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Image analysis methods for measuring crop phenotypes may replace traditional 
measurements if they more efficiently and reliably capture similar or superior information. 
This study used a recreational-grade unmanned aerial vehicle carrying a spectrally-
modified consumer-grade camera to collect images in which each pixel value is a 
vegetation index based on the normalized difference between the blue and near infrared 
wavelength bands (BNDVI). The subjects of the study were Zea mays hybrids with good 
yield potential grown in 4-row plots. Flights were conducted at least once per week 
during three successive growing seasons in south-central Wisconsin. Average BNDVI 
for each plot (genotype) rose steadily through June, peaked in July, and then declined 
as plants matured. BNDVI histograms changed shape over the season as the canopy 
concealed soil, became more uniformly green, then senesced. Principal Components 
Analysis (PCA) captured the change in histogram shape. PC1 represented canopy 
closure. PC2 represented the mean of the BNDVI distribution. PC3 represented the 
spread of the distribution. Correlation analysis showed that flowering time correlated with 
PC2 and PC3 best (r ≈ 0.5) a few days before the event (day in which 50% of the plants 
exhibited tassels). Three ears were picked from each plot to quantify kernel dimensions 
by image analysis before each plot was mechanically harvested to determine grain weight 
per plot. Correlations between this measurement of yield and PC2 were low in June but 
exceeded 0.4 within 10 days after flowering. Kernel length correlated similarly with PC2. 
The correlation between PC2 and kernel thickness displayed a similar but inverted time 
course. These results indicate that greater mid-season BNDVI values correlate positively 
with yield comprised of tall, thin kernels. Partial least squares regression performed on 
the BNDVI time courses predicted flowering time (r = 0.54–0.79) and yield (r = 0.4–0.69). 
This three-year experiment demonstrated that readily available hardware and software 
can create a phenotyping platform capable of predicting maize flowering time, yield, and 
kernel dimensions to a useful degree.

Keywords: normalized difference vegetation index, Zea mays, unmanned aerial vehicle, flowering time, grain 
yield, kernel dimension
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INTRODUCTION

Genotype-to-phenotype studies will produce stronger 
conclusions and the process of improving quantitative traits will 
accelerate if the methods for measuring crop plant phenotypes 
are as discriminating as the next-generation DNA sequencing 
methods used to characterize the genotypes (Edwards et al., 2013; 
Bevan et al., 2017). Image analysis methods have the potential to 
provide the needed phenotype data. When successfully applied, 
they measure standard traits more precisely, objectively, and 
automatically than manual methods, and they can measure 
informative features for which there is no manual equivalent. 
However, acquiring image data from which useful phenotype 
data can be extracted is more challenging in a field experiment 
than in situations where the imaging scene can be controlled 
and optimized. White et al. (2012) and Araus and Cairns 
(2014) discuss the many challenges to field-based phenotype 
measurements using cameras and other sensors.

Satellites and piloted aircrafts have been used to obtain 
aerial images of field-grown crops for various applications. 
For instance, Landsat and Sentinel-2 satellites collect red and 
near-infrared (NIR) wavelength bands from regularly revisited 
locations to assess global vegetation and crop health (Rouse et al., 
1973; Tucker and Choudhury, 1987). Unfortunately, the spatial 
resolutions of these methods (Issei et al., 2010) are on the order 
of meters or tens of meters, which is not fine enough to serve 
the phenotype measurement needs of many crop plant research 
projects. Cameras and other sensors mounted to ground-based 
vehicles, overhead gantries, or cable supports can collect detailed 
phenotype information (Furbank and Tester, 2011; Montes et al., 
2011; White et al., 2012; Deery et al., 2014). Growing in popularity 
is the small unmanned aerial vehicle (UAV) programmed to fly 
along a path defined by a series of waypoints marked by global 
positioning system (GPS) coordinates (Colomina and Molina, 
2014; Yang et al., 2017). When outfitted with cameras, UAV 
technology provides a low-cost approach to collecting images 
with the required spatial and temporal resolutions. Potential 
uses of UAV technology include measuring seedling emergence, 
plant height, ground canopy cover, leaf angle distribution, leaf 
area index, and overall crop health in various crop species (for 
a review, see Yang et al., 2017). For example, a surface model 
generated from aerial color images measured barley and rice 
crop height (Bendig et al., 2013a; Bendig et al., 2013b), height 
and growth rate in maize and wheat (Holman et al., 2016; Li et al., 
2016), and sorghum and maize plant height at many points across 
the growing season (Pugh et al., 2018). UAV platforms were 
used to measure vegetation indices based on ratios of spectral 
bands captured by a camera in tens of thousands of wheat plots 
(Haghighattalab et al., 2016). Hyperspectral sensors mounted on 
UAVs collected many wavelength bands from which the biomass 
and nitrogen content of wheat, barley, and maize were estimated 
(Montes et al., 2011; Pölönen et al., 2013). A UAV platform 
carrying a hyperspectral imager and a thermal camera was used 
to detect water stress in a citrus orchard (Zarco-Tejada et al., 
2012). Numerous studies also used UAV platforms to measure 
maize plant lodging (Chu et al., 2017), ground canopy cover in 
wheat (Yu et al., 2017), plant density, early vigor, and radiation 

