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Phytophthora root and stem rot, a destructive disease of soybean [Glycine max
(L.) Merr.], is caused by the oomycete Phytophthora sojae. However, how the
disease resistance mechanisms of soybean respond to P. sojae infection remains
unclear. Previously, we showed that GmWRKY31, which interacts with a sucrose non-
fermenting-1(SNF1)-related protein kinase (SnRK), enhances resistance to P. sojae
in soybean. Here, we report that the membrane-localized SnRK GmSnRK1.1 is
involved in the soybean host response to P. sojae. The overexpression of GmSnRK1.1
(GmSnRK1.1-OE) increased soybean resistance to P. sojae, and the RNA interference
(RNAi)-mediated silencing of GmSnRK1.1 (GmSnRK1.1-R) reduced resistance to
P. sojae. Moreover, the activities and transcript levels of the antioxidant enzymes
superoxide dismutase and peroxidase were markedly higher in the GmSnRK1.1-
OE transgenic soybean plants than in the wild type (WT), but were reduced in the
GmSnRK1.1-R plants. Several isoflavonoid phytoalexins related genes GmPAL, GmIFR,
Gm4CL and GmCHS were significantly higher in “Suinong 10” and GmSnRK1.1-OE
lines than these in “Dongnong 50,” and were significantly lower in GmSnRK1.1-R lines.
In addition, the accumulation of salicylic acid (SA) and the expression level of the
SA biosynthesis-related gene were significantly higher in the GmSnRK1.1-OE plants
than in the WT and GmSnRK1.1-R plants, moreover, SA biosynthesis inhibitor treated
GmSnRK1.1-R lines plants displayed clearly increased pathogen biomass compared
with H2O-treated plants after 24 h post-inoculation. These results showed that
GmSnRK1.1 positively regulates soybean resistance to P. sojae, potentially functioning
via effects on the expression of SA-related genes and increased accumulation of SA.

Keywords: Glycine max, GmSnRK1.1, enzymatic antioxidants, salicylic acid, Phytophthora sojae

INTRODUCTION

The sucrose non-fermenting-1(SNF1)-related protein kinases (SnRKs) are key factors in the
regulation of energy metabolism, sugar signaling, seed germination, and seedling growth in plants,
in addition to stress signaling in a diverse array of eukaryotes (Halford and Hey, 2009; Hey et al.,
2010; Coello et al., 2011; Tsai and Gazzarrini, 2014). The SnRK1 subfamily comprises SnRK1.1,
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SnRK1.2, and SnRK1.3 (also named KIN10/AKIN10,
KIN11/AKIN11, and KIN12/AKIN12, respectively), of which
only SnRK1.1 and SnRK1.2 appear to be expressed in plants
(Baena-González et al., 2007). SnRK1 is a heterotrimeric complex
composed of an α-catalytic subunit, a γ subunit, and a β

subunit that bridges the α and γ subunits (Polge and Thomas,
2007; Hedbacker and Carlson, 2008; Smeekens et al., 2010;
Carling et al., 2012).

SnRK1 regulates carbon metabolism (Halford and Hardie,
1998; Fragoso et al., 2009; Nunes et al., 2013; Zhai et al., 2017)
and responds to hormonal signals, particularly abscisic acid
(ABA), providing a possible link between the hormone and
sugar signaling pathways (Radchuk et al., 2006, 2010; Jossier
et al., 2009; Coello et al., 2012; Tsai and Gazzarrini, 2012;
Rodrigues et al., 2013). ABA negatively regulates resistance to
P. sojae and active levels are depleted as part of the response to
incompatible soybean genotypes (McDonald and Cahill, 1999;
Mohr and Cahill, 2001; Asselbergh et al., 2007). Moreover,
in wheat, SnRK1 is negatively regulated by ABA (Patricia
et al., 2012). Moreover, SnRK1 regulates plant metabolism in
response to stresses such as darkness and flooding, as well as
developmental changes such as flowering, seed germination,
and seedling growth (Baena-González et al., 2007; Jossier et al.,
2009; Lee et al., 2009; Coello et al., 2011; Cho et al., 2012;
Wu et al., 2017). In Arabidopsis thaliana, SnRK1 is involved
in the responses to sugar and darkness by regulating the
expression of stress-responsive genes and ABA signaling (Baena-
González et al., 2007; Jossier et al., 2009). SnRK1 activities in
rice (Oryza sativa) and Arabidopsis have a decisive influence
on the expression of stress-inducible genes and the induction of
stress-tolerance processes (Cho et al., 2012); for example, the rice
protein kinase CIPK15 regulates carbohydrate catabolism and
fermentation via the SnRK1A-MYBS1-mediated sugar signaling
pathway, enabling rice to grow under floodwater (Lee et al.,
2009). In Arabidopsis, FUS3 interacts with SnRK1.1 to regulate
lateral organ development (Tsai and Gazzarrini, 2012), but also
promotes dormancy and inhibits germination through cross-
regulation of the ABA and gibberellin pathways (Gazzarrini and
Tsai, 2015). Under low-sugar conditions, Arabidopsis SnRK1 was
triggered to phosphorylate and inactivate the INDETERMINATE
DOMAIN (IDD)-containing transcription factor IDD8, thereby
leading to delayed flowering (Jeong et al., 2015). These discoveries
show that SnRK1 coordinates the responses to a wide array
of abiotic stresses (Baena-González et al., 2007; Lee et al.,
2009; Cho et al., 2012; Jeong et al., 2015). Relatively little is
known about the mechanisms by which SnRK1 functions in
the responses to biotic stress. The overexpression of SnRK1 in
tobacco (Nicotiana sp.) made the transgenic plants more resistant
to geminivirus infection (Hao et al., 2003). SnRK1 interacts
with the effector AvrBsT, which is involved in suppression of
the AvrBs1-specific hypersensitive response in pepper (Capsicum
annuum) plants (Szczesny et al., 2010). The rice SnRK1b
gene OSK35 was enhanced the plant resistance to fungal
and bacterial pathogens (Kim et al., 2015). Despite these
insights, no systematic research on the disease-related roles of
SnRK1 in another major crop species, soybean (Glycine max),
has been reported.

