
1 August 2019 | Volume 10 | Article 1030

REVIEW

doi: 10.3389/fpls.2019.01030
published: 26 August 2019

Frontiers in Plant Science | www.frontiersin.org

Edited by: 
Jin-Song Zhang,  

Institute of Genetics and 
Developmental Biology (CAS),  

China

Reviewed by: 
Xing Wen,  

Southern University of  
Science and Technology,  

China 
Hong Qiao,  

University of Texas at Austin, 
 United States 

Shangwei Zhong,  
Peking University,  

China

*Correspondence: 
Elena V. Zemlyanskaya 

ezemlyanskaya@bionet.nsc.ru

Specialty section: 
This article was submitted to  

Plant Physiology, 
 a section of the journal  

Frontiers in Plant Science

Received: 30 April 2019
Accepted: 23 July 2019

Published: 26 August 2019

Citation: 
Dolgikh VA, Pukhovaya EM and 

Zemlyanskaya EV (2019)  
Shaping Ethylene Response:  

The Role of EIN3/EIL1  
Transcription Factors.  

Front. Plant Sci. 10:1030.  
doi: 10.3389/fpls.2019.01030

Shaping Ethylene Response:  
The Role of EIN3/EIL1  
Transcription Factors
Vladislav A. Dolgikh 1,2, Evgeniya M. Pukhovaya 1,2 and Elena V. Zemlyanskaya 1,2*

1 Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia, 2 Department of 
Natural Sciences, Novosibirsk State University, Novosibirsk, Russia

EIN3/EIL1 transcription factors are the key regulators of ethylene signaling that sustain 
a variety of plant responses to ethylene. Since ethylene regulates multiple aspects of 
plant development and stress responses, its signaling outcome needs proper modulation 
depending on the spatiotemporal and environmental conditions. In this review, we 
summarize recent advances on the molecular mechanisms that underlie EIN3/EIL1-
directed ethylene signaling in Arabidopsis. We focus on the role of EIN3/EIL1 in tuning 
transcriptional regulation of ethylene response in time and space. Besides, we consider 
the role of EIN3/EIL1-independent regulation of ethylene signaling.

Keywords: ETHYLENE-INSENSITIVE3, ETHYLENE-INSENSITIVE3-LIKE, epigenetic regulation, protein–protein 
interactions, cross-talk

KEY COMPONENTS OF ETHYLENE SIGNALING PATHWAY

Plant hormone ethylene coordinates numerous developmental processes (including germination, 
soil emergence, seedling growth, fruit ripening, senescence, abscission, etc.), as well as diverse biotic 
and abiotic stress responses (Abeles et al., 2012). Ethylene has also been shown to induce typical 
morphological changes in dark-grown seedlings (inhibition of hypocotyl and root elongation, 
radial swelling of hypocotyl, and exaggeration of apical hook) known as “the triple response” (Ecker, 
1995). Ethylene is produced from L-methionine, which is consequently converted to S-adenosyl-
L-methionine (by SAM-synthetases), 1-aminocyclopropane-1-carboxylic acid (ACC) (by ACC 
synthases), and ethylene (by ACC oxidases) (reviewed in Booker and DeLong, 2015). Ethylene is 
perceived by a family of receptors (ETHYLENE RESPONSE 1, ETR1; ETHYLENE RESPONSE 
SENSOR 1, ERS1; ETR2, ETHYLENE INSENSITIVE 4, EIN4; and ERS2 in Arabidopsis) localized 
in the endoplasmic reticulum (ER) membrane (reviewed in Lacey and Binder, 2014). Upon binding, 
ethylene inactivates them and thereby blocks the serine–threonine protein kinase CONSTITUTIVE 
TRIPLE RESPONSE 1 (CTR1) activity promoting the cleavage of ER-anchored EIN2 protein 
(reviewed in Chang, 2016; Hu et al., 2017). EIN2 C-terminal domain (EIN2-C) released upon 
cleavage indirectly triggers EIN3 and EIN3-Like (EIL) transcription factors (TFs) that are considered 
the key transcriptional regulators of ethylene response (Figure 1). Noteworthy, these TFs function 
as a hub that integrates and processes different cues to “shape” ethylene response in accordance 
with spatiotemporal and environmental conditions. Below, we will focus on the nuclear events that 
conduct EIN3/EIL activation and set their functional output.
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ACTIVATION OF EIN3 AND ITS 
HOMOLOGS IN RESPONSE TO ETHYLENE

