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The endoplasmic reticulum (ER) is the starting point for protein secretion and lipid 
biosynthesis in eukaryotes. ER homeostasis is precisely regulated by the unfolded 
protein response (UPR) to alleviate stress, involving both transcriptional and translational 
regulators. Autophagy is an intracellular self-eating process mediated by the double-
membrane structure autophagosome for the degradation of cytosolic components and 
damaged organelles to regenerate nutrient supplies under nutrient-deficient or stress 
conditions. A recent study has revealed that besides serving as a membrane source 
for phagophore formation, the ER is also tightly regulated under stress conditions by a 
distinct type of autophagosome, namely ER-phagy. ER-phagy has been characterized 
with receptors clearly identified in mammals and yeast, yet relatively little is known about 
plant ER-phagy and its receptors. Here, we will summarize our current knowledge of 
ER-phagy in yeast and mammals and highlight recent progress in plant ER-phagy studies, 
pointing towards a possible interplay between ER-phagy and ER homeostasis under ER 
stress responses (ERSRs) in plants.
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ERSR AND ER-PHAGY—KEY REGULATORS FOR ER 
HOMEOSTASIS IN PLANT

Genes encoding secretory proteins are translated into unfolded polypeptides by membrane-bound 
ribosomes and inserted into the endoplasmic reticulum (ER) lumen for proper folding, which is 
assisted by a set of molecular chaperones. Although the molecular machinery for protein folding in 
higher eukaryotes is quite elegant, protein folding is a fundamentally error-prone process. Misfolded 
proteins are continuously produced and monitored by the ER quality control (ERQC) system and 
degraded by the ER-associated degradation (ERAD) system (Ellgaard and Helenius, 2003; Braakman 
and Bulleid, 2011; Wan and Jiang, 2016). In higher plants, ERQC is important, as misfolded proteins 
can be detrimental to plant development. Nevertheless, in tissues with a high secretory activity or 
under adverse environmental conditions, the demands on protein folding can exceed the capacity 
of the ERQC and ERAD systems, causing misfolded or unfolded protein to accumulate in the ER 
and eventually leading to ER stress in plants. To alleviate ER stress, the unfolded protein response 
(UPR) is activated to refold proteins by upregulating the protein-folding machinery and degradative 
capacity of the ER, allowing plant development (Cao and Kaufman, 2012; Hetz, 2012; Bao et al., 
2019). In yeast, the UPR is triggered upon ER stress by the ER transmembrane sensor inositol-
requiring enzyme (IRE1) (Hetz and Glimcher, 2009; Hetz et al., 2011) (Table 1). IRE1 senses ER 
stress through its ER luminal sensing domain and triggers the UPR responses through splicing an 
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mRNA encoding Hac1, the transcription factor activating the 
expression of ER stress response (ERSR) genes in yeast (Ron 
and Walter, 2007) (Table 1). In mammals, IRE1 is also one of 
the ER stress sensors, where the downstream transcription 
factor spliced by IRE1 is XBP1, which contains a conserved 
double stem-loop structure for IRE1 recognition (Yoshida et al., 
2001). Autophosphorylation of IRE1 by its kinase activity may 
promote its interaction with other proteins such as TRAF2 in 
mammals (Prischi et al., 2014). Homolog to mammalian cells, 
the Arabidopsis genome encodes two IRE1 isoforms, AtIRE1a 
and AtIRE1b, that function as both a kinase and a ribonuclease 
with corresponding kinase and ribonuclease domains facing 
the cytosol (Howell, 2013). AtIRE1s promote the splicing of a 
pre-mRNA and give rise to a mature mRNA encoding bZIP60, 
the Hac1/XBP1 counterpart in plants, under stress stimulation 
(Deng et al., 2011; Nagashima et al., 2011). The spliced bZIP60 
mRNA is then translated and activates the ER chaperone binding 
protein BiP3, triggering downstream UPRs in order to regulate 
ERSR (Deng et al., 2011; Nagashima et al., 2011) (Table 1). 
Plant bZIP60 does not share a high sequence similarity to Hac1 
or XBP1, yet its mRNA can fold into an IRE1 recognition site 
in a way highly conserved from yeast to mammalians (Zhang 