In a previous study, we showed that a novel WRKY
transcription factor, GmWRKY31, enhances soybean resistance
to P. sojae, and identified 19 putative GmWRKY31-interacting
proteins (Fan et al., 2017), of which a Sucrose non-Fermenting-1-
Related Protein Kinase (SnRK1) was selected for further study.
In the present study, we isolated a GmWRKY31-interacting
GmSnRK1.1 (GenBank accession no. XM_006585690), and
generated transgenic soybean plants either overexpressing
GmSnRK1.1 (GmSnRK1.1-OE) or with an RNA-interference
(RNAi)-mediated reduced expression of this gene (GmSnRK1.1-
R). Overexpression and RNA interference analysis demonstrates
that GmSnRK1.1 positively regulates of soybean resistance to this
pathogen, likely via a SA-signaling pathway.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
The soybean cultivar used for the various treatments and gene
isolation was “Suinong 10,” which is highly resistant to P. sojae
race 1 (PSR01) isolated in Heilongjiang, China (Zhang et al.,
2010). The susceptible soybean cultivar “Dongnong 50” was
used for the gene transformation experiments. These lines were
obtained from the Key Laboratory of Soybean Biology in the
Chinese Ministry of Education, Harbin. PSR01 was previously
isolated from infected soybean plants in Heilongjiang, China
(Zhang et al., 2010). This isolate was propagated at 25◦C for
7 days on V8 juice agar in a glass dish. The seeds of “Suinong
10” and “Dongnong 50” were grown at 25◦C and 60% relative
ambient humidity in a growth cabinet, with a 16-h light/8-h dark
photoperiod. For the P. sojae infection, the hypocotyls of soybean
cultivars “Suinong 10” and “Dongnong 50” were inoculated at the
first-node stage (V1) (Fehr et al., 1971) using either zoospores
of P. sojae or a mock inoculation with sterile water following
the procedure described by Kaufmann and Gerdemann (1958),
with minor modifications. The P. sojae zoospores were induced
as described by Ward et al. (1979), and the concentration of
zoospores was estimated to be about 1 × 105 spores mL−1

using a hemacytometer. The leaves of the inoculated plants were
harvested and immediately frozen in liquid nitrogen at 0, 1, 3, 6,
9, 12, 24, and 48 h after the treatment, and stored at −80◦C until
required for RNA extraction.

Isolation of the GmSnRK1.1 Gene
The full-length cDNA of GmSnRK1.1 (GenBank accession no.
XM_006585690) was isolated from soybean “Suinong 10” using
RT-PCR with the primers GmSnRK1.1-F/R (see Supplementary
Table S1). The extraction of total RNA and reverse transcription
were performed using TRIzol reagent (Invitrogen, China)
and ReverTra Ace Kit (Toyobo, Japan). The products of the
RT-PCR amplification were cloned into a pMD-18T vector
(Takara Bio, Japan), transformed into Escherichia coli DH5α

cells (TransGen Biotech, China), and sequenced by GENEWIZ
(China). DNAMAN software1 was used for the sequence
alignments, and a phylogenetic analysis of GmSnRK1.1 was

1http://www.lynnon.com/
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carried out using MEGA5 software. The GmSnRK1.1 protein
structure was analyzed using the online program Phyre22.

qRT-PCR Analysis
A qRT-PCR analysis was performed to confirm the transcript
levels of GmSnRK1.1 using a LightCycler96 instrument (Roche,
Switzerland) with a real-time PCR kit (TOYOBO, Japan).
GmEF1β (GenBank accession no. NM_001248778) was used
as the internal control (see Supplementary Table S1 for
primers). The relative transcript abundance of the target gene
was calculated using the 2−11CT method. Three biological
replications were performed for each line in each analysis.

Yeast Two-Hybrid Assays
The coding sequence of GmSnRK1.1 was amplified and inserted
into pGADT7 (Takara Bio), after which the plasmids pGADT7-
GmSnRK1.1 and pGBKT7-GmWRKY31 were Co-transferred
into the yeast strain Y2HGold (Takara Bio). The protein-protein
interactions were determined by growth on three types of
medium: SD (–Trp/–Leu) medium, SD (–Trp/–Leu/–His/–Ade)
medium, and SD (–Trp/–Leu/–His/–Ade/X-α-gal) medium.
Yeast cells carrying the pGBKT7-53 and pGADT7-SV40 plasmids
were used as the positive control, and pGADT7-GmSnRK1.1:
pGBKT7 and pGADT7:pGBKT7-GmWRKY31 were used as the
negative control.

