
1 October 2019 | Volume 10 | Article 1177

HYPOTHESIS AND THEORY

doi: 10.3389/fpls.2019.01177
published: 03 October 2019

Frontiers in Plant Science | www.frontiersin.org

Edited by: 
Anca Macovei,  

University of Pavia, Italy

Reviewed by: 
Vitantonio Pantaleo,  

Italian National Research Council 
(IPSP-CNR), Italy 

Helena G. Carvalho,  
University of Porto, Portugal

*Correspondence: 
Oswaldo Valdés-López 

oswaldovaldesl@unam.mx 
Damien Formey 

formey@ccg.unam.mx

Specialty section: 
This article was submitted to  

Plant Cell Biology,  
a section of the journal  

Frontiers in Plant Science

Received: 24 May 2019
Accepted: 28 August 2019

Published: 03 October 2019

Citation: 
Valdés-López O, Formey D, 

Isidra-Arellano MC,  
Reyero-Saavedra MdR,  

Fernandez-Göbel TF and  
Sánchez-Correa MdS (2019) 

Argonaute Proteins: Why Are They 
So Important for the Legume–

Rhizobia Symbiosis?  
Front. Plant Sci. 10:1177.  

doi: 10.3389/fpls.2019.01177

Argonaute Proteins: Why Are They So 
Important for the Legume–Rhizobia 
Symbiosis? 
Oswaldo Valdés-López 1*, Damien Formey 2*, Mariel C. Isidra-Arellano 1,3, 
Maria del Rocio Reyero-Saavedra 1, Tadeo F. Fernandez-Göbel 4  
and Maria del Socorro Sánchez-Correa 1

1 Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional 
Autónoma de México, Tlalnepantla, Mexico, 2 Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 
Cuernavaca, Mexico, 3 Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacan, Mexico 
City, Mexico, 4 Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias, Instituto 
Nacional de Tecnología Agropecuaria, Córdoba, Argentina

Unlike most other land plants, legumes can fulfill their nitrogen needs through the 
establishment of symbioses with nitrogen-fixing soil bacteria (rhizobia). Through this 
symbiosis, fixed nitrogen is incorporated into the food chain. Because of this ecological 
relevance, the genetic mechanisms underlying the establishment of the legume–rhizobia 
symbiosis (LRS) have been extensively studied over the past decades. During this time, 
different types of regulators of this symbiosis have been discovered and characterized. 
A growing number of studies have demonstrated the participation of different types 
of small RNAs, including microRNAs, in the different stages of this symbiosis. The 
involvement of small RNAs also indicates that Argonaute (AGO) proteins participate in the 
regulation of the LRS. However, despite this obvious role, the relevance of AGO proteins 
in the LRS has been overlooked and understudied. Here, we discuss and hypothesize  
the likely participation of AGO proteins in the regulation of the different steps that enable 
the establishment of the LRS. We also briefly review and discuss whether rhizobial 
symbiosis induces DNA damages in the legume host. Understanding the different levels 
of LRS regulation could lead to the development of improved nitrogen fixation efficiency 
to enhance sustainable agriculture, thereby reducing dependence on inorganic fertilizers.
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INTRODUCTION

The symbiosis between legumes and rhizobia is of considerable ecological importance because 
through it, fixed nitrogen (e.g., ammonium) is incorporated into the food chain (Castro-Guerrero 
et  al., 2016). In this context, it has been estimated that the legume–rhizobia symbiosis fixes 60 
million metric tons of nitrogen worldwide (Smil, 1999). As symbiotic nitrogen fixation also plays 
essential roles in soil function, nutrient and water cycling, and food security, its exploitation and 
improvement in crop plants can promote lower input sustainable agriculture (Ferguson et al., 2019a).

To establish this symbiosis, a molecular dialogue between legumes and rhizobia is required 
(Venkateshwaran et al., 2013). This dialogue implies the interchange of diffusible signals, which 
includes legume-derived flavonoids and rhizobia-secreted lipochito-oligosaccharides (LCOs) with 
specific chemical decorations, named Nodulation Factors (NFs) (Dénarié et al., 1996). Upon NFs 
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perception by the legume host, a series of molecular events is 
activated, enabling rhizobial infection and nodule formation 
(Venkateshwaran et al., 2013).