EIL is a small family of plant-specific proteins. There are six genes 
encoding the members of this family in Arabidopsis thaliana 
genome (EIN3, EIL1-5) (Chao et al., 1997; Guo and Ecker, 2004). 
They harbor a conservative N-terminal DNA-binding domain 
with a unique fold structure (Song et al., 2015). EIN3, EIL1, and 
EIL2 represent functionally homologous proteins involved in the 
regulation of ethylene-responsive genes (Chao et al., 1997; Solano 
et al., 1998; Alonso et al., 2003; An et al., 2010). The most closely 
related EIN3 and EIL1 are considered the major regulators since 
ein3 eil1 double mutants show complete ethylene insensitivity in 
terms of the triple response, pathogen resistance, and the ability 
to fully suppress ctr1 mutation (reviewed in Guo and Ecker, 2004; 
Cho and Yoo, 2015). Two paralogs differentially regulate ethylene 

response in the seedlings (EIN3) and in adult leaves and stems 
(EIL1) (An et al., 2010). Yet, a minor, EIL2 role in the regulation 
of ethylene response is supported by its capability to complement 
ein3 mutation when overexpressed (Chao et al., 1997). In 
Figure  2, we visualized tissue-specific expression levels of EIL 
genes based on publicly available data on transcriptome profiling 
in different Arabidopsis tissues retrieved from ThaleMine v1.10.4 
(https://apps.araport.org/thalemine/; Krishnakumar et al., 2017). 
Unlike EIN3 and EIL1, EIL2 transcripts level is low throughout 
plant tissues; moderate EIL2 expression is restricted to root apical 
meristem and pollen (Figure 2). Therefore, EIL2 function could 
be limited to specific spatiotemporal conditions. EIL3/SLIM1 
does not function in ethylene pathway but regulates sulfur 
deficiency response; no defined roles of EIL4 and EIL5 have been 
reported to date (reviewed in Guo and Ecker, 2004; Wawrzyńska 
and Sirko, 2014).

FIGURE 2 | Tissue specificity of EIL genes expression. Publicly available datasets on transcriptome profiling of different Arabidopsis tissues (light- and dark-grown 
seedlings (Rühl et al., 2012; Oh et al., 2014), aerial tissues (Sani et al., 2013), leaf (Wollmann et al., 2012), root (Li et al., 2013), root and shoot apical meristems 
(Kang et al., 2014; Nozue et al., 2015), carpel (Martínez-Fernández et al., 2014), receptacle (Niederhuth et al., 2013), inflorescence (Gan et al., 2011), pollen 
(Loraine et al., 2013) were used for visualization. The corresponding expression levels were retrieved from ThaleMine v1.10.4 (https://apps.araport.org/thalemine/; 
Krishnakumar et al., 2017). TPM, transcripts per million.

FIGURE 1 | The key components of ethylene signaling pathway. Gray and white circles depict negative and positive regulators of ethylene signaling, 
correspondingly. Position frequency matrix for Arabidopsis EIN3 binding motif (Chang et al., 2013) was retrieved from CIS-BP database (Weirauch et al., 2014) and 
visualized using Tomtom tool (http://meme-suite.org/tools/tomtom; Gupta et al. 2007). The model is based on the findings reported previously (Chang, 2016; Hu 
et al., 2017). The explanations are in the text. EBS, EIN3 binding site.
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EIN3 and EIL1 activation in response to ethylene is the target 
for complex regulation. EIN3 and EIL1 are short-living proteins 
that undergo ubiquitination and proteasomal degradation 
driven by ubiquitin-ligases EIN3 BINDING F-BOX1 (EBF1) and 
EBF2 (Figures 1 and 3A) (Gagne et al., 2004; An et al., 2010). 
Stabilization of EIN3/EIL1 upon ethylene release plays a pivotal 
role in triggering ethylene-directed gene expression. Ethylene 
dampens EBF1/2 levels via i) translational repression of EBF1/2 
mRNA in the cytosol promoted by EIN2-C (Li et al., 2015; 
Merchante et al., 2015), and ii) EIN2-dependent proteasomal 
degradation of EBF1/2 proteins (An et al., 2010) (Figure 1). 
Stabilized EIN3/EIL1 accumulate in the nucleus.