Bimolecular Fluorescence
Complementation (BiFC) Assays
To further evaluate the interaction between GmSnRK1.1 and
GmWRKY31, a BiFC assay based on yellow fluorescent protein
(YFP) was performed. To construct the vectors, the coding region
of GmSnRK1.1 was cloned using the primers GmSnRK1.1-
bF/R and cloned into the pSAT6-cEYFP-N1 vector. The coding
region of GmWRKY31 was amplified and cloned into the
pSAT6-nEYFP-N1 vector (Fan et al., 2017). The plasmids were
transformed into Arabidopsis protoplasts using polyethylene
glycol (PEG)-mediated transfection (Yoo et al., 2007). The
GmSnRK1.1-cEYFP-N1/pSAT6-nEYFP-N1 and GmWRKY31-
nEYFP-N1/pSAT6-cEYFP-N1 vector combinations were used as
negative controls, GmWRKY31-YEPN/GmHDL56-YEPC were
used as positive controls (Fan et al., 2017). The transfected cells
were imaged using a TCS SP2 confocal spectral microscope
imaging system (Leica Microsystems, Germany). The 514 nm
Ar/ArKr laser was used for YFP and Chlorophyll. YFP and
Chlorophyll were excitated at 514 nm and 488 nm, respectively.
The wavelength range of captured light was 530–560 nm for YFP,
and 650–750 nm for Chlorophyll.

Pull-Down Assays
GmSnRK1.1 was cloned into the pET29b (+) expression
vector (Merck Millipore, United States), while GmWRKY31
was cloned into the pGEX-4T-1 expression vector (GE
Healthcare, United States). The His-GmSnRK1.1 and glutathione
S-transferase-GmWRKY31 proteins were separately produced

2http://www.sbg.bio.ic.ac.uk/phyre2

in E. coli BL21 (DE3) cells, then harvested and purified using
a GST-Sefinose kit (Sangon, China) or a His-bind Purification
Kit (Merck Millipore). The pull-down assay was performed as
described by Yang et al. (2008), with minor modifications. In
a total volume of 1 mL GST binding buffer (Sangon), the GST
or GmWRKY31-GST recombinant proteins were incubated for
1 h at 4◦C with 400 µL GST resin (Sangon), after which equal
volumes of the GmSnRK1.1-His recombinant protein were
added and incubated for 6 h at 4◦C. The binding reaction was
washed five times with binding buffer, each for 10 min at 4◦C,
then the pulled-down proteins were eluted by boiling, separated
on a 12% SDS-PAGE gel, and immunoblotted with anti-His
antibody and anti-GST antibody (Abmart, United States).

Subcellular Localization Assays of the
GmSnRK1.1 Protein
The full-length GmSnRK1.1 sequence was cloned using RT-PCR
with the primers GmSnRK1.1GF and GmSnRK1.1GR (listed
in Supplementary Table S1). The coding sequence under the
control of the constitutive CaMV 35S promoter was fused
to the N-terminus of the green fluorescent protein (GFP).
The resulting 35S:GmSnRK1.1-GFP expression plasmid (or the
35S:GFP control) was transformed into Arabidopsis protoplast
cells using a PEG-mediated transfection, as described by Yoo
et al. (2007). The fluorescence signal was mapped using a
TCS SP2 spectral confocal microscopic imaging system (Leica
Microsystems). The 514 nm Ar/ArKr laser was used for GFP and
Chlorophyll. GFP and Chlorophyll were excitated at 488 nm. The
wavelength range of captured light was 500–530 nm for GFP, and
650–750 nm for Chlorophyll.

Vector Construction and Transformation
of Soybean
For the generation of the overexpression lines, a 4 × myc
sequence was synthesized (GENEWIZ) and inserted into a
pCAMBIA3301 vector to generate a pCAMBIA3301-4 × Myc
plasmid, the GmSnRK1.1 coding sequence was inserted into
the BglII/SpeI site of the plasmid, and the 4 × myc and
bar sequences were later used as markers. The GmSnRK1.1
cDNA fragment was amplified using the primers GmSnRK1.1-
R-F/R and inserted into the vector PFGC5941 (Kerschen et al.,
2004). The constructs were transformed into Agrobacterium
tumefaciens (strain LBA4404) using the freeze-thaw method
(Holsters et al., 1978). “Dongnong 50” was previously used
for Agrobacterium-mediated genetic transformation (Paz et al.,
2004). Transgenic soybean plants were preliminarily verified
using a PCR amplification and qPCR analysis, after which a
Western blot with an anti-myc antibody (Abmart) was used to
identify the plants overexpressing GmSnRK1.1.

Assessment of Pathogen Resistance and
the Disease Response
For pathogen infection, the living cotyledons of the WT and
transgenic soybean plants at the V1 stage of development
were infected with P. sojae zoospores (approximately 1 × 105

spores mL−1) using the methods described by Morrison and
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Thorne (1978), and the roots inoculation was performed using
the procedure described by Zhang et al. (2017). The disease
symptoms on the infected cotyledons and roots were observed
and photographed with a Nikon D7000 camera. ImageJ3 was
used to measure the lesions of the infected cotyledons. The
P. sojae biomass was quantified based on the accumulation
of P. sojae TEF1 (GenBank accession no. EU079791) in the
soybean plants, relative to the levels of GmEF1β, as previously
described by Chacón et al. (2010). The pathogen response assays
were performed on three biological replicates, each with three
technical replicates.

Determination of Antioxidant Enzyme
Activity
For the enzyme assays, the total proteins were extracted from
approximately 0.1 g of leaves using 1 mL ice-cold 25 mM HEPES
buffer (pH 7.8) containing 0.2 mM EDTA, 2 mM ascorbate, and
2% polyvinylpyrrolidone. The homogenates were centrifuged at
4◦C for 15 min at 12,000 × g, after which the supernatants

3https://imagej.nih.gov/ij/index.html

were carefully removed and used for the enzymatic activity
measurements. The superoxide dismutase (SOD) and peroxidase
(POD) activities were assayed as described by Wang et al. (2011).

SA Measurement
Salicylic acid (SA) was extracted from the T3 GmSnRK1.1
transgenic soybean leaves and quantified using HPLC-mass
spectrometry, as previously described (Aboul-Soud et al., 2004;
Pan et al., 2010).