interception in maize (Liebisch et al., 2015), as well as soil and 
plant interactions, and weed management (Shi et al., 2016).

A desirable application of UAV technology is to predict crop 
yield based on a vegetation index derived from aerial images. A 
common vegetation index is the normalized difference vegetation 
index (NDVI). It is based on the principal that chlorophyll absorbs 
red and blue wavelengths while reflecting near-infrared radiation 
(Tucker, 1979). To measure NDVI, the camera’s detector must be 
sensitive to near-infrared (NIR) and blue or red wavelengths. 
NDVI is calculated at each pixel according to Equation 1.

 NDVI
NIR Red
NIR Red

=
− 
+ 

 (1)

A value of 1 indicates green plant material due to absorption 
of red wavelengths relative to the NIR reference, while -1 
indicates the lack of red-absorbing material. Higher NDVI 
values usually indicate greater vigor, and therefore may relate 
to yield potential and abiotic/biotic stress tolerance (Candiago 
et al., 2015; Condorelli et al., 2018). For example, a UAV-based 
platform generated NDVI images that were used to estimate the 
effects of low nitrogen stress on maize yield (Zaman-Allah et al., 
2015). Makanza et al. (2018) used RGB image data to create a 
novel senescence index. It showed a moderately high heritability 
and a strong genetic correlation with maize grain yield. Cerrudo 
et al. (2017) and Condorelli et al. (2018) used NDVI and other 
spectral-based indices to study the effects of heat and drought 
stress on grain yield in maize and wheat. In rice, dynamic changes 
in vegetation indices during early to middle growth stages were 
used to predict rice grain yield (Zhang et al., 2019). For wheat, a 
fairly high correlation of vegetation index values with yield was 
observed (Guan et al., 2019).

Many studies employing UAVs to measure a vegetation index 
focused on growth, phenology, and stress responses of crops 
(Yang et al., 2017). The differences between comparison groups 
in such studies are often large. Fewer studies have used a UAV 
imaging platform to discern subtle differences among genotypes 
experiencing a similar environment, which a tool must achieve 
if it is to be useful in a breeding program. Liebisch et al. (2015) 
and Han et al. (2018) included multiple maize genotypes in 
their analyses of NDVI acquired from airborne platforms but 
testing for differences between them was not a feature of their 
reports. We designed the present study to determine if analyses 
of vegetative index values could discern differences in flowering 
time, grain yield, and kernel dimensions between different hybrid 
maize plants, each with good yield potential.

MATERIALS AND METHODS

Germplasm and Field Trials
The field experiments were conducted between June and October 
of 2016, 2017, and 2018 at the University of Wisconsin’s Arlington 
Agricultural Research Station in Arlington, Wisconsin, USA 
(43.33° latitude and -89.34° longitude). Twenty-five F1 maize 
hybrids were planted as randomized complete block designs on 
5/24/2016, 5/10/2017, and 5/24/2018, then harvested in late-
October. Most but not all of the genotypes were used each year. 
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The complete list is presented in Supplementary Table S1. Each 
replicated plot (i.e., two trials) contained 4 rows with 40 plants 
each. The rows were 4.57 m long, 0.76 m apart, and the target 
density was 78,200 plants ha−1.

Flowering Time
Flowering time is typically scored as the date when 50% of the 
plants in a plot display tassels for the male, and when 50% of 
the ears have extruded silks to receive pollen. These standard 
measures of flowering time were made by repeated visual 
inspection of each plot during the flowering period each year. 
Specifically, to record flowering data, we visited each plot every 
other day during the flowering period in late July. We recorded 
the day when half of the plants in a plot were shedding pollen or 
displayed silks, for each genotype.

Kernel Dimensions
To measure kernel dimensions, three mature ears were hand-
picked from each plot prior to machine harvest. We used a 
previously developed image analysis pipeline (Miller et al., 2017) 
to measure kernel traits for each of the genotypes for each year.