EIN3/EIL1 are predominantly transcriptional activators 
(Chang et al., 2013; reviewed in Cho and Yoo, 2015). In 
Arabidopsis, EIN3, EIL1, and EIL2 specifically bind a short 
DNA sequence referred to as EIN3 binding site (EBS) in gene 
promoters (Figure 1) (Solano et al., 1998; Chang et al., 2013; 

Song et al., 2015; O’Malley et al., 2016). EIN3 binds its target loci as 
a homodimer, and the dimerization is DNA independent (Solano 
et al., 1998; Song et al., 2015). Accordingly, EIN3 demonstrates 
higher binding affinity to the inverted repeats of EBS compared 
to the monomeric site in the in vitro experiments (Song et al., 
2015). EIN3 binding to the targets is facilitated by elevated levels 
of H3K14 and non-canonical H3K23 histone acetylation both 
promoted by a EIN2-C-scaffolded histone acetylation complex, 
which is triggered upon EIN2-C interaction with a histone 
binding protein EIN2 NUCLEAR ASSOCIATED PROTEIN  1 
(ENAP1) (Zhang et al., 2016; Zhang et al., 2017; reviewed in 
Wang and Qiao, 2019) (Figure 3). Since neither EIN2-C nor 
ENAP1 possess histone acetyltransferase domains, they might 
recruit other proteins to promote histone modifications. EIN3 
is capable of interacting with ENAP1, too, and it is thought to 
contribute to ethylene-induced elevation of H3K14 and H3K23 
acetylation as well (Zhang et al., 2016).

FIGURE 3 | Nuclear events that promote ethylene response. (A) Without ethylene, EIN3 undergoes EBF1/2-driven degradation. (B) Upon ethylene treatment, EIN3 
is stabilized. On one hand, EIN2 C-terminal domain interacts with ENAP1, which results in elevation of H3K14Ac and H3K23Ac levels, facilitated EIN3 binding to the 
target promoters and activation of gene expression. On the other hand, SRT1 and SRT2 histone deacetylases mediate ethylene-directed transcriptional repression 
by downregulating the levels of H3K9 acetylation. The models are based on the findings reported previously (Gagne et al., 2004; Li et al., 2015; Merchante 
et al., 2015; Zhang et al., 2016; Zhang et al., 2017; Zhang et al., 2018a). Gray and white solid circles depict negative and positive regulators of ethylene signaling, 
correspondingly. EIN3 is depicted in orange, H3K9Ac—in red, H3K14Ac and H3K23Ac—in blue. Dashed circles denote putative regulators (with a question mark 
inside) and putative regulations (with a question mark outside). HAT, histone acetyltransferase; 26S, 26S proteasome.
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Along with well-known EIN3/EIL1-promoted gene 
transcriptional activation, ethylene downregulates a considerable 
set of genes (Chang et al., 2013; Harkey et al., 2018). In a recent 
work, Zhang et al. (2018a) demonstrated that histone deacetylases 
SRT1 and SRT2 mediate transcriptional repression in response 
to ethylene by downregulating the levels of H3K9 acetylation 
(at least for a particular set of ethylene-repressed genes) (Figure 
3). Both deacetylases interact with ENAP1, and the function of 
SRT2 is EIN2- and EIN3/EIL1-dependent. The mechanism used 
to distinguish between the activator and repressor pathways as 
well as the role of EIN3/EIL1 in SRT1/2-mediated gene repression 
are still unclear and need further investigations.