RESULTS

GmSnRK1.1 Interacts With GmWRKY31
Using yeast two-hybrid assays, GmWRKY31 was found to
interact with GmSnRK1.1 (Figure 1A), which was further
confirmed using a BiFC assay demonstrating that GmSnRK1.1
can interact with GmWRKY31 in the nuclei of Arabidopsis
protoplast cells (Figure 1C). In accordance with the results
of the BiFC assay, a glutathione S-transferase pull-down assay
showed that the His-tagged GmSnRK1.1 recombinant protein

FIGURE 1 | Interaction of GmSnRK1.1 with GmWRKY31 in vitro and in vivo and western blot analysis of the expression of GmSnRK1.1. (A) Analysis of interactions
between GmSnRK1.1 and GmWRKY31 protein in yeast cells. The yeast cells of strain Y2H harboring pAD-GmSnRK1.1 and pBD-GmWRKY31 plasmid
combinations were grown on either SD/-Trp/-Leu media or SD/-Trp/-Leu/-His/-Ade media, followed by b-galactosidase assay (SD/-Trp/-Leu/-His/-Ade/X-a-gal
media). (B) Bimolecular fluorescence complementation (BiFC) analysis of interaction between GmSnRK1.1 and GmWRKY31 in Arabidopsis protoplast cells. The
plasmid combinations are indicated on top. The fluorescence of YFP was observed by confocal laser microscopy 16 h after transfection. Bars, 10 µm. (C) Pull-down
assay of GmSnRK1.1 interaction with GmWRKY31. His-GmSnRK1.1 protein was incubated with immobilized GST or GST-GmWRKY31 proteins, and
immunoprecipitated fractions were detected by anti-His antibody. (D) western blot analysis of the expression of GmSnRK1.1 in three positive overexpressing
transgenic soybean lines (OE1, OE2 and OE3).
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was pulled down by GST-GmWRKY31, but not by GST alone
(Figure 1B), further indicating that GmWRKY31 interacts with
GmSnRK1.1 in vitro. These results suggest that GmWRKY31
directly interacts with GmSnRK1.1.

Sequence Analysis of GmSnRK1.1
The full-length GmSnRK1.1 cDNA is 1,990 bp long and
contains a 1,533 bp open reading frame, which encodes a
polypeptide of 510 amino acids (Supplementary Figure S2).
Phylogenetic tree and alignment analyses revealed that
GmSnRK1.1 shares 67.91–93.02% identity in overall amino
acid sequence with its other plant species homologs,
including Lotus japonicus LjSnRK (BAD95888), Manihot
esculenta MeSnRK (XP_021604368), Fragaria vesca FvSnRK
(XP_004304271), Cucumis sativus CsSnRK (XP_004145003),

Vitis vinifera VvSnRK (XM_002283963.1), Cucumis melo
CmSnRK (XP_008460108), Pyrus bretschneideri PbSnRK
(XP_009360590), Populus trichocarpa PtSnRK (XP_002306053),
Morus notabilis MnSnRK (XP_024016886), Vicia faba VfSnRK
(AJ971809.1), Pisum sativum PsSnRK (CAI96819.1), Nicotiana
attenuate NaSnRK (AAS18877), Populus euphratica PeSnRK
(XP_011010304), Arabidopsis thaliana AtSnRK (M93023.1),
Daucus carota DcSnRK (XP_017242374), Sorghum bicolor
SbSnRK (EF544393.1), Zea mays ZmSnRK (AY486125.1),
Solanum tuberosum StSnRK (CAA65244.1), Solanum
lycopersicum SlSnRK (NP_001234325.1), and GmSnRK1.1
has the highest similarity with LjSnRK (Supplementary
Figures S1B,C). The structure of GmSnRK1.1 was analyzed
using Phyre, predicting that it functions as a heterotrimer
complex, in which the catalytic α subunit combines

FIGURE 2 | Expression patterns of GmSnRK1.1 in Phytophthora sojae-resistant and P. sojae-susceptible soybean cultivars. (A) The tissue-specific expression
patterns of GmSnRK1.1 in resistant cultivar “Suinong 10” (SN10) and susceptible cultivar “Dongnong 50” (DN50) under normal conditions. (B) Relative expression of
GmSnRK1.1 in soybean cultivars ‘Suinong 10” and “Dongnong 50” on P. sojae infection. The infected samples were collected at 0, 1, 3, 6, 9, 12, 24, 36 and 48 h
after P. sojae infection. The relative expression levels of GmSnRK1.1 were compared with those of mock-treated plants (plants treated with sterile water) at the same
time point. Fourteen-day-old soybean plants were used for analysis. The housekeeping gene of soybean GmEF1β (NM_001248778) was used as an internal control
to normalize the data. The experiment was performed on three biological replicates, each with three technical replicates, and was statistically analyzed using
Student’s t-test (∗P < 0.05, ∗∗P < 0.01). Bars indicate the standard error of the mean.
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with a β regulatory subunit and an activating γ subunit
(Supplementary Figure S1C).

GmSnRK1.1 Expression Is Significantly
Induced by P. sojae
To evaluate the responsiveness of GmSnRK1.1 to biotic stresses
in the “Dongnong 50” and “Suinong 10” soybean cultivars, its
temporal and spatial patterns were investigated using qRT-PCR.
The examination of the tissue-specific transcript levels in these
cultivars revealed that GmSnRK1.1 was highly expressed in the
stems, followed by the roots and cotyledons (Figure 2A). In
“Suinong 10” plants inoculated with P. sojae, the GmSnRK1.1
mRNA levels increased to a peak level at 9 h after inoculation,
followed by a decline (Figure 2B). A similar pattern was observed
in “Dongnong 50,” although the relative expression level of
GmSnRK1.1 was significantly higher in “Suinong 10” than in
“Dongnong 50” (Figure 2B).