Legume–rhizobia symbiosis (LRS) is regulated at the 
transcriptional, posttranscriptional, and posttranslational 
level (Venkateshwaran et al., 2013). For instance, it has been 
demonstrated that the transcription factor (TF) Nodule Inception 
(NIN) controls rhizobial root infection, colonization, and 
nodule formation (Liu CW et al., 2019; Liu J et al., 2019). NIN 
also activates the expression of the CLE ROOT SIGNALING1 
(CLE-RS1) and CLE-RS2 peptides in Lotus japonicus (Soyano 
et al., 2014). These two CLE peptides participate in the 
Autoregulation of Nodulation (AON) process, which limits the 
number of nodules (Ferguson et al., 2019b).

MicroRNAs (miRNAs), which are small regulatory RNA 
molecules, play a substantial role in the posttranscriptional 
regulation of LRS (Moran et al., 2017). For example, it has been 
demonstrated that miRNAs miR166 and miR169 regulate nodule 
development (Combier et al., 2006; Boualem et al., 2008) in 
Medicago truncatula. However, miRNAs not only regulate nodule 
development, but they also participate earlier in the rhizobial 
infection process (Bazin et al., 2012). The involvement of miRNAs, 
and likely other small RNAs (sRNAs), in the LRS strongly implicates 
the participation of Argonaute (AGO) proteins, which together 
form so-called RNA-induced silencing complexes (RISCs). We 
recently reported that AGO5 participates in the rhizobial infection 
process in both Phaseolus vulgaris (common bean) and Glycine max 
(soybean) (Reyero-Saavedra et al., 2017). Despite this evidence, the 
involvement of AGO proteins in LRS has been largely overlooked.

Here, we briefly recapitulate the genetic control of LRS by TFs 
and miRNAs. Likewise, based on the role of different small RNAs 
(sRNAs) and some AGO proteins in the regulation of both plant 
development and plant–pathogen interactions, we hypothesize 
the stages of this symbiosis where AGO proteins might play a role. 
Finally, we also discuss whether rhizobial symbiosis causes DNA 
damage in the legume host. By improving our understanding of 
the different levels of LRS regulation, we may be able to enhance 
symbiotic nitrogen fixation efficiency in crop legumes.

GENETIC REGULATION OF LEGUME–
RHIZOBIA SYMBIOSIS

NFs are detected by two LysM-type receptor kinases, named 
NFs Perception (NFP) and LysM-domain Receptor-Like Kinase3 
(LYK3), in M. truncatula and NFs Receptor5 (NFR5) and NFR1 
in L. japonicus (Limpens et al., 2003; Radutoiu et al., 2003; 
Arrighi et al., 2006). Both NFP/NFR5 and LYK3/NFR1 receptors 
have a similar structure, which includes an extracellular domain 
composed of three LysM domains, a transmembrane domain, and 
an intracellular kinase domain. These two receptors are essential 
for legume–rhizobial communication, and they may have evolved 
independently from two different ancestral receptors, which were 
likely involved in the perception of Mycorrization (Myc)-LCOs 
(De Mita et al., 2014). Myc-LCOs are signal molecules released 
by endomycorrhizal fungi and are required for most land plants 
to engage in symbiosis with these beneficial microbes (Maillet 

et al., 2011). Interestingly, Myc-LCOs and NFs are structurally 
very similar, which reinforces the hypothesis that NF receptors 
evolved from ancestral receptors involved in the perception 
of Myc-LCOs. The evolution of the NF’s extracellular domain 
arguably provided high specificity to the rhizobial symbiosis; it 
has been demonstrated that the evolution of the second LysM 
domain contributed to ligand binding, whereas the first LysM 
domain contributed to ligand specificity (De Mita et al., 2014).