et al., 2015). Besides IRE1, protein kinase RNA-like ER kinase 
(PERK) and activating transcription factor 6 (ATF6) function as 
other ER stress sensors to cope with the UPR in mammals (Hetz, 
2012) (Table 1). PERK and ATF6 are both ER transmembrane 
proteins consisting of an ER luminal stress-sensing domain and 
a cytoplasmic enzymatic domain. PERK inhibits ER protein 
translation to relieve ER stress via the phosphorylation of 
the eukaryotic initiation factor 2 (eIF2α). On the other hand, 
eIF2α phosphorylation further enhances the translation of the 
transcription factor 4 (ATF4) to regulate UPR-related genes 
(Vattem and Wek, 2004). Notably, ATF4 activation is recently 
considered as a key signal for autophagy activation (Matsumoto 
et al., 2013). Distinct from IRE1 and PERK, ATF6 is transported 
from the ER to the Golgi apparatus through coat protein complex 
II (COPII) vesicles upon ER stress (Schindler and Schekman, 
2009). After proteolytic cleavage in the Golgi by two proteases, 
site-1 protease (S1P) and S2P, the cleaved transcription factor 
domain of ATF6 enters the nucleus to upregulate the expression 
of UPR genes (Yoshida et al., 1998) (Figure 1). In Arabidopsis, 
PERK orthologs are yet to be identified, while two functional 
homologs of ATF6, bZIP28 and bZIP17, encoded in the genome 
have been characterized (Liu et al., 2007; Iwata and Koizumi, 

TABLE 1 | ER stress regulators and their functions.

Yeast (Sc) Mammal (Hs) Plant (At) Functional annotation References

IRE1 IRE1 IRE1a/b ER membrane–associated 
RNA splicing factor. In plants, 
IRE1b plays a major role. ER 
stress activates IRE1, which 
promotes the splicing of a 
pre-mRNA. IRE1 responses are 
delayed with respect to ATF6 
responses. 

Ron and Walter, 2007
Hetz and Glimcher, 2009
Liu et al., 2012
Koizumi et al., 2001

HAC1 XBP1 bZIP60 A bZIP transcription factor 
binds to ERSEs. IRE1 splices 
mRNA encoding XBP1/
Hac1/bZIP60 upon ER stress 
activation.

Cox and Walter, 1996
Yoshida et al., 2001
Deng et al., 2011

*N.I. ATF6 bZIP17, bZIP28 An ER type II transmembrane 
protein associated with the 
binding protein BiP/GRP78 
under normal conditions but 
activated and trafficked to Golgi 
for splicing in response to ER 
stress.

Liu et al., 2007
Iwata and Koizumi, 2012

*N.I. PERK *N.I. dsRNA-activated protein 
kinase-like ER kinase.

Hetz, 2012

*N.I. eIF2α *N.I. Phosphorylation of the 
eukaryotic translation 
initiation factor 2 a-subunit 
(eIF2α) by PERK upon ER 
stress downregulates protein 
synthesis.

Vattem and Wek, 2004

*N.I. ATF4 *N.I. Transcriptional factor, activated 
by upstream PERK–eIF2α to 
induce ER stress apoptosis.

Sc, Saccharomyces cerevisiae; Hs, Homo sapiens; At, Arabidopsis thaliana; IRE1, inositol-requiring enzyme; ER, endoplasmic reticulum; ATF, activating transcription factor; 
XBP1, X-box binding protein 1; bZIP, basic leucine zipper; ERSEs, ER stress elements; BiP, binding protein; GRP78, 78 kDa glucose regulated protein; PERK, protein kinase R-like 
endoplasmic reticulum kinase; eIF2α, eukaryotic translation initiation factor 2 a-subunit. *N.I., not identified.
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2012; Kim et al., 2018; Ruberti et al., 2018). Similar to ATF6 in 
mammals, bZIP28 is transported from the ER to the Golgi by a 
sub-population of COPII vesicles for proteolytic cleavage by S1P 
and S2P (Liu et al., 2007; Zeng et al., 2015; Chung et al., 2016) 
(Figure 1). Although ER stress pathways for modulating ER 
homeostasis are evolutionarily conserved in higher eukaryotes, 
plants seem to utilize unique strategies to cope with differential 
environmental stresses, including the evolution of multi-copies 
of ER stress–related genes regulated by distinct biotic and 
abiotic stresses (Howell, 2013). Furthermore, a subset of plant-
specific transcription factors, NACs [no apical meristem (NAM), 
Arabidopsis transcription activation factor (ATAF), cup-shaped 
cotyledon (CUC)] superfamily)], have been shown to participate 
in the plant UPR. Plasma membrane (PM)–localized NAC062/
ANAC062/NTL6 relocates to the nucleus under stress, while 
inducible expression of the nucleus-localized form of NAC062 in 
the bZIP28 and bZIP60 double mutant (zip28zip60) background 
increases ER stress tolerance by activating the UPR genes (Yang 
et al., 2014a). Another membrane-anchored transcription factor, 

