantly during ontogenesis in apple seedlings
(Du et al., 2015; Jia et al., 2017). In chloroplast fractions,
the free glutathione (the sum of GSH and GSSG levels),
GSH and GSSG levels of A were 0.8740, 0.2480, and
1.4735 times J (Figure 2A). Similarly, free glutathione in
nuclei decreased by 86.1% in A leaves compared to J.
GSH and GSSG levels of nuclei in A leaves also declined
dramatically (Figure 2B). However, free glutathione level in
mitochondria increased by 236.7% in A compared to in J
leaves (Figure 2C), and the increase in total GSH content
in mitochondria was attributed to GSSG (Figure 2C). In
chloroplasts and nuclei, the GSH/GSSG ratios in J leaves
were considerably lower than in A leaves (Figures 2A,B). The
GSH/GSSG ratio of leaves also increased in mitochondria during
ontogenesis (Figure 2C).

The subcellular distribution of protein conjugated glutathione
and GSH in apple leaves was visualized by immunogold particles.
Gold particles were found in plastids, mitochondria, nuclei, and
vacuoles (Figures 2E–H). The relative immunogold density was
significantly higher in these organelles of A than that of J leaves
(Figure 2D). Since the GSH level was lower in chloroplasts
and nuclei of A than J leaves, the density of immunogold was
attributed to the protein conjugated glutathione. These data
indicated that the levels of free glutathione, GSH, and the ratio
of GSH/GSSG were significantly lower in chloroplasts and nuclei
but the protein conjugated glutathione content was remarkably
higher in A than in J leaves.

The Correlation Between miR156
Expression and Glutathione
Homeostasis
miR156 expression declined in leaf samples during ontogenesis in
accordance with GSH and the GSH/GSSG ratio (Figures 3A,B).
Significant positive correlation was exhibited between miR156
expression and GSH (P = 0.0058) or the GSH/GSSG ratio
(P = 0.0181) (Figures 3C,D). The expression of MdMIR156a5
was significantly positively correlated with GSH content, and
the expression of MdMIR156a12 was significantly positively
correlated with the GSH/GSSG ratio (Figures 3E,F). The
correlations between MdMIR156a5 expression and GSH/GSSG
ratio, and between MdMIR156a12 expression and GSH level were
also positive, but were not statistically significant due to large
standard deviations (data not shown).

Cellular Cys availability may affect GSH de novo biosynthesis
(Noctor et al., 2012). The Cys content in the leaf samples
declined gradually during ontogenesis, and the cutoff for
significant decrease appeared at nodes 101–120 (Figure 4A),
implying the biosynthesis of GSH might be restricted by
Cys availability, despite the GCL activity was abruptly and
significantly increased from nodes 141 to 160 (Figure 4B).
The possible causes of reduced Cys content could be less

Cys de novo synthesis and/or Cys recycling. The soluble
GGT activity decreased significantly at nodes 101–120, but
the activity of cell wall conjugated GGT showed no obvious
changes at different nodes (Figures 4C,D). No significant
difference was detected in CS enzyme activity between J and
A leaves (Figure 4E), but the activity of SAT, another enzyme
for plant Cys biosynthesis, decreased gradually with node
numbers (Figure 4F). Consistently, the expressions of the five
MdSAT gene members were significantly lower in A than J
samples (Figure 4E).

miR156 expression was correlated with both SAT enzyme
activity (Figure 5B, P = 0.046) and soluble GGT activity
(Figure 5A, P = 0.0196) (Figures 5A,B). The expression of
MdMIR156a5, which is the most actively expressed miR156
precursor gene in leaves (Jia et al., 2017), was significantly
correlated with soluble GGT activity and SAT activity
(Figures 5C,D). The expression of MdMIR156a12 was also
correlated with activities of GGT and SAT but the correlation
coefficients were not statistically significant (Supplementary
Figure S3), most possibly because MdMIR56a12 is most
abundantly expressed in shoot tips (Jia et al., 2017). Collectively,
the data indicated that the decrease in miR156 expression
was most relevant to soluble GGT activity and therefore the
availability of recycled Cys.