Upon perception of NFs via the receptors NFP/NFR5 and 
LYK3/NFR1, a series of molecular events, including protein 
phosphorylation, are triggered (Broghammer et al., 2012). The 
phosphorylation of proteins is crucial to decipher the NFs signal. For 
example, one of the phosphorylated proteins playing a role in this 
symbiosis is 3-hydroxy-3-methylglutaryl coenzyme A reductase1 
(HMGR1) (Kevei et al., 2007). HMGR1 participates in mevalonate 
biosynthesis, and it has been demonstrated that mevalonate is 
sufficient to trigger calcium oscillations in the nuclear region, also 
known as calcium spiking (Venkateshwaran et al., 2015). Calcium 
spiking is a crucial signature to establish rhizobial symbiosis. 
Membrane ion channel mutants, such as L.  japonicus castor and 
pollux and the M. truncatula mutant that does not make infections1 
(dmi1), are unable to activate calcium spiking and therefore fail to 
nodulate (Imaizumi-Anraku et al., 2005).

Calcium spiking is further decoded by a calcium/calmodulin 
(Ca+2/CaM)-dependent protein kinase (CCaMK/DMI3) (Lévy 
et al., 2004). Upon activation, CCaMK/DMI3 immediately 
phosphorylates the transcriptional activator Interacting Protein 
of DMI3 (IPD3)/CYCLOPS (Singh et al., 2014). In turn, IPD3/
CYCLOPS activates the expression of NIN, which subsequently 
promotes the expression of the Nuclear Factor Y (NF-Y) complexes 
NF-YA and NF-YB (Soyano et al., 2013). The coordinated action 
of these TFs and the interplay of the TF Nodulation Signaling 
Pathway2 (NSP2)/NSP1, Ethylene Response Factor Required 
for Nodulation1 (ERN1), and ERN2 lead to the transcriptional 
activation of symbiosis-related genes participating in the rhizobial 
infection process (Genre and Russo, 2016). Some of the genes 
activated by this transcriptional node are Early Nodulin11 
(ENOD11), which is involved in the infection processes (Journet 
et al., 2001), and the Flotillins (FLOT) FLOT2 and FLOT4, which 
are involved in the formation of the infection thread, a tubular 
structure essential for rhizobial infection of the root cells (Haney 
and Long, 2010) (Figure 1).

In parallel with the activation of the molecular events leading 
to the infection/colonization of the root by the rhizobia, legumes 
activate a second genetic program that is required for nodule 
development (Oldroyd et al., 2011; Plet et al., 2011). It has been 
demonstrated that a delicate balance between the phytohormones 
auxin and cytokinin activates this genetic program (Hirch et al., 
1989; Van Zeijl et al., 2015; Gamas et al., 2017). The activation 
of this genetic program begins with the inhibition of polar auxin 
transport, which leads to the accumulation of cytokinins in root 
cortical cells (Nadzieja et al., 2018). Cytokinins are then detected 
in root cortical cells through the receptor Cytokinin Response1 
(CRE1)/Lotus Histidine Kinase1 (LHK1) (Plet et al., 2011). 
Interestingly, upon cytokinin perception, NIN and NSP2/NSP1 
are also activated, controlling the expression of genes involved 
in the development of the nodule (Madsen et al., 2010).
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Although this symbiosis provides fixed nitrogen to the plant, 
this process demands a significant amount of energy from legumes. 
Because of this carbon demand, legumes tightly regulate the 
number of nodules via AON. In L. japonicus, AON is systemically 
regulated by the CLE-RS1 and CLE-RS2 peptides (Soyano et al., 
2013; Ferguson et al., 2019b). These two CLE peptides travel from 
the root to the shoots where they are detected by the receptor 
Hypernodulation Aberrant Root formation1 (HAR1) (Nishimura 
et al., 2002). Upon perception of CLE peptides, a signal molecule, 
likely a shoot-derived cytokinin or the miRNA miR2111, is 
produced and sent to the roots (Tsikou et al., 2018; Ferguson 
et al., 2019b). The perception of this shoot-derived molecule in 
the roots then triggers the inhibition of nodule development.

