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INTRODUCTION

Ammonium (NH / NH )3 4
+  nutrition is considered as a universal stressful situation (recently 

reviewed in Li et al., 2014; Esteban et al., 2016; Liu and Von Wirén, 2017). Briefly, the most 
common symptom of ammonium nutrition is reduced biomass accumulation with respect to 
non-stressed plants. Growth inhibition has been associated with the high energy cost to control 
NH / NH3 4

+ level in tissues. Among others, ammonium stress has been related with deregulation 
of pH homeostasis, ion imbalance, impaired nitrate signaling, or hormone deregulation (Li 
et al., 2014; Esteban et al., 2016; Liu and Von Wirén, 2017). Although ammonium stress affects 
virtually every plant species, the degree of stress it generates is variable and high intraspecific 
and interspecific variability towards ammonium nutrition has been reported. Some species/
genotypes display ammonium preference, while others show extreme sensitivity when growing 
with ammonium. Regarding the response of a certain genotype, as for almost every stress, there 
exists a continuum in the response upon ammonium nutrition, which mostly depends on the 
concentration of NH4

+  in the root medium. Overall, ammonium tolerance could be defined as 
a situation where the plant is somehow sensing and responding towards ammonium stress prior 
to suffering a serious damage such as chlorosis or cell death. Sole ammonium nutrition is an 
artificial situation that only takes place when growing plants without soil, either in laboratory 
conditions or for example when growing crops in pure hydroponics or in inert substrates such as 
rockwool or perlite. In agricultural fields, exclusive ammonium nutrition does not exist; however, 
the use of nitrification inhibitors together with ammonium fertilizers or organic fertilizers makes 
ammonium stable and at high concentrations in the soil for several weeks. From a farmer’s point of 
view, a potential moderate reduction in yield caused by ammonium stress could be compensated 
with benefits such as an increase in the resistance of the crop against biotic or abiotic constraints 
and also with obtaining of products of higher quality (Figure 1). Moreover, the use of ammonium-
based fertilizers together with inhibitors of nitrification has been extensively shown to mitigate 
the impact of nitrogen fertilizers on the environment (Sanz-Cobena et al., 2017). Although 
sophisticated management would be needed, avoiding ammonium stress could be reached by, for 
instance, fertigation or frequent additions of small amounts of ammonium-based fertilizers in 
water delivered through micro-irrigation.
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AMMONIUM NUTRITION MAY IMPROVE 
THE QUALITY OF CROPS

The main cause of ammonium toxicity is probably the over-
accumulation of free NH4

+  in the cytosol and the problems 
derived from cell efforts to get rid of it. The cell has several logical 
strategies to keep NH4

+  levels under control: 1) NH4
+  efflux to 

the apoplast/rhizosphere, 2) NH4
+  storage in the vacuole, and 

3) NH4
+  assimilation into organic compounds.

In line with the third strategy to avoid excessive cytosolic 
NH4

+  accumulation, the induction of the synthesis of N-reduced 
compounds is a classical plant response to ammonium nutrition, 
and indeed, the accumulation of total free amino acids can be 
considered as a marker of ammonium stress (Sarasketa et al., 2014). 
In general terms, crop quality is associated with the protein content 
of food products, notably in grains, which is dependent on the 
crops’ capacity to efficiently use the available nitrogen. In addition, 
the nutritional value and/or quality of food is associated with its 
content in minerals and in health-promoting secondary metabolites 
such as antioxidants. In this line of evidence, several works have 
reported an improvement of the nutritional quality of a number of 
crops when they are grown under ammonium nutrition. A higher 
protein accumulation is common in plants grown with NH4

+  
supply, and for instance, a positive effect of ammonium nutrition 

with respect to nitrate (NO )3
−  was reported in the protein content 

of wheat grain and in the gliadins/glutenins ratio, overall increasing 
wheat bread-making quality (Fuertes-Mendizábal et al., 2013).

In Brassicaceae, glucosinolates (GLS) represent an abundant 
family of secondary metabolites derived from amino acids. GLS 
degradation products participate in cruciferous plant defense 
against herbivores. Moreover, they are responsible for the 
characteristic flavor of the cruciferous vegetables. Importantly, 
certain GLS breakdown products possess health-protective 
capacities, particularly anticarcinogenic activity, and hence, 
GLS content is associated with cruciferous nutritional quality. 
Currently, big efforts are being dedicated to manipulate GLS levels 
in order to produce new and improved commercial cruciferous 
crop varieties (Traka et al., 2013). Regarding ammonium-based 
nutrition, recent studies have reported that the synthesis of GLS is 
stimulated in leaves of plants grown with NH4

+  as N source, such as 
in broccoli, oilseed rape, and Chinese kale (La et al., 2013; Marino 
et al., 2016; Coleto et al., 2017). Notably, glucoraphanin content, 
whose degradation yields sulforaphane, the most promising and 
characterized anticancer isothiocyanate, increases in ammonium-
fed broccoli and oilseed rape (Marino et al., 2016; Coleto et al., 2017). 
Whether GLS accumulation is just a consequence of ammonium 
assimilation increase or whether they possess a regulatory role 
during ammonium stress is a question for further elucidation.