The Expression Pattern of MdGGTs
There are eight putative MdGGT genes in the apple genome.
The expression levels of four members (MDP0000319231,
MDP0000240073, MDP0000239530, and MDP0000182613) were
detectable in apple stem apexes and leaves (Figure 6).
Of these four MdGGT gene members, the expression of
MDP0000239530 was lower than the other three members
(Figure 6A). MDP0000182613, MDP0000240073, and especially
MDP0000319231 were dominantly expressed in stem apexes
or leaves. These three members exhibited much higher
expression levels in J than A stem apexes, which was in
accordance with the ontogenetic changes in GGT enzyme activity
(Figures 6A–D). Significant decrease in leaf MDP0000319231
expression was found at 101–120 node but the expressions
of leaf MDP0000182613 and MDP0000240073 were not as
consistent with phase change (Figures 6B–D). The fluorescence
of the 35S::GFP construct was localized predominantly in
the nucleus and in the thin cytosolic layer underlying the
cell membrane (Figures 6H–J), whereas GFP fluorescence
of the 35S::MDP0000319231-GFP construct was observed in
the whole surface of the cells (Figures 6E–G), showing
the apoplast or plasma membrane localization of its coding
protein. MDP0000319231 was therefore tentatively designated
as MdGGT1 according to its expression pattern, subcellular
localization, and its ortholog in Arabidopsis (Supplementary
Figures S4, S5).

No significant and robust differences in the expressions of
MdGGT1, MDP0000182613, and MDP0000240073 were found
between OEMdMIR156 and MIM156 transgenic apple lines
(Supplementary Figure S2), which confirmed that the expression
of MdGGT1 was not regulated downstream of miR156 during
vegetative phase change.
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FIGURE 2 | Free glutathione (A–C) and protein conjugated (D) glutathione in organelles of leaves in juvenile (J) and adult (A) phase of apple hybrids (Malus asiatica
“Zisai Pearl” × M. domestica “Red Fuji”). Transmission electron micrographs showed the subcellular distribution of glutathione in leaves in the juvenile (E,F) and adult
(G,H) phase. Gold particles bound to glutathione could be found in plastids (P), mitochondria (M), nuclei (N), and vacuoles (V). The gold particle density in the
organelles shown in (D) was the relative value normalized against which in the cytosol. “∗”, “∗∗” and “∗∗∗” indicate significant difference at P < 0.05, P < 0.01, and
P < 0.001 (LSD tests), respectively. Error bars in (A–C) represent the standard deviations of three replicates. Bars in (E–H) indicate 1.0 µm. N > 10 in (D).
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FIGURE 3 | Dynamic changes in miR156 expression, GSH contents and GSH/GSSG ratio in leaves during ontogenesis of apple hybrids (Malus asiatica “Zisai
Pearl” × M. domestica “Red Fuji”) (A,B) and the correlations between miR156 and its precursor genes expressions and GSH content or GSH/GSSG ratio (C–F).
Error bars represent the standard deviations of three biological replicates. “∗” and “∗∗”” indicate significant difference at P < 0.05, P < 0.01, respectively, in GSH
content and GSH/GSSG ratio. “+” indicate significant difference at P < 0.05 in miR156 relative expression.

The Responses of miR156 Expression to
GSH Regulators
SEB is a competitive inhibitor of GGT activity (Ferretti et al.,
2008; Destro et al., 2011). After the addition of 10 mM SEB to
the culture media, soluble GGT activity of apple shoots in vitro
declined by 1 h, while cell wall conjugated GGT activity decreased
significantly at 6 h (Figures 7D,E). As a result, the content of

free glutathione, GSH, and the ratio of GSH/GSSG declined
by 1 h after SEB treatment (Figures 7A–C). Similarly, the
expression levels of MdMIR156a12, MdMIR156a5 and mature
miR156 significantly declined 1 or 2 h after SEB treatment
(Figures 7F–H).