ROLE OF miRNAS IN THE 
ESTABLISHMENT OF THE LEGUME–
RHIZOBIA SYMBIOSIS

The first miRNAs known to be involved in the LRS were miR169 
and miR166, which regulate meristem maintenance, bacterial 
release, and vascular differentiation in both roots and nodules of 

M. truncatula plants (Combier et al., 2006; Boualem et al., 2008). 
MiR169 and miR166 regulate these stages of LRS through the 
modulation of the expression of the TF genes NF-YA1 (formerly 
called HAP2-1 for HAPLESS2-1) and class-III homeodomain-leucin 
zipper (HD-ZIPIII), respectively (Combier et al., 2006; Boualem 
et al., 2008; Laloum et al., 2013). Since the publication of these two 
studies, a large number of symbiosis-responsive miRNAs has been 
identified in different stages of LRS. For instance, Subramanian 
et  al. (2008) reported many miRNAs that were differentially 
regulated after 3 h of rhizobial inoculation in soybean (Table 1).

Because LRS is initiated in root hairs, Formey et al. (2016) 
hypothesized that root hair miRNA expression analysis after 6 h of 
NFs treatment could identify regulators of early events of rhizobial 
infection. As a result, Formey et al. (2016) identified six symbiosis-
responsive miRNAs in the common bean. Interestingly, one of 
the identified miRNAs was the root hair-specific miR-RH82. 
This observation suggests that this novel miRNA might play an 
essential role in the early stages of the LRS (Formey et al., 2016).

Although several studies report differential expression of 
miRNAs during the first hours of legume–rhizobia interaction, 
there is limited experimental evidence to indicate that they 
regulate very early symbiotic events, such as calcium spiking. 

FIGURE 1 | Participation of Argonaute (AGO) proteins in different stages of the legume–rhizobia symbiosis (LRS) According to several reports, different AGO 
proteins may participate in each stage of the LRS. Although several miRNAs have been identified a few hours upon NF perception, there is no experimental 
evidence indicating that they regulate very early stages of LRS, such as NFs perception and activation of calcium spiking. However, there is solid evidence 
supporting the participation of both sRNAs and different AGO proteins in rhizobial infection and the development of both nodule meristems and root nodules. 
Dashed lines indicate the potential participation of AGO proteins and sRNAs in the LRS.
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However, miRNAs have been identified that participate in 
rhizobial preinfection and infection processes, including miR171c 
and miR397 in L. japonicus (Figure 1) (De Luis et al., 2012). 
Interestingly, miR171c has been shown to target transcripts of the 
TF gene NSP2, which is crucial for the preinfection and infection 
process (De Luis et al., 2012). To provide evidence supporting the 
role of these two miRNAs in the rhizobial infection process, De Luis 
et al. (2012) made use of L. japonicus snf1 and snf2 mutants, which 
produce autoactive versions of the CCaMK and the cytokinin 
receptor LHK1, respectively. These two mutants can develop 
nodules in the absence of rhizobia (spontaneous nodules), but they 
also form infected functional nodules upon rhizobial inoculation 
(Tirichine et al., 2006a; Tirichine et al., 2006b; Tirichine et al., 
2007). By using these mutants, De Luis et al. (2012) demonstrated 
that miR171c and miR397 significantly accumulate in infected 
nodules of snf mutants but not in spontaneous nodules, suggesting 
that these miRNAs might play a role in the rhizobial infection 
process. Another early-acting miRNA is miR172c, which has been 
demonstrated to target transcripts of the TF gene APETALA2-1 
(AP2-1) and plays a role in rhizobia-induced root hair deformation 
in the common bean (Nova-Franco et al., 2015). In addition, 
miR172c has also been characterized in soybean, where it acts as a 
regulator of early nodulins during nodule initiation through the TF 
Nodule Number Control1 (GmNNC1) (Wang et al., 2014). In the 
context of the systemic AON mechanism activated upon rhizobial 
infection, one candidate for the induced shoot-derived inhibitor 
(SDI) of nodulation could be miR2111, which targets transcripts 
of the F-box gene Too Much Love, a crucial regulator of rhizobial 
infection and nodule number in L. japonicus (Tsikou et al., 2018; 
Ferguson et al., 2019b).

