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Glucosinolates (GLSs) are a well-known class of specialized plant metabolites,
distributed mostly in the order Brassicales. A vast research field in basic and applied
sciences has grown up around GLSs owing to their presence in important agricultural
crops and the model plant Arabidopsis thaliana, and their broad range of bioactivities
beneficial to human health. The major purpose of GLSs in plants has been considered
their function as a chemical defense against predators. GLSs are physically separated
from a specialized class of beta-thioglucosidases called myrosinases, at the tissue
level or at the single-cell level. They are brought together as a consequence of tissue
damage, primarily triggered by herbivores, and their interaction results in the release
of toxic volatile chemicals including isothiocyanates. In addition, recent studies have
suggested that plants may adopt other strategies independent of tissue disruption for
initiating GLS breakdown to cope with certain biotic/abiotic stresses. This hypothesis
has been further supported by the discovery of an atypical class of GLS-hydrolyzing
enzymes possessing features that are distinct from those of the classical myrosinases.
Nevertheless, there is only little information on the physiological importance of atypical
myrosinases. In this review, we focus on the broad diversity of the beta-glucosidase
subclasses containing known atypical myrosinases in A. thaliana to discuss the
hypothesis that numerous members of these subclasses can hydrolyze GLSs to regulate
their diverse functions in plants. Also, the increasingly broadening functional repertoires
of known atypical/classical myrosinases are described with reference to recent findings.
Assessment of independent insights gained from A. thaliana with respect to (1) the
phenotype of mutants lacking genes in the GLS metabolic/breakdown pathways, (2)
fluctuation in GLS contents/metabolism under specific conditions, and (3) the response
of plants to exogenous GLSs or their hydrolytic products, will enable us to reconsider
the physiological importance of GLS breakdown in particular situations, which is likely
to be regulated by specific beta-glucosidases.

Keywords: glucosinolate, myrosinase, beta-glucosidase, metabolism, stress response

INTRODUCTION

Over the years, a number of bioactive metabolites have been identified in plants, many of which
are utilized as beneficial sources of pharmaceuticals and/or research tools. Glucosinolate (GLS), a
class of sulfur-rich natural products mainly produced by the family Brassicaceae, is among the most
studied plant metabolites owing to its potential health-related benefits and availability in the model
plant Arabidopsis thaliana (Halkier and Gershenzon, 2006; Agerbirk and Olsen, 2012). GLSs impart
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specific pungency and flavors to Brassicaceae vegetables such
as mustard and cabbage (Fahey et al., 2001; Halkier, 2016;
Possenti et al., 2017). Moreover, a few GLS compounds such
as glucoraphanin (4-methylsulfinyl-n-butyl glucosinolate)
are known to produce health-promoting chemicals with
diverse bioactivities (Traka, 2016; Banerjee and Paruthy,
2017). Very recently, the enormous body of research
activities on GLS has been compiled as two books
entitled Glucosinolates with few overlaps (Kopriva, 2016;
Mérillon and Ramawat, 2017).

In recent years, chemical ecology, which focuses on gaining
an understanding of the physiological functions of specialized
metabolites (previously referred to as secondary metabolites)
in organisms, has also become a burgeoning scientific field
in natural product research. In this context, GLSs have
traditionally been considered as defense chemicals deployed
against predators. GLSs generally accumulate in specific cells
(S-cells), separated from cells containing their hydrolytic
enzymes (beta-thioglucosidases called myrosinases) (Halkier,
2016; Wittstock et al., 2016a). In addition, it has been
suggested that GLSs and myrosinases could co-exist even
within single cells, probably being compartmentalized in
different organelles (Koroleva and Cramer, 2011). They are
mixed upon tissue damage to release toxic volatiles such
as isothiocyanates (ITCs) (Figure 1). Specifier proteins and
side chain structures play an important role in converting
the unstable aglycon to various end products with different
bioactivities (Lambrix et al., 2001; Hanschen et al., 2014;
Wittstock et al., 2016a,b; Eisenschmidt-Bönn et al., 2019). For
instance, simple nitriles are generated in the presence of nitrile
specifier proteins, and ITCs possessing a hydroxyl group at
position 2 can be further cyclized. These compartmentalizations,
which enable plants to safely control harmful chemicals,
is referred to as the GLS–myrosinase system or “mustard
oil bomb” and has long fascinated many plant scientists
(Lüthy and Matile, 1984).

Knowledge on the chemical diversity embedded in the GLS
metabolism and on the molecular mechanisms underlying the
GLS–myrosinase system is frequently updated. For example,
energetical investigations have been made of GLS biosynthetic
genes (Halkier, 2016; Barco and Clay, 2019), end products
directed by specifier proteins (Wittstock et al., 2016a), tissue
localization via GLS transporters (Jørgensen et al., 2015;
Halkier, 2016), differences in GLS contents among species
and accessions (Kliebenstein and Cacho, 2016), and proteins
that interact with myrosinases to regulate their activity and
stability (Bhat and Vyas, 2019; Chen et al., 2019). However,
most of the insights that have been gained regarding the
molecular basis and physiological importance of GLS breakdown
are based on the intercellular and tissue damage-dependent
GLS–myrosinase system. On the other hand, there are several
reports on fluctuations of endogenous GLS levels even in non-
disrupted tissues, caused by pathogen attack or abiotic stress
(Martinez-Ballesta et al., 2013; Variyar et al., 2014; Burow,
2016; Pastorczyk and Bednarek, 2016). These observations
suggest the existence of different system(s) that regulate GLS
breakdown independent of tissue disruption, to cope with such

environmental stresses. In connection with the subcellular GLS–
myrosinase compartmentalization, additional functions of GLSs
not limited to their role as the defense chemicals against
herbivores have been recognized (Bednarek, 2012b; Katz et al.,
2015; Francisco et al., 2016b; Burow and Halkier, 2017). In
fact, many of the latest studies have demonstrated broad
physiological functions of GLSs (Francisco et al., 2016a; Katz and
Chamovitz, 2017; Malinovsky et al., 2017; Nintemann et al., 2018;
Urbancsok et al., 2018a,b).