Unlike SEB, acivicin is a noncompetitive inhibitor of GGT
activity (Stole et al., 1994; Ferretti et al., 2008; Destro et al.,
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FIGURE 4 | Changes in cysteine contents (Cys) (A), enzyme activity of glutamate-cysteine ligase (GCL) (B), soluble γ-glutamyl transpeptidase (GGT) (C), cell wall
conjugated GGT (D), cysteine synthase (CS) (E), and serine acetyltransferase (SAT) (F) in leaves during ontogenesis of apple hybrids (Malus asiatica “Zisai
Pearl” × M. domestica “Red Fuji”). Error bars represent the standard deviations of three biological replicates. The different lower-case letters above each column
indicate the statistical significance (p < 0.05) by analysis of variance followed by Duncan’s multiple-range test.

2011). After the addition of 50 µM acivicin to the culture
media, soluble GGT activity of apple shoots in vitro decreased
remarkably by 26.9, 77.7, 76.8, and 43.8% at 3, 6, 9, and 12 h,
respectively, but cell wall conjugated GGT activity did not

change significantly with or without acivicin (Figures 8D,E).
Free glutathione, GSH content, and the GSH/GSSG ratio reduced
substantially by 3 h after treatment with acivicin (Figures 8A–
C). As expected, the expression levels of MdMIR156a5,

Frontiers in Plant Science | www.frontiersin.org 9 July 2019 | Volume 10 | Article 994

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00994 July 29, 2019 Time: 17:3 # 10

Chen et al. MdGGT1 Impacts miR156 Precursor Transcription

FIGURE 5 | Correlations between relative expressions of miR156, MdMIR156a5 and the activity of soluble GGT and SAT (A–D), and relative expressions of MdSATs
(E) in leaves during ontogenesis of apple hybrids (Malus asiatica “Zisai Pearl” × M. domestica “Red Fuji”). Error bars represent the standard deviations of three
biological replicates. “∗,” “∗∗,” and “∗∗∗” indicate significant difference (LSD tests) at P < 0.05, P < 0.01, and P < 0.001, respectively.

MdMIR156a12, and mature miR156 declined 3 h after acivicin
treatment (Figures 8F–H).

When apple shoots in vitro were treated with 50 µM
acivicin, the expression of the five highly expressed MdSAT gene
members did not show robust decreases between timepoints or
between gene members (Supplementary Figure S6), which was
inconsistent with the decrease in miR156 expression (Figure 8H).
These data did not support the involvement of MdSATs in the
upstream regulation of miR156 expression.

DEM is a subcellular GSH depletory chemical by forming
GSH-DEM adducts (Vivancos et al., 2010). Neither soluble
nor cell wall conjugated GGT activity of apple shoots in vitro
was affected by DEM treatments (Supplementary Figure S7).

However, the concentrations of free glutathione and GSH were
reduced 1h after the addition of 10.0 mM DEM to the culture
medium (Figures 9A,B). The GSH/GSSG ratio was not altered
significantly (Figure 9C). The expression levels of MdMIR156a5
and MdMIRa12 decrease by 3 h and mature miR156 declined
immediately after DEM treatment (Figures 9D–F).