Moving beyond the early stages of infection, several miRNAs 
participating in nodule development have been reported. To initiate 
the formation of the nodule meristem and nodule, a delicate balance 

between auxin and cytokinin is required (Oldroyd et al., 2011; Plet 
et al., 2011). In soybean plants, miR160 is essential to modulate the 
levels of these two phytohormones for nodule development (Turner 
et al., 2013; Nizampatnam et al., 2015). Recently, it has also been 
demonstrated that the miR390/Trans-Actin Short Interference 
RNA3 module negatively regulates both rhizobial infection and 
nodule organogenesis in M. truncatula (Hobecker et al., 2017).

ARGONAUTE PROTEINS IN SYMBIOSIS

AGO proteins are present in eukaryotes, and they participate 
in many biological processes, including interactions with the 
environment. AGO proteins are characterized by the presence 
of four domains: a variable N-terminal domain and conserved 
PAZ (PIWI-ARGONAUTE-ZWILLE), MID (middle), and PIWI 
domains (Tolia and Joshua-Tor, 2007). The PAZ domain binds 
sRNAs, whereas the MID domain specifically recognizes the 5’ 
nucleotide of sRNAs. The PIWI domain adopts an RNase H-like 
fold, enabling most AGO proteins to cleave target messenger 
RNAs complementary to the bound sRNAs (Song et al., 2004). 
The number of AGO proteins present in plants is variable and is 
plant species-dependent (Figure 2). For instance, the Arabidopsis 
thaliana genome encodes 10 AGO proteins, whereas the soybean 
and the common bean genomes encode 22 and 14 AGO proteins, 
respectively (Liu et al., 2014; Reyero-Saavedra et al., 2017). Despite 
this diversity of AGO proteins in flowering plants, these proteins 
can be grouped into three major phylogenetic clades: AGO1/5/10, 
AGO2/3/7, and AGO4/6/8/9 (Figure 2), with AGO1 being the 
founding member of the AGO gene family (Zhang et al., 2015).

Recent evidence indicates that AGO proteins respond to 
environmental stimuli (Manavella et al., 2019). The direct 
involvement of plant AGO proteins in biotic interactions is also 
well known, mainly for plant defense against bacteria and virus 

TABLE 1 | Differentially regulated plant miRNAs and their corresponding target genes during the early stages of the legume–rhizobia symbiosis.

Reference hpi Regulation miRNA Target Gene Name

Subramanian et al., 2008 3 Up miR168 Argonaute 1
miR172 Apetala 2 like
miR159 Auxin Responsive Factor like
miR393 Transport Inhibitor Response 1

Down miR160 Auxin Responsive Factor 
10,16,17

miR164 NAC domain containing 
protein 1

miR166 Class III homeodomain leucine 
zipper

miR169 Nuclear Factor YA-1 (Hapless 
2-1)

miR396 Growth-Regulating Factors
Formey et al., 2016 6 Up miR171a Nodulation-signaling pathway 2

miR398b-3p Cu/Zn Superoxide Dismutase 
1/Nodulin 19

Down miR171a-3p GRAS family transcription 
factor

miR398c ND
miR482b-3p Nucleotide-Binding Site–

Leucine-Rich Repeat
miR-RH82 ND

hpi, hours postinoculation; ND, nondetermined target gene.
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(Raja et al., 2008; Carbonell and Carrigton, 2015; Fátyol et al., 
2016). However, the role of AGO proteins in the regulation of 
mutualistic interactions, such as symbiosis, in animals as well as 
plants is poorly documented. In plants, there is only one report on 
this topic, which demonstrates the importance of AGO5 in LRS 
regulation (Reyero-Saavedra et al., 2017). Despite these knowledge 
gaps, several studies provide evidence that converges on the 
importance of AGO proteins in LRS. In this section, we aim to 
compile exhaustive information about legume AGO protein clades 
and hypothesize roles for some of them in each stage of LRS.