In order to gain a more comprehensive understanding of the
possible multi-functionality of GLSs in planta, we should take a
global view of the profound diversification embedded in GLSs
(Figure 1). Nearly 150 GLS compounds have been identified
to date, and there are at least 36 GLSs with different side-
chain structures in A. thaliana (Brown et al., 2003; Agerbirk
et al., 2018). Three subclasses of GLSs — aliphatic, benzenic
and indole GLSs — are biosynthesized from different precursor
amino acids with independent regulatory systems by MYB
and MYC transcription factors (Figure 1) (Frerigmann, 2016).
Thus, it is conceivable that each GLS class could participate
in distinct biological processes, as indole GLSs are known
to play an essential role in plant immunity via coordination
with the metabolism of other phytoalexins (Bednarek et al.,
2009; Pedras et al., 2011; Klein and Sattely, 2015, 2017;
Frerigmann et al., 2016). In addition, different bioactivities
of ITCs, dependent on their side-chain structures, are well
recognized despite their non-specific nucleophilicity, which may
contribute to fitness performance of plants (Burow et al., 2010;
Andersson et al., 2015; Urbancsok et al., 2017). Moreover,
the production of various end products even from a single
GLS species, directed by the specifier proteins, is likely to
expand the endogenous biological targets of GLSs in different
signaling pathways (Lambrix et al., 2001; Wittstock et al.,
2016a,b). In contrast, the genetic and biochemical diversity in
myrosinases is less understood, even though a new class of beta-
glucosidases capable of hydrolyzing GLSs has been identified.
Compared with the well-documented class of myrosinases that
are widely found in the order Brassicales, these so-called
atypical myrosinases possess unique features with respect to
both amino acid sequences and enzymatic profiles. In this
review, we therefore focus on the considerable diversity of beta-
glucosidases in A. thaliana as a model to discuss their possible
contribution to the broad utility of GLSs in plants, even at the
subcellular level.

CLASSICAL VERSUS ATYPICAL
MYROSINASES

In A. thaliana, glucosyl hydrolase family I is composed
of 47 BETA-GLUCOSIDASE (BGLU) genes and a BGLU-
like gene, AFR2 (Xu et al., 2004). According to the crystal
structure of a thioglucosidase from Sinapis alba, a few amino
acid residues are conserved in myrosinases among a wide
range of GLS-producing plants (Burmeister et al., 1997).
For example, Gln and Glu residues within the catalytic
site are considered to be essential for cleavage of the
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FIGURE 1 | General understanding of the diversity in glucosinolates (GLSs),
their breakdown products and myrosinases in Arabidopsis thaliana. Each
subclass of GLSs — aliphatic, benzenic and indole — is biosynthesized from
different precursor amino acids; in the case of A. thaliana, mainly methionine,
phenylalanine and tryptophan, respectively. Classical and atypical myrosinases
catalyze hydrolytic removal of the beta-D-thioglucoside moiety from GLS. In
general, a Lossen-type rearrangement of the unstable intermediate results in
the generation of isothiocyanate. Specifier proteins and side chain structures
are responsible for conversion of the intermediate into other end products.

thioglucoside moiety. Thus, six genes (BGLU34–BGLU39) named
THIOGLUCOSIDE GLUCOHYDROLASE (TGG) had previously
been considered as the only class encoding myrosinases in
A. thaliana. Myrosinases possessing these amino acid signatures
have been found in a wide range of GLS-producing plants
(Rask et al., 2000).

In 2009, however, it was revealed that PENETRATION 2
(PEN2)/BGLU26 is capable of hydrolyzing indole GLSs and
that generation of the putative degradation products is critical
for the plant immune response (Bednarek et al., 2009; Clay
et al., 2009). Although the key Gln residue is replaced by
Glu in PEN2, the recombinant PEN2 protein clearly showed
myrosinase activity against indol-3-ylmethyl glucosinolate (I3G)
and its 4-methoxy analog (Bednarek et al., 2009). Moreover,
Nakano et al. (2014) demonstrated that PYK10/BGLU23 is a

major component of the endoplasmatic reticulum (ER) body —
an organelle found primarily in the family Brassicaceae — and
also has functions as a myrosinase against I3G (Nakano et al.,
2017). PYK10 also has Glu instead of the key Gln residue
found in TGGs. Based on these findings, PEN2 and PYK10
were newly categorized as atypical or EE-type myrosinases, in
contrast to TGG1–TGG6, which are referred to as classical or
QE-type myrosinases (“EE” and “QE” represent their conserved
amino acid residues).

It should be noted that the two Glu residues identified in
PEN2 and PYK10 are conserved among the 16 genes named
BGLU18–BGLU33 in A. thaliana (Table 1). A phylogenomic
analysis of BGLUs from more than 50 plant species revealed
that the monophyletic clade composed of these 16 BGLUs
is specific for the order Brassicales (Nakano et al., 2017).
These BGLU members lack the Gln and other amino
acid signatures conserved in the classical myrosinases,
whereas additional basic residues oriented to the deduced
substrate-binding pocket occur only in this subclass. Detailed
amino acid signatures in A. thaliana BGLUs are shown
in Nakano et al. (2017), especially in their Figure 5 and
Supplementary Figure S11. Considering the distinct amino
acid signatures conserved in each BGLU subclass and their
frequent emergence across plant species, it is suggested
that the QE and EE myrosinases have arisen independently
during evolution (Nakano et al., 2017). Not limited to
PEN2 and PYK10, interestingly, transcriptional changes
and mutations in some of these BGLUs have suggested
their relevance in response to specific stresses (Figure 2,
Tables 1, 2, and Supplementary Tables S2, S3). It is also
to be noted that GLS metabolism is affected independent of
tissue disruption under those conditions (Table 2). Therefore,
other members of this BGLU subclass may have myrosinase
activities and regulate different machineries for GLS turnover
that are perhaps more specialized in substrate selectivity,
tissue localization and developmental stage, rather than the
broad-scale chemical defense against herbivores deployed by
classical myrosinases.