Silencing and Overexpressing MdGGT1
Transgenic Apple Lines
Higher adventitious rooting ability is a marker trait of
juvenility in many plant species (Poethig, 1990). The easiness
of adventitious rooting was an observable morphological change
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FIGURE 6 | Relative expression of MdGGTs in the stem apex and leaves of the juvenile (J) and the adult (A) phase of apple hybrids (Malus asiatica “Zisai
Pearl” × M. domestica “Red Fuji”) (A–D) and subcellular localization of MdGGT1 (MDP0000319231) (E–J). Transient expression of 35S: MdGGT1-GFP construct
(E–G) and 35S: GFP construct (H–J) in onion epidermal cells. (E,H) were GFP fluorescence, (F,I) were transmission while (G,J) were merged. Error bars in (A–D)
represent the standard deviations of three biological replicates. The different lower-case letters above each column indicate the statistical significance (p < 0.05) by
analysis of variance followed by Duncan’s multiple-range test.
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FIGURE 7 | Changes in contents of free glutathione (A) and GSH (B), GSH/GSSG ratio (C), enzyme activities of soluble (D), and cell wall conjugated (E) GGT, and
expressions of MdMIR156a5 (F), MdMIR156a12 (G), and miR156 (H) in apple in vitro shoots after addition of 10 mM serine-borate complex (SEB) to the culture
media. Error bars represent the standard deviations of three biological replicates. “∗,” “∗∗,” and “∗∗∗” indicate significant difference at P < 0.05, P < 0.01, and
P < 0.001, respectively.
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FIGURE 8 | Changes in contents of free glutathione (A) and GSH (B), GSH/GSSG ratio (C), enzyme activities of soluble (D), and cell wall conjugated (E) GGT,
and expressions of MdMIR156a5 (F), MdMIR156a12 (G), and miR156 (H) in apple in vitro shoots after addition of 50 µM α-amino-3-chloro-4,5-dihydro-
5-isoxazoleacetic acid (acivicin) to the culture media. Error bars represent the standard deviations of three biological replicates. “∗,” “∗∗,” and “∗∗∗” indicate significant
difference at P < 0.05, P < 0.01, and P < 0.001, respectively.
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FIGURE 9 | Changes in free glutathione (A) and GSH (C) contents, GSH/GSSG ratio (E) and the expressions of MdMIR156a5 (B), MdMIR156a12 (D), and miR156
(F) in apple in vitro shoots with or without addition of 10 µM diethyl maleate (DEM) to the culture media. Error bars represent the standard deviations of three
biological replicates. “∗,” “∗∗,” and “∗∗∗” indicate significant difference (LSD test) at P < 0.05, P < 0.01, and P < 0.001, respectively.

of the OEMdGGT1 transgenic apple line (Figure 10). The
number of adventitious roots that were observed 14 days
after transplanting to the rooting media was 2.75 per plant
in OEMdGGT1 lines, which was significantly higher than
in un-transformed control (0.25 per plant) and in MdGGT1
RNAi lines (0 per plant) (Figure 10 and Supplementary
Table S6). In the three apple transgenic lines overexpressing
MdGGT1, the expression of MdGGT1, soluble GGT activity,
free glutathione, GSH content, and the GSH/GSSG ratio were

significantly higher (Figures 11A–E), and thus the expression
levels of MdMIR156a5, MdMIR156a12, and mature miR156
were up-regulated compared to un-transformed wild type
and MdGGT1 RNAi lines (Figures 11F–H). In contrast,
the three MdGGT1 RNAi apple lines exhibited lower free
glutathione, GSH content, the GSH/GSSG ratio, and reduced
expression levels of MdMIR156a5, MdMIR156a12, and mature
miR156 compared with the wild type (Figure 11). Together,
manipulation of GGT activity by either exogenous reagents or
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FIGURE 10 | Identification and the adventitious rooting ability of apple transgenic lines over-expressing MdGGT1 (A,B) and MdGGT1-RNAi (C,D). (A,C) Were PCR
analysis to confirm the transformants. (B,D) Showed the regeneration of transformed and untransformed wild-type leaf discs with kanamycin. (E) Shows the
differences on adventitious rooting ability between OEMdGGT1, MdGGT1-RNAi transgenic lines and untransformed wild type GL-3 (WT).

transgenesis could impact the transcription of MdMIR156a5 and
MdMIR156a12.

DISCUSSION

Ontogenetic Changes in GSH
Homeostasis Differed Between
Subcellular Compartments
There was more GSH recruitment to the nuclei at J and relatively
larger proportion of GSH was consumed in mitochondria at
A (Figure 2). Similarly, the glutathione concentration varied
greatly among subcellular compartments and the largest variation
was found in mitochondria in Arabidopsis (Koffler et al.,
2013). Partial depletion of nuclear GSH may impairs DNA

duplication, gene expression, protein synthesis, cell proliferation,
and differentiation in eukaryotes (Markovic et al., 2009; Vivancos
et al., 2010; García-Giménez et al., 2013), thus the reduction of
nuclear GSH should be paid much attention.