FIGURE 1 | Ammonium nutrition can trigger modifications in plant metabolism with respect to other sources of N that may be beneficial for crop quality and plant 
cross-tolerance to biotic or abiotic stresses. Full circles indicate the processes that are highly supported by the literature, and empty circles indicate processes for 
which hints exist but need further confirmation.
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Another aspect of crop quality is the control of NO3
−  

accumulation in plant edible parts, notably in leafy vegetables such 
as spinach or lettuce. This is a subject of concern because it can 
turn to nitric compounds, which have been linked to increased 
risk of cancer and methemoglobinemia (Umar and Iqbal, 2007). 
Accordingly, growing plants with increased amounts of NH4

+ with 
respect to NO3

−  clearly reduces the quantity of NO3
−  accumulated 

in plant tissues and thus its associated risks (Santamaria et al., 
2001; Irigoyen et al., 2006).

AMMONIUM NUTRITION MAY PROTECT 
PLANTS FROM PATHOGEN ATTACK

Nitrogen metabolism is closely connected to plant immunity. 
Among others, it provides the necessary building blocks to 
synthesize most of the defense-related secondary metabolites 
and is central for NO production whose role in plant–pathogen 
interaction has been widely reported (Santana et al., 2017). 
Nitrogen source has been shown to have an impact on plant 
immunity. A number of studies have reported that plants grown 
with NO3

−  displayed increased resistance to pathogen attack 
with respect to plants grown with NH4

+ ; for instance, in tobacco 
exposed to Pseudomonas syringae (Gupta et al., 2013), cucumber 
infected with Fusarium oxysporum (Wang et al., 2016), or rice 
attacked by Rhizoctonia solani (Chi et al., 2019). This higher 
resistance has been associated with higher NO production 
in nitrate-fed plants, hormone signaling, or decreased citrate 
exudation, among others (Gupta et al., 2013; Mur et al., 2016; Wang 
et al., 2016). In contrast, several works have reported increased 
resistance in ammonium-fed plants such as tomato exposed to 
P. syringae (Fernández-Crespo et al., 2015) or to F. oxysporum 
(Lopez-Berges et al., 2010) and potato facing Verticillium wilt 
(Huber, 1989). In this case, the beneficial priming effect of NH4

+  
has been related to an increased reactive oxygen species burst 
and polyamine synthesis in ammonium-fed plants (Fernández-
Crespo et al., 2015). Moreover, transcriptomic analyses have 
reported that ammonium induces the upregulation of genes 
associated with plant defense and immunity (Patterson et  al., 
2010; Vega-Mas et al., 2017). Interestingly, the overexpression 
of rice ammonium transporter AMT1;2 conferred resistance 
against R. solani (Chi et al., 2019). In contrast, Arabidopsis 
amt1.1 knockout mutant exhibited less disease symptoms than 
did wild-type plants infected with P. syringae and Plectosphaerella 
cucumerina (Pastor et al., 2014).

In another line of evidence, the above-reported increase in GLS 
synthesis might be also increasing the resistance of cruciferous 
plants notably against herbivores (Marino et al., 2016). Similarly, 
the stimulation of the synthesis of γ-aminobutyric acid (GABA) is 
also frequent under ammonium nutrition, for instance, in tobacco 
plants (Gupta et al., 2013). GABA is a signal molecule common 
to animals and plants. Its accumulation reveals a stress-specific 
pattern consistent with a physiological response leading to stress 
mitigation and is also involved in plant response to pathogens 
(Kinnersley and Turano, 2000; Bown and Shelp, 2016). GABA 
accumulation appeared detrimental for plant defense (Gupta et al., 
2013); nevertheless, further experimentation is needed to fully 

decipher the role of GABA in the connection between N-source 
use and plant immunity. Overall, the interaction between NH4

+  
and plant defense is clear, but the potential benefit of ammonium 
stress would be dependent on the plant pathosystem, and 
therefore, no general rule can be drawn.

AMMONIUM NUTRITION MAY IMPROVE 
THE CROSS-TOLERANCE TO OTHER 
ABIOTIC STRESSES

A number of the responses that ammonium nutrition may 
trigger are defensive mechanisms that are common to different 
abiotic stress situations. Interestingly, the onset of these 
mechanisms may prevent damage from other simultaneous 
or subsequent stresses. Salinity is one of the most detrimental 
abiotic stresses, and the type of N nutrition differentially affects 
plants living under high salt contents. For example, the C4 
halophyte Spartina alterniflora displayed improved performance 
when grown with NH4

+  as N source, and NH4
+  benefits were 

associated with higher antioxidant enzyme activities (Hessini 
et al., 2013). Intriguingly, although antioxidant machinery 
induction was higher, S. alterniflora NH4

+  preference was lost 
under drought (Hessini et al., 2017). While S. alterniflora is a 
highly tolerant plant to ammonium nutrition, similar positive 
effect scan be observed in other species. For instance, in the 
citrus citrange Carrizo, NH4