In this review, we aim to discuss the hypothesis that a
wide range of these Brassicales-specific BGLUs can function
as myrosinases to regulate the multiple functions of GLSs
in planta. Although current insights into this BGLU subclass
are highly limited, essentially three types of previous studies
could be useful for considering this hypothesis: analyses
of (1) the phenotype of mutants lacking genes responsible
for the GLS metabolic/breakdown pathway; (2) the changes
in GLS levels/metabolism under specific conditions; and
(3) the response of plants treated with GLSs or their
hydrolytic products (Table 2). Here, mainly based on studies
in A. thaliana, we consider phenotypic information related to
BGLU18–BGLU33, fluctuations in GLS metabolism, and the
effects of exogenous GLS breakdown products on plants to
review the physiological importance of GLS breakdown in
particular situations. In addition to a specific focus on atypical
myrosinases, more diverse functions of classical TGGs are
described with reference to the most recent insights. Finally,
we suggest the types of experiment that are effective in gaining
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TABLE 1 | Current insights on BGLU18–BGLU39, putative EE-type myrosinases in Arabidopsis thaliana.

Classa Gene name AGI ID Substratesb Subcellular localization Phenotypes of
knock-down mutants

Notes

III BGLU18/BG1 At1g52400 ABA-GE1 (4MI3G)2 ER body3 Susceptible to
A. vulgare attacks
(pyk10 bglu18)2

susceptible to drought1

A major component of inducible
ER bodies4

BGLU19 At3g21370 Tolerant to salt stress5 Up-regulation by high NaCl5

BGLU20/ATA27 At1g75940

BGLU21 At1g66270 Coumarin glucosides6 ER body3 A component of root ER
bodies7 cannot hydrolyze
sinigrin6

BGLU22 At1g66280 Coumarin glucosides6 ER body3 A component of root ER
bodies7 cannot hydrolyze
sinigrin6

BGLU23/PYK10 At3g09260 Coumarin glucosides6

I3G,8 (4MI3G)2
ER body3 Susceptible to

A. vulgare attacks
(pyk10 bglu18)2

A major component of root and
leaf ER bodies7 cannot
hydrolyze sinigrin6

BGLU24 At5g28510 Very low signals in all tissues8

BGLU25/GLUC At3g03640

IV BGLU26/PEN2 At2g44490 indole GLSs9 4-MUG9 Peroxisome10 Susceptible to
pathogen attacks10

BGLU27 At3g60120 Very low signals in all tissues8

V BGLU28 At2g44460 Up-regulation by sulfur
depletion11

BGLU29 At2g44470

BGLU30/ SRG2/DIN2 At3g60140 Up-regulation by sulfur
depletion,11 extended
darkness12 or senescence13

BGLU31 At5g24540 Very low signals in all tissues8

BGLU32 At5g24550 Very low signals in all tissues8

VI BGLU33/BG2 At2g32860 ABA-GE14 Vacuole14 Susceptible to salinity14

aXu et al. (2004). bGlucosinolates are bolded. ABE-GE, abscisic acid glucosyl ester; 4MI3G, 4-methoxyindol-3-ylmethyl glucosinolate; I3G, indol-3-ylmethyl glucosinolate;
4-MUG, 4-methylumbelliferyl-beta-D-O-glucoside. 1Lee et al. (2006), 2Nakazaki et al. (2019), 3Yamada et al. (2011), 4Ogasawara et al. (2009), 5Cao et al. (2017), 6Ahn
et al. (2010), 7Matsushima et al. (2003), Nagano et al. (2008), 8Schmid et al. (2005), Nakabayashi et al. (2005), 9Bednarek et al. (2009), 10Lipka et al. (2005), 11Hirai et al.
(2003, 2004), Nikiforova et al. (2003), Maruyama-Nakashita et al. (2003), 12Fujiki et al. (2001), 13Lee J. et al. (2007), 14Xu et al. (2012).

a more complete understanding of the multi-functionality
of GLSs in plants.

A PLANT IMMUNE PATHWAY
REGULATED BY PEN2, THE FIRST
ATYPICAL MYROSINASE

Here, we describe the general understanding of the PEN2
pathway in brief, as the relevance of PEN2 and indole GLSs in
plant immunity has been well documented (Bednarek, 2012a;
Johansson et al., 2014; Frerigmann et al., 2016; Pastorczyk and
Bednarek, 2016; Xu et al., 2016). PEN2 was first identified
as a component of the pre-invasive resistance in A. thaliana
against the powdery mildew fungi, Blumeria graminis f. sp. hordei
and Erysiphe pisi (Lipka et al., 2005; Bednarek et al., 2009).
PEN2 is also responsible for the callose deposit in A. thaliana
seedlings induced by fungal pathogens or flg22, a bacterial
flagellin-derived peptide (Clay et al., 2009), even though it is
suggested that penetration resistance and callose deposition are
not directly linked (Lipka et al., 2005; Maeda et al., 2009;

Hiruma et al., 2010). These stimuli induce a decrease of
indole GLS levels mediated by PEN2 and the accumulation
of plausible end products including indol-3-ylmethylamine
(I3A), raphanusamic acid (RA), and 4-O-beta-D-glucosyl-indol-
3-yl formamide (4OGlcI3F) (Bednarek et al., 2009, 2011;
Lu et al., 2015). Notably, hydroxylation of I3G at position
4 mediated by CYP81F2 is a critical step for the PEN-
dependent immune response. This is an interesting example
of a GLS with a particular side chain exhibiting a specialized
biological function. On the other hand, the unstable indol-3-
ylmethyl ITC can serve as an intermediate for the biosynthesis
of several phytoalexins (Bednarek et al., 2009; Klein and
Sattely, 2017). Thus, the molecular mechanisms and actual
bioactive metabolite(s) relevant in this pathway remain to be
further investigated.