Subcellular Localization of the
GmSnRK1.1 Protein
The subcellular localization of the GmSnRK1.1 protein was
analyzed in Arabidopsis protoplasts producing a GmSnRK1.1-
GFP fusion protein under the control of the 35S promoter. As
shown in Figure 3, GFP fluorescence was distributed throughout
the cells expressing the 35S:GFP control plasmid. In contrast,
the GmSnRK1.1-GFP fusion protein was exclusively localized
to the Arabidopsis cell membrane, resembling the pattern of
the membrane-localized GmDIR22-GFP fusion protein (Li et al.,
2017) used as a control. These results indicated that GmSnRK1.1
is a membrane-localized protein.

GmSnRK1.1 Enhances Resistance to
P. sojae in Transgenic Soybean Plants
To analyze the function of GmSnRK1.1 in response to infection
by P. sojae, we generated GmSnRK1.1-OE and GmSnRK1.1-R

FIGURE 3 | Analysis of the subcellular localization of GmSnRK1.1-GFP protein in Arabidopsis protoplasts. Subcellular localization was investigated in Arabidopsis
mesophyll protoplasts under a confocal microscope. The fluorescent distribution of humanized hGFP, the fusion protein GmSnRK1.1-hGFP, GmDIR22-hGFP and
GmBTB/POZ-hGFP were observed under white light, UV light, and red light, respectively. Bars, 10 µm.
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transgenic soybean plants, which were developed into transgenic
T3 lines. the expression of GmSnRK1.1 in three positive
overexpressing transgenic soybean lines using Western blot
(Figure 1D). The resistance of the T3 transgenic plants to P. sojae
was tested in their cotyledons and roots. A notable difference was
observed in the development of disease symptoms after a 96 h
incubation with zoospores of P. sojae. In the GmSnRK1.1-R lines,
the cotyledons exhibited clear water-soaked lesions and were
softer than the WT, however, almost no disease symptoms were
observed in the GmSnRK1.1-OE lines (Figure 4A). In addition,
the P. sojae biomass (indicated by the relative abundance of
TEF1 genomic sequence per area of infected living cotyledon)
was significantly (P < 0.01) lower in the GmSnRK1.1-OE lines

than in the WT plants, but higher in the GmSnRK1.1-R lines
(Figure 4B). The lesion areas of the GmSnRK1.1-OE lines
were significantly (P < 0.01) smaller than that of the WT
(Figure 4C), but significantly larger in the GmSnRK1.1-R lines.
Similar results were obtained after a 6-d incubation with P. sojae.
The living roots of the WT soybean plants and GmSnRK1.1-R
soybean lines exhibited watery lesions and even rotting, while
those of the GmSnRK1.1-OE lines remained healthy (Figure 5).
Similar to the results of infecting living cotyledon, the biomass
of P. sojae after 6 days of roots infection was significantly
reduced in the GmSnRK1.1-OE lines, but significantly increased
in the GmSnRK1.1-R lines, relative to the WT. These results
indicated that overexpression of GmSnRK1.1 in soybean plants

FIGURE 4 | GmSnRK1.1 enhances resistance to Phytophthora sojae in transgenic soybean cotyledons. (A) Disease symptoms on living cotyledons of
GmSnRK1.1-overexpressing (GmSnRK1.1-OE), GmSnRK1.1 RNA interference (RNAi)-mediated silencing (GmSnRK1.1-R) and wild-type (WT) plants at 96 h after
inoculation with P. sojae. (B) Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis of the relative biomass of P. sojae in GmSnRK1.1-OE,
GmSnRK1.1-R transgenic lines and WT soybean based on P. sojae TEF1 transcript levels. The experiment was performed on three biological replicates, each with
three technical replicates, and statistically analyzed using Student’s t-test (∗P < 0.05,∗∗P < 0.01). Bars indicate the standard error of the mean. (C) Lesion size
measured from photographed cotyledons of GmSnRK1.1-OE, GmSnRK1.1-R transgenic and WT plants at 96 h post-inoculation (hpi). The lesion size of each
independent soybean line (n = 3) was calculated, and the lesion sizes are shown in the columns based on a comparison with the average lesion area on WT soybean.
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FIGURE 5 | Resistance analysis of GmSnRK1.1 transgenic soybean plants. (A) Disease symptoms on the roots of GmSnRK1.1-overexpressing (GmSnRK1.1-OE),
GmSnRK1.1 RNA interference (RNAi)-mediated silencing (GmSnRK1.1-R) and wild-type (WT) plants at 6 days after inoculation with Phytophthora sojae.
(B) Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis of the relative expression of GmSnRK1.1 in GmSnRK1.1-OE, GmSnRK1.1-R
transgenic lines and WT soybean. (C) Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis of the relative biomass of P. sojae in
GmSnRK1.1-OE, GmSnRK1.1-R transgenic lines and WT soybean based on P. sojae TEF1 transcript levels. The experiment was performed on three biological
replicates, each with three technical replicates, and statistically analyzed using Student’s t-test (∗P < 0.05,∗∗P < 0.01). Bars indicate the standard error of the mean.
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enhances their resistance to P. sojae infection. In addition,
we have constructed the overexpression vector of kinase-
inactive GmSnRK1.1 by synthesizing the mutation sequence
of phosphorylation site (Thr157Ala, Thr235Ala, Thr261Ala).
Furthermore, the overexpression of kinase-inactive GmSnRK1.1,
the overexpression of GmSnRK1.1, and vector control transgenic
soybean hairy roots generated by Agrobacterium rhizogenes-
mediated transformation will be used to investigate the effect
of the GmSnRK1.1’s kinase activity on resistance to P. sojae
in soybean. The results demonstrated that GmSnRK1.1’s kinase
activity could increase the resistance to P. sojae in soybean
(Supplementary Figure S5).