+  nutrition promoted its resistance 
to salinity conditions, inducing, among other responses, lower  
Cl− uptake. The mechanisms of action again showed that plant 
antioxidant machinery, notably glutathione metabolism, was 
part of a common NH4

+  response that primed resistance to  
subsequent salt stress (Fernández-Crespo et al., 2014). Similarly, 
NH4

+ -induced cross-acclimation to salinity stress has also been 
reported in Sorghum bicolor (de Souza Miranda et al., 2017). 
Ammonium nutrition improved K+/Na+ homeostasis notably 
by reducing Na+ loading into the xylem in agreement with the 
observed higher proton pumps and Salt Overlay Sensitive 1  
(SOS1) Na+/H+ antiporter activity. In general, ammonium 
acted as an efficient signal to activate responses involved in 
the regulation of Na+ homeostasis, leading to salt tolerance in 
sorghum plants (de Souza Miranda et al., 2017). More recently, 
the benefit of NH4

+  as a primer of resistance to salinity has also 
been reported in maize (Hessini et al., 2019).

Previous ammonium nutrition has also been shown to 
ameliorate water stress resistance. Thus, Gao et al. (2010) 
showed an important fresh weight increase in rice plants 
under polyethylene glycol (PEG)-induced water stress when 
ammonium nutrition was the source of N, while either nitrate or 
mixed sources significantly decreased fresh weight under water 
stress. This effect was suggested to be related to higher aquaporin 
activity, which takes place in ammonium-grown plants, 
independently of the water stress, and which relates to a better 
usage of water under NH4

+  nutrition (Gao et al., 2010). Similarly, 
the alleviation of PEG-induced water stress in ammonium-fed 
rice seedlings has been related with sustained NH4

+  uptake and 
assimilation (Cao et al., 2018). Indeed, it has been suggested that 
increasing nitrogen uptake and assimilation, among others in 
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tomato (Sánchez-Rodríguez et al., 2011) and in Malus prunifolia 
(Huang et al., 2018), could increase the cell osmotic adjustment 
capacity to protect plants against water stress.

Ammonium uptake is known to involve proton extrusion 
to the apoplast/rhizosphere. Rhizosphere acidification is often 
deleterious for plant growth (Shavrukov and Hirai, 2016), and 
ammonium stress symptoms usually increases at more acidic pHs 
(Chaillou et al., 1991; Sarasketa et al., 2016). However, notably, 
in neutral/alkaline soils, ammonium nutrition may increase the 
availability of certain nutrients, such as iron or phosphorus, and 
improve plant growth (Gahoonia et al., 1992; Logan et al., 2000). 
Among others, the increase in nutrient availability induced 
by pH acidification has also been put forward as one of the 
reasons that may confer pathogen resistance to plants grown 
under ammonium nutrition (Leusch and Buchenauer, 1988; 
Huber and McCay-Buis, 1993). Furthermore, the combination 
of ammonium fertilization with plant-growth-promoting 
microorganisms may have a positive synergistic effect on plant 
performance (Bradáčová et al., 2019; Mpanga et al., 2019).

Ammonium nutrition has also been talked about in relation 
to its interaction with plant response to elevated atmospheric 
CO2 due to the hypothesis of Bloom et al. (2010), stating that C3 
plants respond more positively to elevated CO2 under ammonium 
nutrition than under nitrate nutrition. It is suggested that elevated 
CO2 inhibits the plant photoreduction of NO3

−  and consequently 
reduces total plant N assimilation and growth (Rubio-Asensio 
and Bloom, 2017). However, this hypothesis is today under great 
debate, and a number of works do not support it (Vega-Mas et al., 
2015; Andrews et al., 2018). On the whole, the magnitude of the 
challenge that climate change adaptation implies for agriculture 
deserves further research to discard or confirm the potential 
benefit of ammonium nutrition for plant performance.

Beyond drought and salinity, ammonium nutrition has also 
been suggested to contribute to other stressful situations such 
as the tolerance of cucumber to phenanthrene, a persistent 

polycyclic aromatic hydrocarbon commonly found in soil 
and sediments, again in relation with increased activity 
of antioxidative enzymes (Yang et al., 2012). Furthermore, 
ammonium nutrition has been shown to increment rice 
tolerance to Fe deficiency through enhanced remobilization of 
Fe from root cell walls (Zhu et al., 2018).

CONCLUDING REMARKS AND FUTURE 
PERSPECTIVES

In this article, we propose a change of paradigm where 
ammonium nutrition may be considered not exclusively as an 
undesirable situation for plant performance, but as a way to 
provoke changes in plant metabolism that can be beneficial for 
crop quality and plant physiology. While some of the positive 
effects of ammonium referred here still require further evaluation, 
the cross-tolerance induction of NH4

+  to certain subsequent 
stresses, notably salinity, is clear. However, the molecular actors 
governing these interactions are almost completely unknown, 
and future works will be essential in order to fully exploit the 
benefits of ammonium-based fertilizers.
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