In a recent study, a co-expression analysis for genes involved
in the PEN2 immune system identified GLUTATHIONE
S-TRANSFERASE CLASS-TAU MEMBER 13 (GSTU13)
as a critical component of that pathway (Piślewska-
Bednarek et al., 2018). The gstu13 mutants were more
susceptible to several pathogens and were impaired in
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FIGURE 2 | Expression patterns of BGLU18–BGLU33 in Arabidopsis thaliana. Publications and Affymetrix ATH1 array data were extracted using ePlant
(https://bar.utoronto.ca/eplant/). In the ATH1 chip, BGLU21 and BGLU22 are crosshybridized to the same probe. (A) The number of publications by 2017 extracted
using each BGLU as a query. (B) Expression levels of BGLU18–BGLU33 in different tissues. Original data comes from Nakabayashi et al. (2005) and Schmid et al.
(2005). Top three tissues exhibiting the highest signal levels of each gene are summarized in Supplementary Table S1. (C) Expression levels of BGLU18–BGLU33
in shoots and roots under different abiotic stresses for 0, 0.25, 0.5, 1, 3, 4, 6, 12, and 24 h. Original data comes from Kilian et al. (2007). Dots exhibiting more than
2-fold or less than 1/2-fold expression of control are highlighted as colored diamonds. Cold (navy), continuous 4◦C on crushed ice in cold chamber; Osmotic
(skyblue), 300 mM mannitol; Salt (yellow), 150 mM NaCl; Drought (orange), rafts were exposed to the air stream for 15 min with loss of app.10% fresh weight;
Genotoxic (brown), bleomycin 1.5 µg/ml plus mitomycin C 22 µg/ml; Oxidative (green), 10 µM methyl viologen; UV-B (magenta), 15 min UV-B light field; Wounding
(purple), punctuation of the leaves by three consecutive applications of a custom made pin-tool consisting of 16 needles; Heat (red), 3 h at 38◦C followed by
recovery at 25◦C.

callose deposition induced by the bacterial flg22 epitope.
Furthermore, the formation of pathogen-triggered specific
metabolites such as indol-3-ylmethyl amine was broadly
repressed in these mutants. Therefore, the conjugation of
ITCs with glutathione catalyzed by GSTU13 was revealed
to be strictly essential for the activation of the indole
GLS-related immune system.

PYK10, BGLU18 AND ER-RETAINED
BGLUs COULD MAINTAIN AN
INTRACELLULAR GLS–MYROSINASE
SYSTEM

In the GLS–myrosinase system, physical separation of glucose-
conjugated precursor compounds from their hydrolases is an
efficient means to control the bioactivity of these metabolites,
and this strategy may function even at the subcellular
level. The ER body, a rod-shaped organelle continuous
with the ER, is considered to provide such an intracellular
compartment; a few BGLUs including PYK10/BGLU23 are
significantly enriched in these structures in A. thaliana
(Matsushima et al., 2003; Ogasawara et al., 2009). Among the
Brassicales-specific BGLUs, BGLU18–BGLU25 commonly have

ER-retention signals in their signal peptides and C-terminal
regions (Nakano et al., 2014). Indeed, ER bodies that are
constitutively present in roots accumulate large amounts of
PYK10 and the closest homologs BGLU21 and BGLU22,
whereas BGLU18 is the major component of another class of
ER body that is induced by wounding or methyl jasmonate
treatment (Matsushima et al., 2002, 2003; Nagano et al., 2008;
Ogasawara et al., 2009). More detailed information on the
physiology and molecular network in ER bodies is available
in specific reviews (Yamada et al., 2011; Nakano et al., 2014;
Shirakawa and Hara-Nishimura, 2018).

Notably, ER bodies have been observed in only a few families
of the order Brassicales, namely, Brassicaceae, Capparaceae,
and Cleomaceae. Therefore, substrate(s) of the BGLUs could
also be restricted to a narrow range of phylogenetic clades.
Although PYK10, BGLU21, and BGLU22 neither have the
amino acid signatures conserved in classical myrosinases
nor display myrosinase activities toward aliphatic allyl GLS
(sinigrin) in vitro (Ahn et al., 2010), previous studies on PEN2
led Nakano and co-authors to hypothesize that PYK10 can
hydrolyze indole GLSs. As expected, root protein extracts of
the pyk10 and several ER-body mutants in A. thaliana, as
well as the recombinant PYK10 protein, showed myrosinase
activity against I3G (Nakano et al., 2017). Interestingly, co-
expression analysis revealed that PYK10 is more closely related
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TABLE 2 | Relevance of glucosinolates (GLSs) and the Brassicales-specific beta-glucosidases (BGLUs) in Arabidopsis thaliana under abiotic stress.

Stress GLS levels Related BGLUs Involvement in GLS metabolism Effects of ITC
treatmenta

Drought Decrease1 BGLU182 TGG1, TGG23 Guard cells accumulate a large amount of
TGG1 and TGG2.3

AITC induces stomatal
closure.4

Salinity Increase5 BGLU19,6 BGLU337 myb28 myb29 is more susceptible to salt
stress.5

–

Sulfur deficiency Decrease8 BGLU28,9 BGLU309 Growth of gtr1 gtr2 is defected under low
sulfur.10

–

Light/Dark Increase by light/
Decrease in the dark11

BGLU3012 TGG1, TGG213 GLS biosynthetic genes shows the diurnal
rhythm.11

–

Temperature – Not determined A low-GLS mutant (TU8) is more susceptible to
heat stress.14

AITC and PEITC
enhances heat
tolerance.15

aAITC, allyl isothiocyanate; PEITC, phenethyl isothiocyanate. 1Ren et al. (2009), 2Lee et al. (2006), 3Zhao et al. (2008), Islam et al. (2009), 4Khokon et al. (2011), 5Martinez-
Ballesta et al. (2015), 6Cao et al. (2017), 7Xu et al. (2012), 8Falk et al. (2007), 9Hirai et al. (2003, 2004), Maruyama-Nakashita et al. (2003), Nikiforova et al. (2003),
10Nour-Eldin et al. (2012), 11Huseby et al. (2013), 12Fujiki et al. (2001), 13Brandt et al. (2018), 14Haughn et al. (1991), Ludwig-Müller et al. (2000), 15Hara et al. (2012).

to biosynthetic genes for indole GLSs than to those of
coumarin glucosides, putative substrates predicted from in vitro
assays (Ahn et al., 2010; Nakano et al., 2017). Therefore, the
physiological function of PYK10 in planta is more likely to
be associated with GLS metabolism. Furthermore, a suite of
informatics analyses performed in Nakano et al. (2017) indicated
that a broad class of BGLUs, not limited to the classical
myrosinases, may have the potential to hydrolyze GLSs, as
described above.