NAC089, whose expression is regulated by bZIP28 and bZIP60, 
also participates in ERSR by shifting from the ER to the nucleus 
and modulating the expression of programmed cell death 
(PCD)–related genes (Yang et al., 2014b). Besides membrane-
anchored NAC transcription factors, the cytosolic NAC including 
NAC103 has also been shown to be involved in regulating the 
UPR gene expression (Sun et al., 2013). Mechanisms regulating 
the relocation of ER-localized NACs have been proved to be 
mainly via proteolytic cleavages similar to other membrane-
associated transcription factors (MTFs) such as bZIP28 (Kim 
et al., 2007; Puranik et al., 2012). However, the underlying 
mechanisms regulating the relocation of NAC089 from ER to 
the nucleus remain elusive. NAC089 mRNA does not have the 
predicted double stem-loop structure, which is important for 
IRE1 splicing, suggesting that NAC089 might be activated in 
a different way from bZIP60 (Yang et al., 2014b). Further, the 
C-terminal ER lumen-facing tail of NAC089 is short and without 
a canonical S1P cutting site, which implicates that NAC089 
might not be proteolytically processed in a similar manner as 

FIGURE 1 | Cross talk between ER-phagy and endoplasmic reticulum (ER) stress responses (ERSRs) in plants. ER is both the major membrane source and key 
degradation target of autophagosomes. The part of the ER to be turned over will be engulfed at the phagophore assembly site (PAS) by forming autophagosomes 
through ATG8 interacting with ER-phagy receptors, which are yet to be identified in plants. The ATG9 vesicles donate essential membrane for the phagophore 
elongation. Mature and closed autophagosomes with cargoes enclosed in the double membrane will then fuse with the vacuole for final degradation. ERSR in plants 
contain two major pathways: IRE1- and bZIP28-associated pathways. In both cases, accumulation of misfolded proteins in the ER under stress conditions triggers 
the unfolded protein responses (UPRs). IRE1 cleaves the premature bZIP60 mRNA to achieve its mature form for the activation of downstream stress response 
genes under stress stimulation. On the other hand, the bZIP28 protein itself is targeted to the Golgi for cleavage and activation by proteinases S1P and S2P, and 
the mature form of bZIP28 reaches the nucleus for the upregulation of stress response genes. IRE1b is found to regulate both ER stress and ER-phagy responses 
in plants. Certain drugs that are commonly used to trigger or inhibit the UPR are highlighted in the enlarged box. PAS, phagophore assembly site; ATG, autophagic-
related gene; ERSR, ER stress response; IRE1, inositol-requiring enzyme 1; bZIP, basic leucine zipper; S1P, site-1 protease; S2P, site-2 protease; TM, tunicamycin; 
DTT, dithiothreitol; CPY*, misfolded protein used to mimic unfolded protein accumulation; PBA, 4-phenylbutyric acid; TUDCA, tauroursodeoxycholic acid; RIDD, 
regulated IRE1-dependent decay; BiP, binding protein; COPII, coat protein complex II.
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bZIP28 (Yang et al., 2014b). Interestingly, one rare nucleotide 
polymorphism caused by natural variation in the Arabidopsis 
Cvi ecotype results in premature stop and constitutive nuclear 
localization of NAC089, in which the C-terminus including 
the hydrophobic tail is not translated (Yang et al., 2014b). The 
existence of plant-specific NAC transcription factors functioning 
in stress responses further supports the notion that plants have 
evolved unique strategies for ERSR.