EIN3/EIL1-REGULATED 
TRANSCRIPTIONAL NETWORKS

Upon DNA binding, EIN3/EIL1 modulate multiple transcriptional 
cascades. Ethylene-sensitive EIN3 target genes encoding TFs 
include ERF1, involved in a range of ethylene responses (Solano 
et al., 1998), PIF3, RSL4, ESE1, and CBF1/2/3, the regulators 
of de-etiolation, root hair development, salt and cold stress 
responses, correspondingly (Zhang et al., 2011; Shi et  al., 2012; 
Zhong et al., 2012; Feng et al., 2017). To supplement this list, 
numerous TF-encoding genes comprising representatives of 
AP2/ERF, WRKY, NAC, and other families were retrieved from 
whole-genome data on EIN3 binding and ethylene-induced 
transcriptomes (Chang et al., 2013). Besides, EIN3 directly 
regulates expression of chlorophyll biosynthesis genes PORA/B 
(Zhong et al., 2009), the pigment-binding proteins LHC essential 
for photosynthesis initiation (Liu et al., 2017), the immune 
receptor FLS2 (Boutrot et al., 2010), and the apical hook formation 
regulator HLS1 (Lehman et al., 1996; Shen et al., 2016). EIN3/
EIL1 affect the pathways of many hormones (Chang et al., 
2013), including direct regulation of hormones biosynthesis (e.g., 
salicylic acid biosynthesis gene SID2, Chen et al., 2009), and 
signaling (e.g., type-A negative regulators of cytokinin signaling 
ARR5/7/15, Shi et al., 2012). To maintain a homeostasis, EIN3 
activates a feedback regulatory circuit by inducing transcription 
of EBF2 (Konishi and Yanagisawa, 2008) and probably some other 
negative regulators of ethylene signaling (Chang et al., 2013).

To provide a proper phenotypic outcome upon ethylene 
release, these transcriptional cascades and the downstream 
growth control pathways should be tightly coordinated, which 
is supported by data on the dynamic changes of ethylene-
induced transcriptomes in etiolated Arabidopsis seedlings 
where four distinct transcriptional waves are segregated 
(Chang et al., 2013). The observed transcription kinetics may 
be due to distinct mechanisms of transcriptional control, or 
the heterogeneity of the ethylene response in different tissues 
(Chang et al., 2013). Transcriptome profiling of Arabidopsis 
mutants identified large groups of EIN3/EIL1-regulated genes 
that were co-regulated by the other TFs such as RHD6 (root 
hair development) and PIFs (light signaling) (Feng et al., 
2017; Shi et al., 2018), which implies co-regulation of EIN3/
EIL1-triggered transcription by certain developmental and 
environmental cues. In the following sections, we illustrate 

that EIN3/EIL1 proteins represent crucial targets for tuning the 
downstream transcriptional cascades in time and space.

TUNING TRANSCRIPTIONAL 
REGULATION OF ETHYLENE RESPONSE

Epigenetic Regulation of Spatiotemporal 
Expression of EIN3/EIL1 Target Genes
Climacteric fleshy fruits (the ones that demonstrate a respiratory 
burst at the beginning of ripening) use ethylene as a ripening 
signal (McMurchie et al., 1972). Mature fruit produces ethylene 
in an autocatalytic manner (system II) unlike immature fruit 
and vegetative tissues where self-inhibitory ethylene production 
(system I) is implemented. Autocatalytic regulation suggests a 
positive feedback loop controlling ethylene synthesis. Presumably, 
the corresponding regulatory circuit includes EIN3 triggered 
transcriptional cascade that finally activates ethylene biosynthesis 
genes (ACSes and ACOs) (Vandenbussche et al., 2012; Lü et al., 
2018). To prevent uncontrolled ethylene production, this circuit 
should be under a tight spatiotemporal regulation.