The myrosinase activity of PYK10 toward indole GLSs is
further supported by a very recent study on a new class of
ER bodies, referred to as leaf ER bodies (Nakazaki et al.,
2019). Compared with the aforementioned known classes of ER
bodies, leaf ER bodies occur constitutively in a few types of
epidermal cells in rosette leaves and accumulate both PYK10
and BGLU18. The pyk10 bglu18 mutant was shown to lack
leaf ER bodies and became more susceptible to attack by
the terrestrial isopod Armadillidium vulgare compared with
the wild type plants (Nakazaki et al., 2019). In addition, the
levels of most endogenous GLS species decrease rapidly in
homogenates of the rosette leaves, mainly due to the activities
of TGG1 and TGG2, whereas degradation of 4-methoxyindol-
3-ylmethyl glucosinolate (4MI3G) was found to be selectively
and significantly delayed in the pyk10 bglu18 mutant (Nakazaki
et al., 2019). 4MI3G is a key GLS species in the PEN2-
dependent immune pathway (Bednarek et al., 2009; Clay et al.,
2009). Given that damage to leaves of the tgg1 tgg2 mutant
caused by A. vulgare in a feeding assay was comparable to
that in the wild type, it has been suggested that leaf ER
bodies are involved in the production of the defensive chemicals
from 4MI3G that protect A. thaliana leaves against herbivore
attack. Since neither pyk10 nor bglu18 single mutants were
examined in these experiments, it would be of interest to
determine whether BGLU18 can also hydrolyze indole GLSs.
In combination with previous findings, these findings suggested
that ER bodies can provide a further class of GLS–myrosinase
compartment at the subcellular level (i.e., GLSs retained in
vacuoles and myrosinases retained in the ER bodies), that

plays an important role in plant defense against attacks of
herbivores and pathogens.

DO BGLU18 AND BGLU33 HAVE OTHER
SUBSTRATES IN ADDITION TO
GLUCOSE-CONJUGATED ABSCISIC
ACID?

In addition to its potential roles in the ER bodies, BGLU18 is
known to participate in abscisic acid (ABA) metabolism. ABA,
one of the most important phytohormones active during a plant’s
life cycle, is involved in a variety of biological processes, including
the adaptation to environmental stresses (Sakata et al., 2014;
Daszkowska-Golec, 2016). The cellular ABA level is partially
regulated via a complex de novo biosynthetic pathway (Nambara
and Marion-Poll, 2005). In addition, the discovery of ABA-
glucosyltransferase, which generates an ABA glucosyl ester (ABA-
GE), led us to hypothesize that release of ABA from the
pool of inactive ABA analogs can potentially modulate ABA
concentrations more dynamically (Xu et al., 2002). BG1/BGLU18
was reported as the first enzyme that can hydrolyze ABA-
GE as part of the drought stress response (Lee et al., 2006).
Subsequently, BG2/BGLU33 was identified as a further member
of the ABA-GE hydrolases localized in vacuoles and was shown
to play an important role under conditions of salt stress (Xu
et al., 2012). Although the enzymatic potential of these BGLUs
to hydrolyze ABA-GE and their relevance in ABA functions have
been well investigated by independent groups (Merilo et al.,
2015; Ondzighi-Assoume et al., 2016; Yamashita et al., 2016), it
is questionable whether ABA-GE is the sole substrate of these
BGLUs under physiological conditions, based on a consideration
of the following observation.

In the first place, the response to drought and salinity is
subject to complex regulation, not only by ABA but also by
other small molecules including GLSs. Their contribution to
the drought stress response has been discussed with regard to
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stomatal closure in guard cells, which is the major response
of plants under low water conditions. The signal cascade
for stomatal movement is initiated by multiple inputs from
plant hormones and several primary/specialized metabolites in
response to environmental stresses, whereas they are finally
integrated into a single output — the production of reactive
oxygen species (ROS) and Ca2+ oscillation followed by protein
phosphorylation (Murata et al., 2015). Hence, depletion of one
signal molecule could be compensated by the function of another
compound. Notably, application of exogenous allyl ITC or several
GLS breakdown products has been shown to induce stomatal
closure in A. thaliana leaves (Khokon et al., 2011; Hossain et al.,
2013). Furthermore, TGG1 and TGG2 have been reported to be
major components of guard cells and shown to be involved in
stomatal movement (Zhao et al., 2008; Islam et al., 2009). The
stomatal closure induced by allyl ITC and the subsequent ROS
production does not require endogenous ABA, but is dependent
on methyl jasmonate (Khokon et al., 2011), indicating that ABA
and ITC function as independent inputs for stomatal movement.
Some researchers have hypothesized that the accumulation of
TGGs and GLSs in guard cells represents the evolutionary origin
of the GLS–myrosinase system, because stomata can serve as
the initial gateway to bacterial invasion (Shirakawa and Hara-
Nishimura, 2018). However, whether breakdown of internal GLSs
in guard cells occurs under drought conditions to induce stomatal
closure and the relevance of BGLU18 in this process are still to be
investigated. Involvement of GLSs in the salt stress response has
also been suggested based on the findings of several studies that
have examined the fluctuation of GLS contents in Brassicaceae
plants and the response of A. thaliana mutants lacking aliphatic
GLSs under salinity stress (López-Berenguer et al., 2008; Keling
and Zhu, 2010; Martinez-Ballesta et al., 2015), even though the
detailed mechanisms remain unclear.

Secondly, the EE-type myrosinases tend to have a dual
function as S- and O-glucosidases. PYK10 has been reported to
hydrolyze coumarin glucosides such as scopolin in vitro (Ahn
et al., 2010), whereas co-expression analysis has indicated that
indole GLSs are more likely to be the actual substrates in planta
(Nakano et al., 2017). PEN2 is also known to have enzymatic
potential to catalyze the deglycosylation of 4-methylumbelliferyl-
beta–D-O-glucoside, albeit at a lower rate than for the
hydrolysis of indole GLSs (Bednarek et al., 2009). Drought stress
appears to promote the degradation of a wide range of GLS
species not limited to indole GLSs (Ren et al., 2009). One
possible reason is that GLSs are hydrolyzed after transportation
to the compartments/cells containing classical myrosinases.
Alternatively, as is the case for GLS degradation induced by sulfur
depletion or prolonged darkness (see the following sections), it
is also conceivable that EE-type myrosinases, which may include
BGLU18 and BGLU33, could hydrolyze other GLS subclasses.