Ago1/5/10 Clade
As many miRNAs have been reported as regulators of different stages 
of LRS (Table 2), AGO1 is clearly involved in this symbiotic process. 
For example, very recently, it was demonstrated that soybean AGO1 

is hijacked by three rhizobial tRNA-derived small RNA fragments to 
regulate the expression of three plant genes involved in both rhizobial 
infection and nodule development (Ren et al., 2019). Other members 
of the AGO1/5/10 clade may also be involved in LRS regulation. The 
clearest evidence of AGO regulation of nodulation involves AGO5 
(Reyero-Saavedra et al., 2017), which is upregulated 3 h after rhizobial 
inoculation in common bean and soybean roots. Furthermore, 
AGO5 is required for rhizobia-induced root hair deformation and 
nodule development (Reyero-Saavedra et al., 2017). One possible 
explanation for this comes from A. thaliana, in which AGO5 
associates with miR167 and miR172c (Mi et al., 2008). In legumes, 
miR167 and miR172c have been shown to participate in nodule 
development through the regulation of the AUXIN RESPONSE 
FACTOR8 and AP2-1 genes, respectively (Nova-Franco et al., 2015; 
Wang et al., 2015). Beyond the well-studied AGO1 protein, AGO5 is 

FIGURE 2 | Phylogenetic analysis of legume Argonaute (AGO) family proteins The protein sequences of selected AGOs were obtained from JGI Phytozome  
v. 12.1.6 (https://phytozome.jgi.doe.gov), Lotus Base (https://lotus.au.dk), and PeanutBase (https://peanutbase.org) and aligned using MAFFT online service v7.427 
(Katoh et al., 2017) with FFT-NS-i option set. The phylogenetic tree was constructed using the average linkage (UPGMA) method and designed thanks to iTOL 
4.4.2. Abbreviations for selected species are as follows: Medtr, Medicago truncatula; Lj, Lotus japonicus; Glyma, Glycine max; Phvul, Phaseolus vulgaris; arahy, 
Arachis hypgaea; AT, Arabidopsis thaliana.
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the first member of the AGO family that has been demonstrated 
as a regulator of LRS (Reyero-Saavedra et al., 2017).

AGO10 may also be implicated in the regulation of LRS. It 
has been reported that AGO10 is capable of sequestering small 
RNAs, which consequently are not able to associate with their 
usual corresponding AGO family member (Zhu et al., 2011). This 
mechanism is involved in regulating the shoot apical meristem 
(SAM) in Arabidopsis (Zhou et al., 2015). To promote SAM 
differentiation, the action of miR166/165 on their target, which 
encodes the HD-ZIP III transcription factor, must be suppressed. 
To achieve this control, plants have selected a regulation system 
based on the sequestration of miR165/166 by AGO10, which has a 
higher affinity for these miRNAs than AGO1 and can promote their 
degradation (Yu et al., 2017). Although this mechanism has not 
been demonstrated directly in root apical meristem differentiation, 
some evidence suggests that it could be involved (Ma et al., 2017). 
In addition, the AGO10 regulatory mechanism is considered an 
ancient and ubiquitous process in land plant organ development. 
In M. truncatula, the miR166/HD-ZIP III node regulates both 
lateral root and nodule formation through the control of the apical 
region (Boualem et al., 2008). If the regulation of miR166/HD-ZIP 
III node by AGO10 proteins is a general mechanism, it is tempting 
to speculate that nodule development could also be controlled 
in this way. In support of this possible role in LRS, transcripts of 
AGO10 group member genes in M. truncatula, Glycine max, and 
P. vulgaris are upregulated in nodules compared to root tissues 
(Phytozome v. 12.1.6). This reinforces the hypothesis that AGO10 
could be a player in the regulation of nodule development.

AGO2/3/7 Clade
Beyond the phylogenetic grouping, members of the AGO2/3/7 
clade seem to be connected by an involvement in plant defense, 
employing different regulation mechanisms (Zhang et al., 2011; 
Fang and Qi, 2016; Rodríguez-Leal et al., 2016). Because AGO2 
and AGO3 members are difficult to distinguish in legumes, due 
to the phylogenetically clustering of the two members by species 
of origin and not by member type (Zhang et al., 2015), here we 
focus on the “AGO2/3” group and AGO7 (Figure 2).