Epigenetic modifications often promote spatiotemporal 
regulation of plant hormone responses (reviewed in Yamamuro 
et al., 2016). In Arabidopsis, a repressive mark H3K27me3 
regulates expression of a large number of genes (Lafos et al., 
2011). A systematic analysis of epigenome and transcriptome 
data suggests that climacteric fruits use removal of H3K27me3 
to trigger autocatalytic system II ethylene production specifically 
in the mature fruit (Lü et al., 2018). Accordingly, EIN3 targeted 
promoters—a part of transcriptional feedback circuit controlling 
climacteric fruit ripening (RIN in tomato, NAC in peach and 
banana)—are associated with the repressive histone mark 
H3K27me3 in leaf and immature fruit. They become demethylated 
and therefore accessible only in the ripening fruit tissues. 
Presumably, this epigenetic mechanism prevents autocatalytic 
ethylene production in vegetative and immature fruit tissues.

Recently, using a systematic analysis of publicly available 
ChIP-Seq data on EIN3 binding in Arabidopsis, we have 
demonstrated that EIN3 direct targets are enriched in a chromatin 
state 4 according to the classification of Sequeira-Mendes et al. 
(2014), which is associated with H3K27me3 repressive mark 
(Zemlyanskaya et al., 2017b). Therefore, H3K27me3-associated 
epigenetic silencing might be a more general mechanism providing 
spatiotemporal specificity of ethylene response via restriction of 
EIN3 function.

Modulation of EIN3/EIL1 Protein Stability
Regulation of EIN3/EIL1 levels via the control of the protein 
stability by EBF1/2 is a pivotal mechanism of EIN3/EIL1 
adjustment in ethylene signaling. Simultaneously, it can be 
affected by environmental factors resulting in a modulation 
of transcriptional response to ethylene. Plants germinating in 
the darkness assume a light-regulated developmental program 
known as skotomorphogenesis, which phenotypically results in 
rapid hypocotyl elongation, small closed chlorotic cotyledons, 
and apical hook formation (McNellis and Deng, 1995).  
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EIN3/EIL1 and their target genes (e.g., HLS1, ERF1, PIF3, 
PORA/B) play essential roles in these processes. They contribute 
in chlorosis and increased apical hook curvature of buried 
seedlings, induce shortening and thickening of hypocotyl to 
enhance lifting capacity of the seedling, and finally promote 
seedlings greening upon light irradiation (Zhong et al., 2009; 
Zhong et al., 2012; Zhong et al., 2014; Shen et al., 2016).

In the seedlings growing through the soil, EIN3/EIL1 are 
stabilized by both light signaling and ethylene, which accumulates 
in response to mechanical pressure. In the former case, E3 
ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 
1 (COP1), a central repressor of light signaling, directly targets 
EBF1/2 for ubiquitination and degradation (Shi et al., 2016a). 
As seedlings grow toward the surface, light intensity gradually 
increases. As a result, COP1 activity, which is negatively regulated 
by photoreceptors (Podolec and Ulm, 2018), gradually decreases 
attenuating ethylene response.

When the seedling reaches the soil surface, light triggers 
a dramatic developmental transition known as de-etiolation 
that leads to immediate termination of ethylene responses. 
Light-activated photoreceptor phytochrome B (phyB) directly 
interacts with both EIN3 and EBF1/2 proteins, thereby 
stimulating robust EIN3 degradation, rapidly turning off 
ethylene signaling (Shi et al., 2016b; Luo and Shi, 2019).