Thirdly, whereas ABA is one of the indispensable hormone
compounds in the plant kingdom, the BGLU subclass containing
BGLU18 and BGLU33 is distributed only in the order Brassicales
(Xu et al., 2004; Nakano et al., 2017). Notably, BGLU18 is a major
and essential component of ER bodies, an organelle observed in
only a few families of the order Brassicales, as described above.
One possibility is that BGLU18 and BGLU33 may have other

substrate(s) restricted to these small evolutionary clades, like
PYK10. Another possible explanation is that there are several
molecular systems to release ABA from the repository of inactive
ABA derivatives, and these BGLUs may belong to one of those
conserved only in the Brassicales. As a similar case, in some
Brassicaceae plants, the metabolism of indole GLSs is closely
related to that of auxin, another essential phytohormone (Malka
and Cheng, 2017; Vik et al., 2018). Although similar machineries
for dynamic regulation of ABA levels may exist in a wide
range of plant families, such enzymes hydrolyzing inactive ABA
derivatives have yet to be identified.

Taken together, the aforementioned findings indicate that we
should not exclude the hypothesis that BGLU18 and BGLU33
can also function as myrosinases. If these BGLUs were proven to
be dual-functional, the regulatory mechanism of these enzymatic
activities in planta would inevitably attract greater attention.

GLS BREAKDOWN TO RECYCLE
SULFUR MAY BE MEDIATED BY BGLU28
and BGLU30

This and the next section discuss the possibility that GLS itself
could work as nutrient storage, not only as a precursor of
toxic chemicals and signaling molecules. Brassicaceae plants
containing GLSs need larger amounts of sulfur than other plants
(Castro et al., 2003; Walker and Booth, 2003; Yang et al., 2006).
Since GLSs have at least two sulfur atoms in each molecule and
represent 10–30% of the total sulfur content in plant organs, these
metabolites have been considered a potential source of sulfur
for other metabolic processes (Falk et al., 2007). The effects of
sulfur supply and depletion on GLS levels in plants have been
well studied, including in agricultural practice (Falk et al., 2007;
Schnug and Haneklaus, 2016). In A. thaliana, sulfur deficiency
strongly induces down-regulation of GLS content as well as
expression levels of GLS biosynthetic genes (Hirai et al., 2005;
Zhang et al., 2011). To date, a few transcription factors, SULFUR
LIMITATION 1 (SLIM1), SULFUR DEFICIENCY-INDUCED 1
(SDI1) and SDI2, have been reported to work as repressors of GLS
biosynthesis under low sulfur conditions (Maruyama-Nakashita
et al., 2006; Aarabi et al., 2016). In addition, developmental
defects of GLS-less seeds as a result of mutations in GLS
transporters (gtr1 gtr2) under sulfur deficiency further supported
the potential role of GLSs as a sulfur reserve (Nour-Eldin et al.,
2012). Nevertheless, most mechanisms underlying GLS turnover
in that condition are still not known. It would be desirable to
gain more direct evidence for the re-distribution of sulfur atoms
from GLSs, e.g., by incorporating isotopes into primary sulfur
metabolites from labeled GLSs.

Based on their observed up-regulation, BGLU28 and BGLU30
are suggested to be relevant in the hydrolysis of GLSs caused by
sulfur depletion (Hirai et al., 2003, 2004; Maruyama-Nakashita
et al., 2003; Nikiforova et al., 2003). BGLU28 and BGLU30
form a sister clade close to those containing PEN2 and PYK10
in the phylogenetic tree of A. thaliana BGLUs (Xu et al.,
2004). Although their possible contribution to GLS turnover
was suggested more than 15 years ago (Hirai and Saito, 2004),
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there have been few reports on the physiological functions of
these genes. To our knowledge, only two studies (Zhang et al.,
2014; Jackson et al., 2015) have monitored BGLU28 promoter
activity, using the GUS reporter gene as a marker of low-
sulfur response upon plant hormone treatment and mutations
in SULTR1;2. In this context, it should be noted that sulfur
deficiency primarily affects contents of aliphatic GLSs, whereas
PYK10 and PEN2 have been reported to hydrolyze only indole
GLSs. If BGLU28 and BGLU30 can indeed hydrolyze aliphatic
GLSs, the broad chemodiversity of EE-type myrosinases would
undoubtedly gain more recognition. Compared with the TGGs
that exhibit low selectivity for GLS species (Zhou et al., 2012),
EE-type myrosinases may have narrower substrate specificities
and thus regulate only particular biotic/abiotic stress responses.
Both the protein functions and physiological roles of these
BGLUs need to be further investigated beyond the context of
sulfur assimilation.

ACTIVATION OF GLS TURNOVER IN
DARKNESS AND POSSIBLE
CONTRIBUTION OF BGLU30 TO
RECOVER CARBOHYDRATES

Light is an essential energy source for the development and
metabolism of higher plants, and the expression levels of a
number of genes are known to be regulated by light; for example,
the sulfur assimilation pathway is activated during the light
period (Kocsy et al., 1997; Kopriva et al., 1999; Pruneda-Paz and
Kay, 2010). Although the photo-regulation of sulfur assimilation
has been investigated in different species under a variety of
growth conditions (Buwalda et al., 1988; Passera et al., 1989; Lee
E.-J. et al., 2007; Lee et al., 2011), there tends to be little consensus
regarding its coordination with GLS biosynthesis/catabolism.

The regulation of GLS metabolism by light has been
discussed from two aspects, namely, the substantial degradation
of GLSs under conditions of prolonged darkness and the
diurnal fluctuation of GLS contents. In A. thaliana, there
is a marked reduction in the GLS content of leaves under
conditions of extended darkness (Huseby et al., 2013; Brandt
et al., 2018). Given that inhibition of photosynthesis is a strong
stimulus inducing carbohydrate starvation and leaf senescence,
GLS degradation may be a mechanism designed to cope with
nutrient starvation via the mobilization of D-glucose units
from those molecules. In this regard, BGLU30, also referred
to as DARK-INDUCIBLE 2 (DIN2) or SENESCENCE-RELATED
GENE 2 (SRG2), is known to be significantly up-regulated
in response to prolonged darkness, senescence, and sugar
starvation (Fujiki et al., 2001; Lee J. et al., 2007). The key
factor for the induction of BGLU30 expression appears to be
endogenous sugar levels rather than light conditions. A high
abundance of BGLU30 transcript was detected in detached leaves
even under illumination in the presence of a photosynthesis
inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, whereas it
was barely detected under co-treatment with sucrose (Fujiki
et al., 2001). Given that the BGLU30 expression is also induced

by sulfur depletion, this enzyme may regulate a release of
stored GLSs to overcome nutrient starvation under various
conditions. Notably, the expression of BGLU28 is induced
neither by prolonged darkness nor by sugar starvation. In
addition to their enzymatic functions, the difference in the
regulatory systems between these closely related BGLUs is of
particular interest.