miR156 level of apple micro-shoots in vitro may change
with GSH concentration by using exogenous redox regulatory
agents, and the relative reductive thiol redox status is critical
for the maintenance of juvenility (Du et al., 2015). Glutathione
redox status is determined on one hand by the total amount
or concentration of free glutathione, on the other hand,
by the GSH/GSSG ratio (Yu X. et al., 2013). It has been
comprehensively summarized that the GSH/GSSG ratio is a
critical environment for differentiation, proliferation, signal
transduction, gene expression, and protein function (Ballatori
et al., 2009). The severe drop of GSH and increased levels of

Frontiers in Plant Science | www.frontiersin.org 15 July 2019 | Volume 10 | Article 994

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00994 July 29, 2019 Time: 17:3 # 16

Chen et al. MdGGT1 Impacts miR156 Precursor Transcription

FIGURE 11 | The expressions of MdGGT1 (A), soluble GGT activity (B), free glutathione (C) and GSH (D) contents, GSH/GSSG ratio (E) and MdMIR156a5 (F),
MdMIR156a12 (G) and miR156 (H) in the plantlets of transgenic apple GL-3 lines over-expressing (OEMdGGT1) or RNAi MdGGT1, compared with untransformed
control (WT). Error bars represent the standard deviations of three replicates. The different lower-case letters above each column indicate the statistical significance
by analysis of variance followed by LSD multiple-range test (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001).
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GSSG in the chloroplast of apple hybrid trees might be caused
by the progressively elevated H2O2 levels during the vegetative
phase change (Jia et al., 2017). The great increase in relative
levels of free glutathione, GSH, GSSG and the GSH/GSSG ratio
in mitochondria can be explained by the adult phase elevated
photorespiration and secondary metabolism, which produce
more ROS and require more anti-oxidants (Cao et al., 2011;
Gao et al., 2014). In the nuclei, intensive declines in the content
of free glutathione, GSH, and GSSG as well the GSH/GSSG
ratio were observed; this can be explained by the increased
protein conjugated glutathione levels (Figure 2). The protein
S-glutathionylation induced by changes in the GSH/GSSG
ratio provides a thiol redox-sensitive signaling mechanism
in the cell (Ballatori et al., 2009; Hill and Bhatnagar, 2012;
Womersley and Uys, 2016).

Phase-Related Subcellular Glutathione
Depletion Is Associated With the
Reduction of Soluble GGT Activity
Previously, we reported that the activities of glutathione
reductase, ascorbate peroxidase, catalase, and
monodehydroascorbate reductase were higher in the adult
phases, which is inconsistent with the changes in GSH content in
apple (Du et al., 2015). The age-associated declines in GSH levels
and GSH/GSSG ratios in mammalians were caused by both the
reduced GCL activity and the increased GSH consumption owing
to the increased ROS generation in mitochondria or endoplasmic
reticulum (Moor et al., 2014). The high levels of free glutathione
partitioning in mitochondria in the adult reproductive phase
in apple were consistent with mammalians, but GCL activity
increased during the vegetative phase change (Figure 4B).
The H2O2 accumulated in the chloroplast might have direct
contributions to the elevated GCL activity (Preuss et al., 2014; Jia
et al., 2017). Although GCL activity increased, the Cys content
was significantly lower in the adult reproductive phase; this could
possibly be due to lower levels of Cys recycling restricted by GGT
activity or a deficit in the de novo biosynthesis of Cys.

In humans, glutathione declines with age due to the slower
body protein turnover and thus lower availability of Cys and
Gly, not the capacity to synthesize them (Sekhar et al., 2011).
The activity of soluble GGT was significantly lower in the
adult reproductive phase than that in the juvenile phase in
apple. The enzyme GGT recycles Cys from GSSG and its
conjugates, maintaining GSH/Cys homeostasis. GGT deficiency
results in oxidative stress (Zhang and Forman, 2009). One of
the de novo enzymes synthesizing Cys, CS, did not vary in
the catalytic activity during the vegetative phase change in
this study, but the activity of another enzyme synthesizing
Cys, SAT, showed a drastic decrease with phase change,
which might cause the reduction in Cys availability (Leustek
et al., 2000). With the presence of acivicin, SAT activity and
expression of MdSAT1 and MdSAT2 increased significantly in
apple shoots in vitro, but the contents of free glutathione,
and GSH decreased. The increased SAT activity could not
compensate for the decrease in soluble GGT activity, which
negated the upstream regulation of miR156 transcription by

Cys biosynthesis but supported the dominant role of soluble
GGT activity in the ontogenetic regulation of the cellular
GSH buffering pool.