Autophagy is an evolutionarily conserved self-eating 
process mediated by a double-membrane-bound organelle, 
the autophagosome, which encloses a portion of cytoplasm 
or organelles for lysosome/vacuole delivery and degradation. 
Autophagy-related (ATG) genes and proteins have been shown 
to be central to this process (Mizushima et al., 2011). The Atg 
proteins required for autophagosome formation consist of 
several functional complexes or units: the Atg1/ULK1 kinase 
complex, the class III phosphoinositide 3-kinase (PI3K) 
complex, the Atg2–Atg18 complex, the only transmembrane 
protein required for autophagosome biogenesis Atg9, and the 
two ubiquitin-like conjugation systems: the Atg12–Atg5–Atg16 
axis and the Atg8 conjugation systems (Mizushima et al., 2011). 
The Atg12–Atg5–Atg16 system is essential for determining the 
site of Atg8 conjugation on forming autophagosomes where 
the C-terminal of pre-Atg8 is first digested by Atg4 and then 
transferred by the E1-like enzyme Atg7 and E2-like enzyme Atg3 
to the autophagosome membranes (Mizushima et al., 2011). Due 
to the important role of ATG8 lipidation for autophagosome 
development and its stable localization on both sides of 
autophagosome membranes, it is used as a universal marker of 
autophagosomes. Plants contain not only many counterparts for 
yeast/mammalian Atg proteins but also some additional factors 
that are unique to higher plants (Li and Vierstra, 2012; Zhuang 
et al., 2013; Gao et al., 2015; Qi et al., 2017; Marshall and Vierstra, 
2018; Zhuang et al., 2018). Although the UPR can alleviate ER 
stress, the overaccumulation of misfolded proteins can cause 
ER dysfunction and abnormal morphology. To restore ER 
homeostasis, selective autophagy, namely ER-phagy, is activated 
to degrade some of the misfolded proteins that have accumulated 
in the ER (Grumati et al., 2018). In yeast, ER not only provides 
membranes for autophagosomes but itself is a target of autophagy. 
Within the UPR in yeast, abnormal ER accumulating aggregated 
or unwanted proteins is selectively degraded by the vacuole via 
ER-phagy (Bernales et al., 2006; Schuck et al., 2009). ER-phagy 
requires proper cargo receptors to interact with both ATG8/LC3 
and the target for degradation, so as to act as bridges between ER 
and the forming autophagosomes. The yeast ER-phagy pathway 
requires the receptors Atg39 and Atg40, two ER membrane 
proteins that bind Atg8 through an Atg8-interacting motif 
(AIM) (Table 2) (Mochida et al., 2015). Similarly in mammals, 
degradation of ER components by ER-phagy was discovered as a 
backup system for the inefficient proteasomal degradation of ER 
proteins through ERAD under the UPR. Mammalian ER-phagy 
receptors have been identified in recent years, including 
Lnp1, FAM134B, calnexin, RTN3, CCPG1, ATL3, and SEC62 
(Khaminets et al., 2015; Fumagalli et al., 2016; Grumati et al., 
2017; Chen et al., 2018; Smith and Wilkinson, 2018; Chen et al., 
2019; Forrester et al., 2019) (Table 2). Evidence also emerges 

for the existence of plant ER-phagy in response to ER stress, 
where IRE1 is proved indispensable for plant ER stress–induced 
ER-phagy (Liu et al., 2012). In contrast, components for ER-phagy 
formation, function of ER-phagy upon ER stress, and ER-phagy 
receptors remain largely elusive in plants. Here, we summarize 
the progress of plant ER-phagy research, especially with respect 
to key regulators as well as the importance of ER-phagy to plant 
ER stress in the following sections.