Cooperating with the sulfur assimilation pathways, GLS levels
have been shown to be higher during the day than at night in
A. thaliana (Huseby et al., 2013). Simultaneously, the expression
levels of GLS biosynthetic genes as well as the incorporation
of inorganic 35S into GLSs were found to be enhanced by
light. Moreover, a further study revealed a diurnal increase
in total myrosinase activity and the abundance of TGG1 and
TGG2 proteins in A. thaliana seedlings (Brandt et al., 2018).
These findings accordingly indicate that GLS metabolism is
highly co-regulated with sulfur assimilation in response to the
circadian rhythm, even though the physiological importance of
this phenomenon remains unclear. Since the correlation between
GLS contents and the expression levels of GLS biosynthetic genes
was relatively low during the light period (Rosa, 1997; Klein et al.,
2006; Schuster et al., 2006), not only de novo biosynthesis but
also turnover could regulate the diurnal rhythm of endogenous
GLSs. In this context, however, a contribution of BGLU30 to
GLS degradation is less likely because an increase of BGLU30
transcripts was observed only after 12 h or longer of dark
treatment (Fujiki et al., 2001; Lee J. et al., 2007). In addition to
the transcriptomic changes of other BGLUs, post-translational
regulation of myrosinase activities, including those of TGG1 and
TGG2 (Brandt et al., 2018), should be considered in order to gain
a better understanding of the dynamic control of GLS contents
over a 24-h period.

ADDITIONAL ROLES OF CLASSICAL
TGGs BEYOND THE “MUSTARD OIL
BOMB”

Several new findings on members of the QE-type myrosinases
(TGG1-TGG6) have indicated their broader physiological
importance in various situations, beyond the classical
intercellular “mustard oil bomb” system deployed against
predators. As described above, TGG1 and TGG2 might be
involved in guard cell ITC production (Zhao et al., 2008;
Islam et al., 2009) and the diurnal control of GLS levels in
the absence of tissue disruption (Brandt et al., 2018). In this
section we discuss two recent studies that have reported the
detailed analysis of root-specific TGGs and the function of
TGG6, which had hitherto been considered a pseudogene
(Fu et al., 2016a,b).

Currently, QE-type myrosinases are classified into two
subclasses, namely, Myr I and Myr II (Wang et al., 2009a).
Members of subclass Myr I are found in all GLS-containing plants
and are typically deposited in myrosin cells, thereby establishing
the compartmentalization required for the intercellular GLS–
myrosinase system (Rask et al., 2000). Thus, Myr I class
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myrosinases are considered to be critical for biochemical defense
against herbivores. Myr II members differ from those in subclass
Myr I with respect to several features, including sequence
divergence and gene structure (Wang et al., 2009a; Nong et al.,
2010; Fu et al., 2016a). Functional analysis of TGG4 and TGG5,
the first examples of the Myr II subfamily to be examined,
indicated their root-specific roles differ from those of leaf-
localized Myr I members. A comparison of the enzymatic
properties of TGG4 and TGG5 with those of TGG1 using
recombinant proteins expressed in Pichia pastoris revealed that
TGG4 and TGG5 have higher stability than TGG1 under adverse
conditions, such as high temperature, low pH, and excess NaCl
(Andersson et al., 2009). In a more recent study, Fu et al.
investigated the tissue localization, regulation of root growth, and
possible contribution to auxin biosynthesis of TGG4 and TGG5
(Fu et al., 2016b). Analyses of GUS reporter gene expression
and myrosinase activities of the single and double KO mutants
tended to indicate that TGG5 is more predominant in roots.
The defective root elongation under flooded conditions and
expression patterns of the auxin-responsive DR5:GUS reporter
system in these mutants indicated that TGG4 and TGG5 may
contribute to auxin biosynthesis at the root tip by hydrolyzing
indole GLSs to form indole-3-acetonitrile, a direct precursor
of indole-3-acetic acid, even though their enzymatic activities
against indole GLSs remain to be confirmed. Given that
the aforementioned experiments were performed under non-
invasive conditions, it is conceivable that GLS breakdown by the
Myr II myrosinases may be less dependent on tissue damage.
Hence, not only EE-type but also classical myrosinases could
regulate subcellular GLS–myrosinase systems in addition to
the so-called “mustard oil bomb.” Our understanding in this
regard will be ameliorateded by single-cell-level analysis of the
specialized compartments in different cell types, as reviewed by
Chen et al. (2019) in this issue.

A further surprising finding is that TGG6, which had
previously been reported to be a pseudogene but is specifically
expressed in pollen (Wang et al., 2009b), is still functional in a
number of A. thaliana accessions (Fu et al., 2016a). The authors
identified 10 functional alleles of TGG6 from 29 accessions
and the recombinant TGG6 derived from Tsu-1 showed a
clear myrosinase activity against sinigrin. The predominant
expression pattern of functional TGG6 alleles in pollen was
relatively similar to that of the non-functional TGG6 in Col-0.
Given that an ortholog of TGG6 is predicted to be functional
in Arabidopsis lyrata, an outcrossing relative of A. thaliana
(Kusaba et al., 2001; Sherman-Broyles et al., 2007; Tang et al.,
2007), it is suggested that its ancestral role was the defense
of pollen against herbivores. However, subsequent evolutionary
acquisition of a self-fertilization system rendered it no longer
critical in A. thaliana, thereby resulting in a loss of function in
most accessions. A hypothesis proposed based on the findings
on TGG6 is that BGLUs with low expression levels in Col-0, the
most studied accession of A. thaliana, could still be functional in
other accessions. As GLS compositions have become significantly
differentiated during evolution even within the same species
(Kliebenstein et al., 2001; Edger et al., 2015; Kliebenstein and
Cacho, 2016; Barco and Clay, 2019), it is possible that a BGLU

plays a critical role in a few accessions but is not important in
others. Accession- and species-wide analysis of the same BGLU
orthologs may help us to gain a better understanding of the
specific functions of these enzymes in planta and how they have
acquired these specific roles during the course of evolution.