Repression of EIN3/EIL1 Transcriptional 
Activity
In this section, we consider the cross-talk of ethylene signaling 
pathway with jasmonic acid (JA) and gibberellins (GA) based on an 
inhibition of EIN3/EIL1 transcriptional activity due to their physical 
interactions with repressor proteins (Table 1). These protein–
protein interactions (PPI) rather prevent EIN3/EIL1 binding to 
DNA than cause changes in protein stability (Zhu et al., 2011; An 
et al., 2012; Zhang et al., 2014). JA and ethylene synergistically 
regulate certain aspects of plant development (such as root hair 
development and inhibition of root growth) and tolerance to 
necrotrophic fungi. The transcriptional repressors JASMONATE 
ZIM-DOMAIN (JAZ) are the master regulators that interact with 
MYC2, MYC3, and MYC4 TFs and negatively control JA signaling 
(reviewed in Wasternack and Song, 2017). JAZ proteins interact 
with EIN3/EIL1 and enhance EIN3/EIL1 binding to HDA6, an 
RPD-type histone deacetylase (Zhu et al., 2011; Zhu and Lee, 2015). 
The resulting complex inhibits EIN3/EIL1-mediated transcription. 
Upon JA treatment, JAZ degrades, attenuating HDA6-EIN3/
EIL1 association and therefore activating EIN3/EIL1. Therefore, 
pathogenesis-related genes ERF1 and ORA59, directly regulated 
by EIN3/EIL1, as well as their downstream target PDF1.2, are 
upregulated in response to JA.

At the same time, MYC2, MYC3, and MYC4 transcriptional 
regulators of JA signaling interact with EIN3/EIL1, inhibiting 
their function (Song et al., 2014; Zhang et al., 2014). Thus, ERF1, 
ORA59, and PDF1.2 genes are upregulated in myc2 mutants. 
This inhibitory mechanism underlies ethylene-JA antagonism. 
Particularly, JA-directed abolishment of ethylene-promoted 
apical hook formation proceeds via MYC2-mediated attenuation 
of HOOKLESS1 (HLS1) expression, which is the key regulator 

of hook development and a direct EIN3/EIL1 target (Lehman 
et al., 1996; An et al., 2012; Song et al., 2014; Zhang et al., 2014). 
Additionally, MYC2 targets EBF1, inducing its expression and 
therefore promoting EIN3/EIL1 degradation (Zhang et al., 2014). 
Noteworthy, the inhibitory effect in the EIN3–MYC2 complex 
is reciprocal: the interaction suppresses MYC2 activity as well 
and thereby ethylene attenuates JA-regulated plant defense 
response against insect attack (Song et al., 2014). Similarly, EIN3 
plays an inhibitory role in sulfur deficiency response, forming 
heterodimers with EIL3/SLIM1 TF and preventing its target gene 
recognition by EIL3/SLIM1 (Wawrzyńska and Sirko, 2016).

Just as in the case of JA-ethylene synergy, GA enhances apical 
hook curvature at least partially via a release of EIN3/EIL1 from 
repressor proteins. DELLA proteins are the main transcriptional 
repressors of GA responses (Sun and Gubler, 2004). Two members 
of this family (RGA and GAI) are capable of associating with 
EIN3/EIL1 DNA-binding domain and inhibiting EIN3/EIL1 
function (An et al., 2012). In response to GAs, DELLA proteins 
rapidly degrade, thereby de-repressing EIN3/EIL1-mediated 
transcription of at least the HLS1 gene.

EIN3/EIL1 Cooperate With Other TFs in an 
Interdependent Manner
EIN3/EIL1’s capability to function cooperatively with the 
transcriptional regulators of the other signaling pathways provides 
another possibility to shape spatiotemporal patterns of ethylene 
response. This cooperation implies the cross-talk of TFs bound 
to DNA that goes along with the physical interaction of these 
TFs (Table 1). In buried seedlings, the chloroplasts’ development 
is arrested at the etioplast stage, characterized by an immature 
arrangement of the inner membranes and pigment molecules 
(Solymosi and Schoefs, 2010; Jarvis and López-Juez, 2013). EIN3 
and PHYTOCHROME INTERACTING FACTOR3 (PIF3), a 
darkness-stabilized transcriptional regulator of light signaling, 
form an interdependent module that represses chloroplast 
development in buried seedlings (Liu et al., 2017). Namely, EIN3 
and PIF3 directly interact and bind the promoters of LIGHT 
HARVESTING COMPLEX (LHC) genes in a cooperative manner 
to synergistically suppress their expression. Upon light exposure, 
the levels of EIN3 and PIF3 decrease, and activation of LHC 
expression triggers chloroplast differentiation.