IRE1B: A BRIDGE BETWEEN PLANT 
STRESS AND AUTOPHAGY
Although increasing studies have revealed the existence of plant 
ER-phagy–related proteins and their potential function for ER 
stress, a direct link between ER-phagy and ER stress was missing 
until a detailed analysis of the relationship between IRE1 and 
autophagy was published. Since the ER is a pivotal membrane 
source and target of autophagy, cross talk between ER stress 
and ER-phagy is essential for cellular organelle and material 
turnover under stress conditions (Bernales et al., 2007; Hayashi-
Nishino et al., 2009; Lipatova and Segev, 2015) (Figure 1). In 
mammals, the c-Jun N-terminal kinase pathway depends on the 
IRE1 kinase domain and is responsible for the corresponding 
autophagy activation. However, the components downstream 
of IRE1 in plants are different from those in animals, with no 
evidence showing the existence of parallel pathways (Urano 
et al., 2000; Ogata et al., 2006) (Table 1). Therefore, potential 
distinct ER stress–inducing ER-phagy mechanisms are present 
in plants. AtIRE1 is a key regulator in ER stress and ER-phagy 
responses because ire1b mutants result in reduced ER stress–
induced autophagosome formation (Liu et al., 2012). Functional 
AtIRE1b, but not AtIRE1a, is required for autophagy induction 
by ER stress, with its target mRNA bZIP60 splicing activity 
not being involved (Liu et al., 2012). Previous research also 
revealed that autophagy can be classified based on whether its 
upstream signaling is dependent on ROS and NADPH oxidase 
(Liu et al., 2009). The NADPH oxidase inhibitor DPI is able to 
block nutrient deprivation and salt stress–induced autophagy 
but not the autophagy process under osmotic stresses (Liu et al., 
2009). Both bZIP60 and bZIP28 are related to the NADPH-
dependent autophagy but not the NADPH-independent IRE1b-
regulated ER stress–induced autophagy, indicating that AtIRE1b 
is probably the sole key bridge between plant ER stress and 
ER-phagy responses (Liu et al., 2009). Whether the nucleotide 
binding and RNase activity of IRE1b connect the pathways 
remains to be further determined.

A very recent study elucidated another functional aspect of 
AtIRE1b in monitoring ER stress–induced ER-phagy through 
the conserved response named regulated IRE1-dependent decay 
(RIDD) (Bao et al., 2018). Upon acute or chronic stress in the 
mammalian system, IRE1 degrades ER membrane resident 
mRNAs via RIDD (Hollien et al., 2009; Chen and Brandizzi, 
2013). RIDD further increases ER stress levels by degrading 
UPR regulators, which finally initiates apoptosis via suppressing 
antiapoptotic pre-miRNAs at the late stage of intense ER stress 
(Han et al., 2009; Upton et al., 2012). In the study of Bao et al. 
(2018), 3 out of 12 RIDD targets were found to repress autophagy 
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upon their over-expression in plants, implying the regulatory 
role of AtIRE1b in ER stress–induced autophagy (Bao et al., 
2018) (Table 2). AtIRE1b may not be the direct factor that 
promotes autophagy in response to ER stress but likely serves 
as a “licensing factor” linking ER stress to autophagy through 
degrading the RNA transcripts of factors that interfere with the 
induction of autophagy (Bao et al., 2018).

ER-RELATED AUTOPHAGIC 
REGULATORS AND THEIR POTENTIAL 
ROLES IN PLANT ER-PHAGY

Besides IRE1b, several other ER-related regulators in plant 
autophagy have been recently characterized. Phosphate deficiency 
response 2 (PDR2) and low phosphate response 1 (LPR1) are new 
entries in the group of plant autophagy and ER-phagy regulators. 
PDR2 encodes the single P5-type ATPase of Arabidopsis thaliana 
(AtP5A), which controls the biogenesis and activity of LPR1, 
a cell wall–targeted ferroxidase (Table 2) (Ticconi et al., 2009; 

Muller et al., 2015; Naumann et al., 2019). PDR2 and LPR1 are 
reported to interact functionally and respond coordinately to 
iron-triggered root growth inhibition upon inorganic phosphate 
(Pi) limitation (Naumann et al., 2019). By comparing mutant 
phenotypes among autophagy, ERSRs, and local Pi deficiency 
responses, the PDR2–LPR1 module is proposed to regulate Pi 
deficiency–induced autophagy in root tips via the ER stress Ire1 
axis but not through TOR-mediated macronutrient-involved 
systemic recycling (Naumann et al., 2019).

Nck-associated protein 1 (NAP1) is an ER-resident 
component of suppressor of Wiskott–Aldrich syndrome 
protein (WASP)/cAMP receptor (Scar)/WASP family 
verprolin homologous (WAVE) complex (Deeks et al., 2004). 
In eukaryotic cells, Arp2/3 (actin-related proteins) complex, 
playing an essential role in F-actin organization and cell 
morphogenesis, can be activated by WAVE complex via binding 
with actin filaments ((Weaver et al., 2003). Arabidopsis NAP1 
is recruited to the double-membrane autophagic structure 
decorated by ATG8 upon constant pressure stress induction, 
where nap1 mutants display autophagic defects, indicating the 

TABLE 2 | ER-phagy–associated proteins and their functions.