Overexpression of GmSnRK1.1 Affects
Antioxidant Enzyme Activity
The antioxidant defense system is well-developed in plants,
involving the scavenging of reactive oxygen species (ROS) by
SOD and POD (Du et al., 2001). We analyzed the SOD and POD
activities in the transgenic and WT soybean plants inoculated
with P. sojae, as well as the expression of the associated genes
GmSOD1 (NM_001248369) and GmPOD (XM_006575142).
Under both the mock treatment and at 24 h after inoculation
with P. sojae, the activity levels of SOD and POD, as well as the
transcript abundance of the associated genes, were significantly
higher in the GmSnRK1.1-OE lines than in the WT, but were

significantly reduced in the GmSnRK1.1-R lines (Figure 6).
These results suggested that GmSnRK1.1 increases the activities
of the antioxidant enzymes in soybean plants in response to
P. sojae infection.

GmSnRK1.1 Regulates the Expression of
Defense-Associated Genes in Response
to P. sojae Infection
Race-specific resistance to P. sojae has been shown to be
mediated by isoflavonoid phytoalexins in other soybean varieties
(Subramanian et al., 2005; Graham et al., 2007; Cheng et al.,
2015; Zhang et al., 2017). We measured the expressions
of several isoflavonoid phytoalexins genes, including GmPAL
(GenBank accession no. NM_001250027), GmIFR (GenBank
accession no. NM_001254100), Gm4CL (GenBank accession
no. NM_001256363.1) and GmCHS (GenBank accession no.
XM_003518780). These results indicated that isoflavonoid
phytoalexins related genes were significantly higher in “Suinong
10” and GmSnRK1.1-OE lines than these in “Dongnong
50,” and were significantly lower in GmSnRK1.1-R lines
(Figure 7). Moreover, we next monitored the expression levels
of GmSnRK1.1 during P. sojae infection using qRT-PCR. The
transcript levels of GmSnRK1.1 were significantly higher in
the GmSnRK1.1-OE plants than in the WT under both the
mock treatment and a 24 h infection with P. sojae, but were

FIGURE 6 | Analysis of antioxidant enzyme activity (A,B) and the relative expression of genes (C,D) under mock treatment and infected by Phytophthora sojae at
24 h post-inoculation (hpi). The activity of the control sample [mock-treated wild-type (WT) plants] was set to unity. The experiment was performed on three
biological replicates, each with three technical replicates, and statistically analyzed using Student’s t-test (∗P < 0.05, ∗∗P < 0.01). Bars indicate the standard error of
the mean. POD, peroxidase; SOD, superoxide dismutase.
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FIGURE 7 | The relative transcript levels of isoflavonoid phytoalexins related genes in “Suinong 10” (SN10), “Dongnong 50” (DN50) and GmSnRK1.1 transgenic
soybean plants. The housekeeping gene of soybean GmEF1β was used as an internal control to normalize the data. The experiment was performed on three
biological replicates with their respective three technical replicates and statistically analyzed using Student’s t-test (∗P < 0.05, ∗∗P < 0.01). Bars indicate the
standard error of the mean.

significantly lower in the GmSnRK1.1-R lines (Supplementary
Figure S4). Pathogen-related proteins are key members in the
plant response to pathogen infection (Van Loon and Van Strien,
1999; Loon et al., 2006; Xu et al., 2014). To explore the possible
mechanisms of the GmSnRK1.1-regulated resistance to P. sojae,
we detected the transcriptional levels of various defense-response
genes, including GmWRKY31, GmNPR1 (GenBank accession no.
NM_001251745.1), GmPR1 (GenBank accession no. AF136636),
and GmPR5 (GenBank accession no. M21297). As shown in
Supplementary Figure S4, after 12 h incubation with P. sojae,
the expression levels of these resistance-related genes were
significantly more highly expressed in the GmSnRK1.1-OE plants
than in the WT, but were significantly lower in the GmSnRK1.1-
R plants. In contrast, no significant differences in the expression
of GmPR10 (GenBank accession no. FJ960440) were detected
between these lines. These results indicate that one mechanism
by which GmSnRK1.1 enhances soybean defense against P. sojae
is by regulating the expression of the defense-related genes.

GmSnRK1.1 Affects SA Accumulation
and the Expression of the SA
Biosynthesis Genes
To test whether the GmSnRK1.1 could regulate the accumulation
of SA, the SA contents of the T3 GmSnRK1.1 transgenic lines
were evaluated. As shown in Figure 8A, the GmSnRK1.1-OE
transgenic soybean leaves contained significantly more SA than
the WT leaves, while the GmSnRK1.1-R plants accumulated

significantly less SA. we also analyzed the transcript levels
of GmICS1 (XM_003522145), which plays a key role in SA
biosynthesis. GmICS1 was significantly more highly expressed
in the GmSnRK1.1-OE transgenic lines than in the WT, while
the GmSnRK1.1-R transgenic lines has a significantly lower
level of GmICS1 expression (Figure 8B). Furthermore, whether
or not the defense mechanism is dependent on SA, we
measured the expression level of GmSnRK1.1 and the relative
biomass of P. sojae in “Suinong 10,” “Dongnong 50” and
GmSnRK1.1 transgenic soybean lines treat with sterile water
and SA biosynthesis inhibitor (100 µM 1-aminobenzotriazole).
As expected, SA biosynthesis inhibitor treated plants displayed
clearly increased pathogen biomass compared with H2O-treated
plants after 24 h post-inoculation (Figure 8D). These results
suggested that GmSnRK1.1 plays a positive important role
in the response to P. sojae infection, increasing the disease-
resistance of soybean via a possible mechanism involving the SA
signaling pathway.