In A. thaliana, AGO2 is a key player in both antiviral defense 
and antibacterial immune response (Zhang et al., 2011; Carbonell 

and Carrigton, 2015). Moreover, AGO2 is the only member of 
the A. thaliana AGO family reported as highly induced during 
Pseudomonas syringae infection (Zhang et al., 2011). AGO2 acts in 
this process by loading miR393b*, which targets transcripts of the 
gene MEMB12 encoding a Golgi-localized, SDS-resistant, soluble 
N-ethylmaleimide-sensitive factor attachment protein receptor 
(SNARE), and then modulates the exocytosis of antimicrobial 
Pathogenesis-Related (PR) proteins. LRS is intimately linked 
to plant immunity (Toth and Stacey, 2015), and PR proteins 
seem to regulate the rhizobial infection process in soybean and 
L. japonicus (Bartsev et al., 2004; Hayashi et al., 2014). In this 
context, the involvement of AGO2/3 in the regulation of LRS 
should be considered. Supporting this hypothesis, AGO2/3 
homologs in M. truncatula, G. max, and P. vulgaris are upregulated 
in nodules compared to root tissues (Phytozome v. 12.1.6). In 
addition, analysis of legumes AGO proteins shows that AGO2 
has undergone gene duplication in M. truncatula, G. max, and 
L. japonicus (Bustos-Sanmamed et al., 2013) (Figure 2). This gene 
duplication of AGO2/3 suggests that the AGO2/3 isoforms may 
have diverged in their biological function and could be involved 
in novel processes, including LRS regulation.

AGO3 is one of the least studied members of the AGO family 
in plants and, to date, poor information is available about its 
functionality. Minoia and collaborators (2014) revealed that 
AGO3 binds siRNAs derived from potato spindle tuber viroid and 
could be involved in the defense against this pathogen. Similarly, 
in a recent preprint, Jullien and collaborators (2018) suggest a 
role of AGO3 in antiviral defense based on its confinement to 
vascular structures and the fact that most plant viruses use the 
phloem for systemic infection. However, further analyses are 
needed to understand the role of this AGO member and confirm 
its role in plant antiviral response. At this time, the link between 
AGO3 and the plant–microorganism interaction is speculative.

AGO7 is involved in the biogenesis and actions of trans-
acting small interference RNAs (tasiRNAs, also called 
phasiRNAs), which are plant-specific endogenous siRNAs 
derived from long double-stranded RNA, and participate 
in plant development (Adenot et al., 2006). AGO7 also 
plays a critical role in the regulation of both plant immunity 
and antiviral defense (Adenot et al., 2006; Carbonell and 

TABLE 2 | MiRNAs and Argonaute (AGO) proteins participating in different stages of the legume–rhizobia symbiosis (LRS)

miRNA Associated
AGO protein

Target Gene Function in LRS Legume Species Reference

miR172c AGO1/5 AP2-1; NNC1 Root hair deformation Phaseolus vulgaris;
Glycine max

Wang et al., 2014; 
Nova-Franco et al., 2015; 
Reyero-Saavedra et al., 

2017
miR171c AGO1 NSP2 Rhizobial infection Lotus japonicus De Luis et al., 2012
miR397 AGO1 Laccase-Like Rhizobial infection Lotus japonicus De Luis et al., 2012
miR390/tasiARF AGO7 ARF3/4 Rhizobial infection Medicago truncatula Allen et al., 2005
miR160 AGO1 ARF10/16/17 Auxins level Glycine max Turner et al., 2013; 

Nizampatnam et al., 2015
miR166 AGO1/10 HD-ZIPIII Nodule development Medicago truncatula Boualem et al., 2008
miR167 AGO1/5 ARF8 Nodule development Phaseolus vulgaris; 