Organisms Proteins Functional annotation References

Yeast (Sc) Atg39 Essential for cell survival under nitrogen 
starvation, receptors for perinuclear ER.

Mochida et al., 2015

Atg40 Functional counterpart of FAM134B, 
receptors for peripheral ER, interact with 
the Atg1 complex.

Mammal (Hs) Lnp1 Stabilizes rearrangements of the ER 
network.

Chen et al., 2018

FAM134B Reticulon-like protein present on sheet ER. Khaminets et al., 2015
Calnexin Co-receptor for ER luminal misfolded 

procollagens
Direct interaction with FAM134B.

Forrester et al., 2019

RTN3 Tubular ER-resident protein. Grumati et al., 2017
SEC62 ER translocon. Fumagalli et al., 2016
CCPG1 A vertebrate-specific protein can interact 

not only with LC3/GABARAP but also with 
FIP200; required for efficient degradation 
of tubular ER. 

Smith and Wilkinson, 2018

Plants (At) IRE1b Key regulator in ER stress responses.
Nucleotide binding activity of IRE1b 
is required for ER stress–mediated 
autophagy.

Liu et al., 2012
Bao et al., 2018

PDR2, LPR1 PDR2 is a single ER-resident P5-type 
ATPase (AtP5A), which controls the 
secretion and activity of LPR, the cell 
wall–targeted ferroxidase. Pi deprivation–
induced ER stress–activated autophagy 
requires the LPR1–PDR2 module.

Naumann et al., 2019

NAP1 A component of the SCAR/WAVE 
complex, required for ARP2/3-mediated 
actin nucleation.
nap1 mutant has reduced 
autophagosomes and is more sensitive to 
nitrogen starvation and salt stress.

Wang et al., 2016

FAM134B, family with sequence similarity 134 member B; Lnp1, lunapark1; RTN3, reticulon 3; CCPG1, cell-cycle progression gene 1; LC3, microtubule-associated protein light 
chain 3; GABARAP, gamma-aminobutyric acid receptor–associated protein; FIP200, 200 kDa FAK family kinase-interacting protein; PDR2, phosphate deficiency response 2; AtP5A, 
P5-type ATPase; LPR1, low phosphate response 1; Pi, phosphate (inorganic); NAP1, nck-associated protein 1; SCAR, suppressor of cAMP receptor; WAVE, Wiskott–Aldrich 
syndrome (WASP) family verprolin homologous; Arp2/3, actin-related proteins 2/3.
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regulatory role of NAP1 in facilitating plant autophagosome 
biogenesis by its activating effect on actin nucleation (Wang 
et al., 2016). The sequential arrival of NAP1 and ATG8 to the 
ER membrane hints at a potential role of NAP1 in recruiting 
ATG proteins for forming autophagosomes neighboring to the 
ER. Albeit NAP1 has been demonstrated to be essential for the 
autophagosome biogenesis upon nitrogen starvation and high 
salt stress, it would be of great interest to illustrate the possible 
role of NAP1 in autophagosome formation upon other stresses 
like ER stress, as constant pressure triggers accumulation of 
NAP1-positive autophagosomes.

FUTURE PERSPECTIVES

Despite an increasing number of papers on plant ER-phagy in 
recent years with exciting findings, there remain open questions 
about the receptors and regulators that link plant stress to 
ER-phagy. Even though a variety of ER-phagy receptors have 
been characterized in yeast and mammals, plant receptors 
for autophagy are largely unknown. Nonetheless, plants 
encode homologs for most of the receptors such as Lnp1, 
calnexin, reticulon, ATL3, and Sec62 in its genome; whether 
they perform a similar function as in mammalian autophagy 
remains under-investigated. Besides, plant unique receptors 
may exist, as plants possess unique types of autophagy such 

as chlorophagy. Thus, future studies can be expected on the 
identification and characterization of plant-specific ER-phagy 
receptors. Furthermore, as sessile organisms, plants need to 
adapt to environmental changes and stresses during growth and 
development. Autophagy is an important biological process for 
nutrient recycling upon stresses. It will be exciting to resolve how 
plants can sense stresses such as ER stress or other biotic/abiotic 
stresses to activate ER-phagy to relieve plants from adverse 
conditions and support their growth.
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