Interestingly, another TF from PIF family, PIF4, interacts with 
EIN3 as well (Yazaki et al., 2016), and both TFs target HLS1, 
the key regulator of apical hook development (An et al., 2012; 
Zhang et al., 2018b). However, EIN3 and PIF4 activate HLS1 
transcription independently (Zhang et al., 2018b).

Cooperative regulation also guides ethylene functioning in root 
hair development. EIN3 promotes root hair elongation by directly 
activating RHD6-LIKE4 (RSL4) gene (Feng et al., 2017). Besides, 
EIN3 physically interacts with ROOT HAIR DEFECTIVE6 
(RHD6), a major regulator of root hair development that targets 
RSL4 as well (Yi et al., 2010; Feng et al., 2017). Both EIN3 and 
RHD6 co-activate RSL4 more efficiently than either of them alone 
(Feng et al., 2017). The role of EIN3–RHD6 cooperative action 
is most likely not limited to RSL4 regulation, but rather covers a 
quite extensive set of genes and contributes to ethylene-promoted 
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root hair initiation as well (Feng et al., 2017). Similarly, in papaya, 
EIN3 homolog CpEIN3a interacts with CpNAC2, and both TFs 
directly activate the transcription of carotenoid biosynthesis-
related genes CpPDS4 and CpCHY-b expressed during fruit 
ripening (Fu et al., 2017). Both TFs possess a combinatory effect 
on the regulation of their targets.

Besides, EIN3/EIL1 are capable of binding gene promoters and 
affecting gene expression indirectly via physical interactions with 
other TFs and modulation of their activity (Table 1). Increase of 
auxin biosynthesis in the root tip epidermis via upregulation of 
TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS  1 
(TAA1) plays a pivotal role in ethylene-induced inhibition of root 
growth (Vaseva et al., 2018). EIN3 targets TAA1 promoter through 
a “piggyback” interaction with RESPONSE REGULATOR  1 
(ARR1), a transcriptional regulator of cytokinin signaling, thereby 
enhancing ARR1 transcriptional activity (Yan et al., 2017). 
Similarly, EIN3/EIL1 interact with FER-LIKE FE DEFICIENCY-
INDUCED TRANSCRIPTION FACTOR (FIT), a central regulator 
of Fe acquisition in roots, activating FIT abundance (Lingam et al., 
2011). Moreover, EIN3/EIL1 bridges FIT to the transcriptional 
Mediator complex to recruit RNA-pol and promote the regulation 
of iron homeostasis (Yang et al., 2014).

EIN3/EIL1-INDEPENDENT ETHYLENE 
SIGNALING

There is growing evidence that despite their essential role, 
EIN3/EIL1 TFs are not indispensable components of ethylene 
response. Thus, kinetic studies distinguish two phases of 

ethylene-induced growth inhibition of the hypocotyl in 
etiolated Arabidopsis seedlings: a transient phase I (up to 
2  h) and a sustained phase II (Binder et al., 2004; Chang 
et al., 2013). Both phases require EIN2 function, while 
only the second requires EIN3/EIL1 (Binder et al., 2004). 
Intriguingly, unlike etiolated seedlings, light-grown ein3 
eil1 double mutants do not demonstrate the total loss of long-
term ethylene responses (Harkey et al., 2018). Moreover, 
osmotic stress-induced cell cycle arrest in leaf primordia that 
coincides with enhanced activation of the ethylene signal is 
EIN3 independent (Skirycz et al., 2011). These observations 
favor the existence of an alternative pathway. One possible 
candidate to promote such regulation is a PAM domain-
containing protein EER5. It negatively regulates ethylene 
signaling during hypocotyl elongation in etiolated seedlings 
regardless of EIN3 by promoting downregulation of a gene 
subset upon ethylene treatment. In addition, it physically 
interacts with EIN2-C (Christians et al., 2008). EER5 regulates 
magnitude of ethylene response via perception of ERS1 signal 
(Deslauriers et al., 2015).