DISCUSSION

Identification and characterization of genes involved in response
to P. sojae infection in soybean has contributed to our
understanding of the genetic mechanisms of resistance (Xu et al.,
2014; Cheng et al., 2015; Kong et al., 2015; Zhang et al., 2017).
In our previous study, GmWRKY31 was found to play a key role
in increasing the disease resistance of soybean plants to P. sojae
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FIGURE 8 | Investigation of the relationship between GmSnRK1.1 and the salicylic acid (SA) pathway in soybean. (A) SA contents in leaves of transgenic and wild
type (WT) soybean. FW, fresh weight. (B) Relative transcript level of GmICS in GmSnRK1.1-overexpressing (GmSnRK1.1-OE), GmSnRK1.1 RNA interference
(RNAi)-mediated silencing (GmSnRK1.1-R) transgenic and WT soybean. The level of the control sample (WT plants) was set to unity. (C) Relative transcript level of
GmSnRK1.1 in “Suinong 10” (SN10), “Dongnong 50” (DN50) and GmSnRK1.1 transgenic soybean lines treated with H2O (mock) and SA biosynthesis inhibitor
(100 µM ABT) under P. sojae infection. (D) The relative biomass of P. sojae in “Suinong 10” (SN10), “Dongnong 50” (DN50) and GmSnRK1.1 transgenic soybean
lines treated with H2O (mock) and SA biosynthesis inhibitor (100 µM ABT) under P. sojae infection. The experiment was performed on three biological replicates,
each with three technical replicates, and was statistically analyzed using Student’s t-test (∗P < 0.05, ∗∗P < 0.01). Bars indicate the standard error of the mean.

infection (Fan et al., 2017). In the present study, we identified and
functionally characterized GmSnRK1.1 as an interacting partner
of GmWRKY31, demonstrating that it plays a positive role in
the response to P. sojae infection. The SnRK1 protein kinases are
considered central regulators of the energy metabolism and stress
signaling in plants (Baena-González and Sheen, 2008; Radchuk
et al., 2010; Tsai and Gazzarrini, 2012), however, the biological
functions of the SnRK1s in soybean are poorly understood.
Here, we first discovered that the overexpression of GmSnRK1.1
significantly increased the plant responses to P. sojae infection,
while RNA-interference mediated reduced expression of this gene
significantly increased the susceptibility of the transgenic plants
to this pathogen (Figures 4, 5).

Previous studies have confirmed that the SnRK1s play a
role in the plant defense against viruses, fungi, and bacteria
(Hao et al., 2003; Szczesny et al., 2010; Kim et al., 2015);
for example, the overexpression of SnRK1 was shown to
significantly increase the resistance of tobacco plants to
geminivirus infection (Hao et al., 2003). In rice, OSK35 (a rice
SnRK1b gene) positively regulates the disease resistance of
plants subjected to the fungal pathogen Magnaporthe oryzae
and the bacterial pathogen Xanthomonas oryzae pv. oryzae
(Xoo) (Kim et al., 2015). The wheat (Triticum aestivum)
alpha subunit of TaSnRK1a interacts with TaFROG (Fusarium
Resistance Orphan Gene) to increase the disease resistance

response to the mycotoxigenic fungus Fusarium graminearum
(Perochon et al., 2015). The hypersensitive response was
induced by the Xanthomonas campestris pv. vesicatoria
effector AvrBs1 in snrk1 mutant pepper plants (Szczesny
et al., 2010). In this work, the temporal and spatial patterns of
GmSnRK1.1 expression were analyzed in the P. sojae-resistant
soybean cultivar “Suinong 10” and the susceptible cultivar
“Dongnong 50,” revealing that GmSnRK1.1 was markedly
expressed in the stems of these lines, with lower expression
levels in the roots and cotyledons (Figure 2A). We detected
that the expression levels of GmSnRK1.1 following P. sojae
infection were much higher in “Suinong 10” than in the
susceptible cultivar “Dongnong 50,” and that P. sojae infection
markedly increased the expression levels of GmSnRK1.1 in both
cultivars (Figure 2B). In addition, GmSnRK1.1 is negatively
regulated by ABA (Supplementary Figure S3). We further
demonstrated that the GmSnRK1.1-OE transgenic plants had
an increased disease resistance to P. sojae infection, while
the GmSnRK1.1-R transgenic plants exhibited increased
susceptibility (Figures 4, 5).

Further research showed that GmSnRK1.1 positively regulates
the activities and transcription levels of antioxidant enzymes
SOD and POD (Figure 6). SOD constitutes the first line of
defense against ROS within a cell (Alscher et al., 2002), while
POD plays a key role in scavenging ROS and preventing cellular
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damage (Tewari et al., 2006). Therefore, we further analysis the
activities and transcription level of SOD and POD, In plants
infected with P. sojae, GmSnRK1.1 positively enhanced the
activities and transcription levels of SOD and POD, enabling
them to scavenge the ROS and provide sufficient protection
against oxidative damage.