Glycine max
Reyero-Saavedra et al., 

2017
miR169 AGO1 NF-YA1 (HAP2-1) Nodule development Medicago truncatula Combier et al., 2006
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Carrigton, 2015). For example, AGO7 is also essential for 
the generation of the bacteria-induced small RNAs called 
long small interfering RNAs (lsiRNAs) (Katiyar-Agarwal et 
al., 2007). AtlsiRNA-1 is induced by bacterial pathogens and 
participates in plant resistance by silencing AtRAP, which 
encodes a RAP-domain protein involved in plant defense 
(Katiyar-Agarwal et al., 2007). This regulatory role of AGO7 
in pathogen response mechanisms could be modulated to 
contribute to the fine-tuning of plant bacterial resistance 
under LRS. In support of this, P. vulgaris AGO7 is upregulated 
upon inoculation with rhizobia deficient in the production of 
NFs or lipopolysaccharides (Dalla Via et al., 2015), which are 
symbiotic signals able to suppress the plant defense response 
during symbiosis (Albus et al., 2001; Scheidle et al., 2004). 
Besides, mutation of the AtAGO7 homolog in L. japonicus and 
M. truncatula reduces rhizobial infection and nodule number 
compared to the corresponding wild type (Li et al., 2014; 
Hobecker et al., 2017). Part of this response is also possibly 
due to the capacity of AGO7 to generate secondary small RNAs 
derived from the miR390-induced degradation of the TAS3 
transcript (Allen et al., 2005). The derived tasiRNAs target the 
ARF2, 3 and 4 gene transcripts. These ARF TFs control part of 
the auxin signaling pathway, which also plays a key role in LRS 
(Breakspear et al., 2014).

AGO4/6/8/9 Clade
The AGO4/6/8/9 protein clade is oriented toward 
transcriptional regulation by DNA methylation (Mallory 
and Vaucheret, 2010; Duan et al., 2015). In legumes, this 
clade differs from other families. In G. max, L. japonicus, 
M. truncatula, and P. vulgaris, AGO4 and 6 are present 
but not AGO8. In the case of AGO9, this protein is absent 
in most legumes, except in G. max. This loss of diversity 
for the AGO8/9 group in legumes is compensated by the 
diversification of AGO4, which displays between two and four 
isoforms in the genome of model legumes (Bustos-Sanmamed 
et  al., 2013) (Figure 2). This specific legume pool of AGO4 
isoforms is phylogenetically separated from nonlegume 
AGO4, suggesting specialization in legumes. Supporting this 
hypothesis, in G. max, M. trucatula, and P. vulgaris, at least 
one of the AGO4 isoforms is differentially accumulated in 
nodules compared to root tissues, which suggests that this 
AGO4 isoform might play a role in the LRS (Phytozome 
v. 12.1.6).

DOES RHIZOBIAL SYMBIOSIS CAUSE 
DAMAGE IN THE LEGUME DNA?

Several studies have reported that plant pathogens can trigger 
damage in the host plant DNA (e.g., DNA double-strand 
breaks) (Song and Bent, 2014; Hadwiger and Tanaka, 2017). 
Some pathogen-induced DNA damage is triggered by reactive 
oxygen species (ROS) (Song and Bent, 2014; Hadwiger and 
Tanaka, 2017). It has been demonstrated that AGO2 and AGO9 
play roles in DNA repair in A. thaliana (Wei et al., 2012; Oliver 
et al., 2014). Very recently, it has been reported that Rhizobium 

huautlense produces ROS in Caenorhabditis elegans intestinal 
cells, which then leads to DNA damage (Kniazeva and Ruvkun, 
2019). Interestingly, during the rhizobial infection process, 
the production of ROS is essential for the formation of the 
infection thread (Damiani et al., 2016). Despite the evidence 
from animal cells and the fact that symbiotic rhizobia trigger 
ROS production, there is no experimental evidence to suggest 
that rhizobial symbiosis causes DNA damage in legume hosts. 
However, to allow rhizobial infection of the host, nodule 
cells undergo genome endoreduplication, often considered 
a protective mechanism against DNA damage to maintain 
whole-genome integrity (Maroti and Kondorosi, 2014). 
Further investigation is needed to explore whether rhizobia 
can cause DNA damage in legume hosts and whether AGO 
proteins (i.e., AGO2 and AGO9) participate in DNA repair in 
the context of LRS.

PERSPECTIVES AND CONCLUSIONS

Based on the participation of many different types of sRNAs, it 
is clear that different members of the AGO protein family might 
play crucial roles in LRS (Figure 1). However, it is still unclear 
how the participation of each AGO protein occurs and how it 
is regulated. Hence, the new challenge will be to understand 
how, when, and where AGO proteins are regulated during LRS. 
Having this knowledge will help us develop a clear idea about the 
relevance of AGO proteins in rhizobial symbiosis.
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