CONCLUDING REMARKS  
AND PERSPECTIVES

Ethylene response is a target for a complex regulation, in 
which EIN3/EIL1 TFs play a crucial role. Recent studies shed 
light on multiple layers of complexity in tuning EIN3/EIL1 
function (including epigenetic gene silencing and modulation 
of EIN3/EIL1 stability and activity via PPIs) that facilitate the 

TABLE 1 | Protein–protein interactions involved in modulation of EIN3/EIL1 function.

Protein Organism Pathway Function PPI targets Interaction output Reference

EIN3/EIL1 stability

EBF1/2 Arabidopsis thaliana Ethylene signaling F-box protein EIN3/EIL1 EIN3/EIL1 degradation Gagne et al., 2004; 
An et al., 2010

COP1 Arabidopsis thaliana Light signaling E3 ubiquitin ligase EBF1/2 EIN3/EIL1 stabilization Shi et al., 2016a
phyB Arabidopsis thaliana Light signaling Protein binding EIN3/EIL1, EBF1/2 EIN3 degradation Shi et al., 2016b
AKIN10 Arabidopsis thaliana Catabolic pathways PK EIN3 EIN3 degradation Kim et al., 2017

EIN3/EIL1 repression

RGA, GAI Arabidopsis thaliana GA signaling RP EIN3/EIL1/2 EIN3/EIL1 repression An et al., 2012
JAZ1 Arabidopsis thaliana JA signaling RP EIN3/EIL1, HDA6 EIN3/EIL1 repression in 

complex with HDA6
Zhu et al., 2011

MYC2/3/4 Arabidopsis thaliana JA signaling TF EIN3/EIL1 EIN3/EIL1 repression Song et al., 2014; 
Zhang et al., 2014

EIL3/SLIM Arabidopsis thaliana Sulfur deficiency 
response

TF EIN3 EIL3/SLIM repression Wawrzyńska and 
Sirko, 2016

EIN3/EIL1 cooperation with other TFs

RHD6 Arabidopsis thaliana Root hair formation TF EIN3 RSL4 co-activation Feng et al., 2017
PIF3 Arabidopsis thaliana Light signaling EIN3 LHC co-repression Liu et al., 2017
CpNAC2 Carica papaya L. Carotenoid biosynthesis TF CpEIN3a CpPDS4 and CpCHY-b 

co-activation
Fu et al., 2017

FIT Arabidopsis thaliana Iron acquisition 
pathway

TF EIN3/EIL1 FIT stabilization Lingam et al., 2011

MED25 Arabidopsis thaliana N/A Mediator subunit EIN3/EIL1 FIT activation Yang et al., 2014
ARR1 Arabidopsis thaliana Cytokinin signaling TF EIN3 ARR1 activation Yan et al., 2017

PPI, protein–protein interaction; JA, jasmonic acid; GA, gibberellins; TF, transcription factor; RP, repressor protein; PK, protein kinase.
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“shaping” of ethylene response according to spatiotemporal and 
environmental conditions. At the same time, these findings open 
up new perspectives for further research. Growing evidence 
of the important role that epigenetic landscape plays in EIN3/
EIL1 functioning requires its more detailed characterization. 
Particularly, the contribution of distinct epigenetic modifications 
as well as ENAP1 patterns in modulation of EIN3/EIL1 function 
is of interest. In view of interdependent cooperation of EIN3/
EIL1 with some TFs described recently, the detailed analysis 
of nucleotide context surrounding EIN3 binding sites requires 
more attention, and genome-wide research appears helpful both 
to generalize resent findings and to predict new connections. 
Moreover, it would be interesting to clarify the role of epigenetic 
regulation and PPIs in suppression of gene expression upon 
ethylene treatment.

Yet, despite their essential role, EIN3/EIL1 are not 
indispensable regulators of ethylene response. To couple the 
molecular events and phenotypic responses more precisely, 
EIL2 function in ethylene signaling and EIN3/EIL independent 
pathways are to be elucidated.
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