The phytohormones SA, jasmonic acid, and ethylene play
central roles in regulating the plant responses to pathogen
attack (Reymond and Farmer, 1998; Kunkel and Brooks,
2002; Spoel et al., 2003; Robert-Seilaniantz et al., 2011;
Alazem and Lin, 2015). SA mediates and activates the
biotic stress response to pathogenic challenge (Pieterse et al.,
2009; Sugano et al., 2013; Alazem and Lin, 2015), with the
transcriptional cofactor NPR1 playing a key role in the SA-
signaling pathway of several plant species (Vlot et al., 2009).
In rice, OsSnRK1a positively regulates plant resistance by
linking to the SA pathway (Filipe et al., 2018). In previous
studies, the overexpression of GmWRKY31 was found to induce
the expression of GmNPR1, increasing the disease resistance
of soybean plants in response to P. sojae infection via the
activation of the SA-signaling pathway (Fan et al., 2017).
The results of this study supported these findings, as the
expression levels of GmWRKY31 and GmNPR1 were markedly
higher in the GmSnRK1.1-OE transgenic plants in comparison
with the WT and lower in the GmSnRK1.1-R transgenic
plants (Supplementary Figure S4). A downstream member of
the SnRK1 signaling pathway, STOREKEEPER RELATED1/G-
Element Binding Protein (STKR1), was previously found to
display transcriptional changes which constitutively activated the
SA-related defense in transformed Arabidopsis plants (Nietzsche
et al., 2018). We also found that the overexpression of
GmSnRK1.1 induced the expression of GmPR1 and GmPR5,
which are effector genes for the systemic acquired resistance
response, a process mediated by SA (Ward et al., 1991;
He et al., 2007). The high expression levels of these genes
indicated that SA signaling was activated in the GmSnRK1.1-
OE plants, which was confirmed by our determination that
SA accumulation and the expression of the SA biosynthesis
gene GmICS1 were upregulated in these plants relative to
the WT (Figure 8). In addition, we examined the expression
level of GmSnRK1.1 and relative biomass of P. sojae in
“Suinong 10,” “Dongnong 50” and GmSnRK1.1 transgenic
soybean lines treated with H2O (mock) and SA biosynthesis
inhibitor (100 µM ABT) under P. sojae infection, the results
showed that SA is involved in GmSnRK1.1-mediating defense
to P. sojae (Figure 8). These indicated that GmSnRK1.1
promotes the accumulation of SA and the expression of
GmICS1, and suggests that GmSnRK1.1 acts as a positive
regulator of the downstream defense pathways and SA-
dependent defense signaling.

In Glycine soja, a ABA activated calcium independent SnRK-
type kinase, GsAPK, was localized in the plasma membrane
(Liang et al., 2012). In Arabidopsis, SnRK1 is localized to the
plant nucleus and endoplasmic reticulum (Blanco et al., 2019).
In this work, GmSnRK1.1 was localized in the plasma membrane
(Figure 3), and GmWRKY31 was localized to the plant nucleus
(Fan et al., 2017). The BiFC assay showed that GmSnRK1.1

interacted with GmWRKY31 in the nucleus (Figure 1), but the
mechanism of nuclear interaction is not clear which require
further study and discussion.
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FIGURE S1 | Sequence comparison of GmSnRK1.1 with orthologs from other
plant species. (A) Phylogenetic analysis of GmSnRK1.1 with orthologs from other
plant species. (B) Alignment of amino acid sequences of GmSnRK1.1 with
orthologs from other plant species. (C) The tertiary structure of the
GmSnRK1.1 protein.

FIGURE S2 | The open reading frame sequence and deduced polypeptide
sequence of GmSnRK1.1.

FIGURE S3 | The relative transcript levels of GmSnRK1.1 at various time points
post-treatment with ABA in “Suinong 10” and “Dongnong 50” soybean plants.
Fourteen day-old plants were used for the treatments and analyses. The
housekeeping gene of soybean GmEF1β was used as an internal control to
normalize the data. The relative transcript levels of GmSnRK1.1 were quantified
compared with mock plants at the same time points. The experiment was
performed on three biological replicates with their respective three technical
replicates and statistically analyzed using Student’s t-test (∗P < 0.05, ∗∗P < 0.01).
Bars indicate the standard error of the mean.

FIGURE S4 | Relative expression levels of defense-associated genes in soybean
plants under mock treatment and infected by Phytophthora sojae at 24 h
post-inoculation (hpi). The housekeeping gene of soybean GmEF1β was used as
an internal control to normalize the data. The expression level of the control
sample [mock-treated wild-type (WT) plants] was set to unity. The experiment was
performed on three biological replicates, each with three technical replicates, and
was statistically analyzed using Student’s t-test (∗P < 0.05, ∗∗P < 0.01). Bars
indicate the standard error of the mean.
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FIGURE S5 | The effect of GmSnRK1.1 kinase assay on the resistance to
P. sojae. (A) Mutation of GmSnRK1.1 activation sites. (B) Disease symptoms on
the hairy roots of the overexpression of GmSnRK1.1 (GmSnRK1.1-OE), the
overexpression of kinase-inactive GmSnRK1.1 (GmSnRK1.1 mutation-OE), and
empty vector control (3301), GmSnRK1.1 RNA interference (RNAi)-mediated
silencing (GmSnRK1.1-R) transgenic soybean at 4 days after inoculation with
Phytophthora sojae. (C) Quantitative reverse transcription-polymerase chain
reaction (RT-PCR) analysis of the relative biomass of P. sojae in GmSnRK1.1-OE,

GmSnRK1.1 mutation-OE, GmSnRK1.1-R, and 3301 empty vector transgenic
soybean hairy roots based on P. sojae TEF1 transcript levels. The experiment was
performed on three biological replicates, each with three technical replicates, and
statistically analyzed using Student’s t-test (∗P < 0.05, ∗∗P < 0.01). Bars indicate
the standard error of the mean. (D) Transgenic soybean hairy roots were tested
using Liberty Link strips.

TABLE S1 | Primer sequences used in this study.
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