The apoplast redox status impacts GGT activity. In
Arabidopsis, GGT1 becomes activated when the apoplast
environment shifts to oxidative, and the GGT1 activity can be
repressed by a more reductive apoplast environment (Zhang and
Forman, 2009). The redox status was more reductive in the adult
phase of apple hybrid trees because NADPH oxidase activity
and the expressions of most MdRboh genes were significantly
lower (Jia et al., 2017). In apple shoot apexes and leaves, MdGGT
gene members, especially MdGGT1, were down-regulated in
the adult reproductive phase; therefore, the decrease in soluble
GGT activity could be attributed at least partly to transcriptional
regulation (Figure 6).

Soluble GGT Activity Regulated miR156
Precursor Gene Expression
OEMdMIR156/MIM156 did not affect soluble GGT enzyme
activity or MdGGT1 expression in transgenic apple shoots,
indicating that the ontogenetic variation in miR156 is
not an upstream regulator of GGT activity and MdGGT1
expression. Like in Arabidopsis, the ggt1 mutant is smaller
in plant size and flowers sooner than the wild type, which
exhibits sevenfold higher levels of GSSG and thus a low
GSH/GSSG ratio (Ohkama-Ohtsu et al., 2007). Inhibition
of GGT enzyme activity by exogenous reagents, SEB or
acivicin, or transgenic methods reduced the free glutathione
and GSH level and consequently suppressed the expression
levels of MdMIR156a5, MdMIR156a12, and mature miR156.
Conversely, overexpression of the MdGGT1 gene could
increase the levels of free glutathione and GSH, so the
expressions of MdMIR156a5, MdMIR156a12, and miR156
were obviously activated.

GSH has a positive effect on adventitious rooting in tomato
(Lycopersicon esculentum Mill) (Tyburski and Tretyn, 2010).
Even in an auxin depleted condition, 200 µM exogenous GSH
induces significantly higher number and length of adventitious
roots in cucumber (Cucumis sativus L.) (Jiang et al., 2019). The
potential of rooting is much higher in leafy cuttings from J or
rejuvenated than A in apple (Xiao et al., 2014; Xu et al., 2017).
As expected, the adventitious rooting ability was enhanced
greatly in OEMdGGT1 apple transformants (Figure 10). Unlike
SEB and acivicin, DEM forms DEM-GSH adduct, prevents
GSH nuclear recruitment and impairs cell proliferation without
interfering GGT activity (Vivancos et al., 2010). Depletion
of glutathione levels by DEM induces a marked decrease in
nuclear glutathione levels (García-Giménez et al., 2013). In
this study, actually, depletion of GSH by using DEM treatment
also caused a dramatic decrease in the expression levels of
MdMIR156a5, MdMIR156a12, and mature miR156. GGT
may affect miR156 level indirectly, via decreasing subcellular
GSH level. An unexpected increase in MdMIR156a5 and
MdMIR156a12 expression was found 1 h after DEM treatment,
but mature miR156 level decreased significantly already at
that time point.
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It has been established that plant MIR156 transcription
is under epigenetic regulation, such as H2A.Z deposition,
H3K4, or H3K27 methylation (Xu M. et al., 2016; Xu Y.
et al., 2016; Hyun et al., 2017; Xu et al., 2018). Oxidative
stress inhibits histone demethylation and increases protein
S-glutathionylation via changes in the GSH/GSSG ratio rather
than in the intracellular H2O2 level (Hill and Bhatnagar, 2012;
Niu et al., 2015; Womersley and Uys, 2016). GSH and the
GSH/GSSG ratio therefore come to the forefront as redox
regulation of vegetative phase change in higher plants. The
potential mechanism remains as GSH increases the binding
of transcription factors to the promoter of their target genes,
GSH enhances the mRNA stability of some genes and/or
some proteins can be S-glutathionylated on Cys residuals
(Datta et al., 2015).
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