CURRENT UNDERSTANDING OF THE
OTHER BRASSICALES-SPECIFIC BGLU

Other than BGLUs described above, current insights on the
Brassicales-specific BGLUs are highly limited. To get an overview
of BGLU18–BGLU33, we performed a public data analysis using
ePlant1 (Waese et al., 2017) (Figure 2). In many cases, only a
few publications were extracted when each BGLU was used as a
query (Figure 2A). Our lack of knowledge on several BGLUs is
probably due to their almost undetectable expression. Using the
Plant eFP viewer, we can see that signal levels of these BGLUs
in the Affymetrix ATH1 microarray are very low in almost all
tissues, except for BGLU18 and PEN2 (Figure 2B). Although
the low signal does not mean a low abundance of the actual
transcript, it hinders performance of many biological analyses.
Instead, some BGLUs exhibit very specific expression patterns in
particular tissue(s), e.g., BGLU19 in mature seeds (Figure 2B and
Supplementary Table S1). Moreover, expression levels of each
BGLU under broad abiotic stresses are summarized (Figure 2C
and Supplementary Tables S2, S3). In addition to the known
information such as up-regulation of BGLU18 by drought or
wounding, we can expect drastic changes in the expression of
uncharacterized BGLUs in response to specific stresses, such as
the highly increased expression of BGLU24 in roots as a result
of osmotic and salt stress. It should also be noted that according
to ATTED-II2 (Obayashi et al., 2018), several BGLUs show
high co-expression scores with specifier proteins: BGLU19 with
NSP2, BGLU30 with NSP5, and PYK10 with NSP1/NSP3/NSP4
(crosshybridized to the same probe). Broad end products might
be generated even in the atypical myrosinase-mediated GLS
breakdown. Hence, numerous public data previously collected
could help us hypothesize a specific relevance of these BGLU(s)
in particular developmental stages or abiotic stress responses.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVE

In the past decade, subsequent to the identification of PEN2
in 2009, only PYK10 has been reported as a further member
of the EE-type myrosinases. As reviewed here, however, this
does not exclude the possible contribution of Brassicales-
specific BGLUs to GLS breakdown under specific conditions.
In particular, discovery of EE-type myrosinases catalyzing
the hydrolysis of aliphatic GLSs in addition to indole GLSs
would generate heightened interest amongst researchers in their

1https://bar.utoronto.ca/eplant/
2http://atted.jp
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physiological importance and catalytic mechanisms, compared
with the classical myrosinases. In addition, recent studies have
demonstrated that classical myrosinases such as TGGs can also
participate in non-tissue-disruptive GLS breakdown beyond the
well-known “mustard oil bomb” system at the tissue level.
Furthermore, we should pay attention to the accession-wide
functional differentiation of the same ortholog with a single
species, as highlighted in the case of TGG6. For example,
substrate specificity may be dependent on the GLS composition
of an accession. It may also be possible that a BGLU has evolved
to regulate specialized signals initiated by GLS species present
in only a few accessions. Addressing the broad distribution
and different myrosinase activities of BGLUs in Brassicaceae
and closely related families will enable us to elucidate how the
multi-functionality of GLSs is controlled in planta, and how the
GLS–myrosinase systems have diversified during evolution.

In vitro enzymatic assays using recombinant proteins would
be helpful in determining the physiological functions of these
enzymes in planta. In this regard, Pichia pastoris and tobacco
BY-2 cells seem to be the preferable organisms to express the
A. thaliana myrosinases with enzymatic functions, according
to previous studies (Andersson et al., 2009; Bednarek et al.,
2009; Fu et al., 2016a; Nakano et al., 2017). However, we
should bear in mind the fact that the myrosinase assay using
sinigrin, an easily available substrate, may not identify (and
perhaps has not identified) the actual enzymatic potential
of candidate BGLUs of interest. As the classical myrosinases
tend to hydrolyze a diverse range of GLS structures (Zhou
et al., 2012), most studies have examined the “myrosinase
activity” using only sinigrin, a GLS with a simple allyl chain.
However, the EE-type myrosinases may have a restricted
substrate selectivity and require optimal conditions to work
under particular conditions, as emphasized by the findings
for PEN2 and PYK10, which preferentially hydrolyze indole
GLSs within a narrow optimal pH range (Bednarek et al.,
2009; Nakano et al., 2017). It is also notable that sinigrin is
detected only in certain A. thaliana accessions other than Col-
0 (Kliebenstein et al., 2001). Since the side chain structures
of GLSs can substantially alter the physicochemical properties
of the corresponding degradation products such as ITCs, it
would be preferable to examine the activity of myrosinases
against a broader range of GLS species to establish the

physiological importance of the BGLUs of interest. Recent
advances in the methods for extraction of intact GLSs from
plant materials and quantitative analysis of GLS contents may
contribute to promoting this approach (Bianco et al., 2017;
Doheny-Adams et al., 2017).

In addition to the abiotic stresses discussed herein, there are
a few physiological conditions that are potentially related to
GLS metabolism and catabolism (Table 2). For example, pre-
treatment with phenethyl ITC confers heat stress tolerance on
A. thaliana seedlings, probably by up-regulating a suite of heat-
shock proteins (Hara et al., 2012; Kissen et al., 2016). In addition,
the mechanisms underlying the degradation of total GLS amount
independent of TGG1 and TGG2 during early developmental
stages remain to be clarified (Barth and Jander, 2006). Given
that up-regulation of particular BGLUs has yet to be observed
under these conditions, we should consider the post-translational
regulation of myrosinase activities with regard to myrosinase-
associated proteins or small molecule elicitors such as ascorbate
(Wittstock et al., 2016a; Bhat and Vyas, 2019; Chen et al., 2019).
Under non-disruptive conditions, the physiological functions
of myrosinases, including TGGs, are probably controlled more
strictly and dynamically than expected till now.
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