Grain Yield
A combine harvester measured the mass of grain and percent 
moisture for each plot at the end of growing season (mid-
October). Grain yield, which includes the grain harvested by the 
combine and the hand-picked ears, was adjusted to 15.5% grain 
moisture. Grain yields for each genotype for each year are shown 
in Supplementary Table S1.

Unmanned Aerial Vehicle Platform
The UAV platform consisted of a quadcopter (model IRIS+; 
3D Robotics, Berkeley, CA, USA) and a Canon S110 compact 
camera attached to a gimbal that maintained the camera in 
the nadir position. The sensor in the camera was modified 
by Llewellyn Data Processing (http://maxmax.com) such that 
the red channel sensed wavelengths between 670 and 770 nm, 
with a peak at approximately 710 nm. Therefore, instead of a 
red, green, and blue (RGB) image, this camera created an NIR, 
green, blue (NGB) image. A plot of the spectral sensitivity of 
the modified sensor provided by Llewellyn Data Processing 
is presented in Supplemental Figure S1. Custom software 
controlled the camera to enable time-lapse imaging at a 
frequency of approximately one frame per second. The focal 
length was 5 mm, the aperture was f/2.5, the ISO sensitivity 
was 200, the shutter speed was 1/1600 s, and the image size was 
3000 X 4000 pixels. The files were saved in Joint Photographic 
Expert Group (jpeg) format. The ground sample distance of the 
full-field image was 0.7 cm per pixel. We used Mission Planner 
autopilot software (http://www.arducopter.co.uk/advanced.
html) to design a flight route. The flight altitude was 25 m and 
the flight speed was 1 m s-1. These specifications combined 
to produce images that overlapped at least 60% forward 
and laterally. Flights were conducted only during fully clear 
(cloudless) periods between 10 a.m. and 3 p.m. at least once per 
week during each of the three seasons, with a higher frequency 
around the flowering period. Early season flights were not 

performed in 2018 because 2016 and 2017 results indicated June 
time points were not sufficiently useful to justify the analyses. 
In late August 2018, a severe storm caused widespread lodging 
so late season flights were not performed.

Image Processing and BNDVI Extraction
Agisoft PhotoScan Professional software (www.agisoft.com) 
was used to construct a full-field image from the individual 
frames after each flight. The parameter settings, including 
raw image alignment, mesh building, and orthoimage 
generation, were held constant for each field image 
construction. The resulting three channel NGB image of the 
field was then converted into a blue channel-based NDVI 
layer (BNDVI, Equation 2) by a plugin for ImageJ/FIJI that 
can be downloaded here: https://github.com/nedhorning/
PhotoMonitoringPlugin/tree/master/downloads.

 BNDVI
NIR Blue
NIR Blue

=
− 
+ 

 (2)

Figure 1A shows a representative NGB image and Figure 1B 
shows the corresponding BNDVI image. Each pixel in the BNDVI 
image is associated with a value ranging from -1 to 1. Figure 1C 
uses histogram representations of images within regions of 
interest to demonstrate that pixels corresponding to ground or 
maize canopy are reasonably well separated by choosing 0.06 as 
the threshold (background < 0.06 < plant).

Individual 4-row plots were manually cropped from the 
full-field BNDVI image. The alley separating ends of rows 
was excluded (Figure 1). Each plot sub-image consisted of 
approximately 2 x 105 pixels, each representing a BNDVI value 
ranging from -1 to 1. The average BNDVI values for each 
genotype at the time of flowering for each year are presented in 
Supplementary Table S1. Most analyses were performed not on 
average BNDVI values but on the histogram of BNDVI values 
for each plot at each flight date. These histograms were treated 
as quantitative, time-dependent phenotypes to be compared 
between genotypes.

Principal Component Analysis (PCA)
The BNDVI values between 0 and 1 were placed into 999 
equally spaced bins to create a histogram for each four-row 
plot. The histograms from all genotypes (g), trials (t = 2), 
flight-dates (d), and years (y) were stacked into the matrix X 
with n = × t × d × y rows and m = 999 columns to make a n × 
m matrix containing one histogram for every plot measured 
during the study. Principal component analysis reduced the 
number of variables and provided a potentially interpretable 
set of latent scores based on the eigenvectors of the covariance 
matrix of X, or the right singular vectors from the singular 
value decomposition of the column-mean centered X. The 
cumulative sum of the eigenvalues of the covariance matrix 
of X divided by the total variance is the percent variance 
explained. We took the first 15 components, which explained 
greater than 99% of the variance and created three matrices 
(X2016, X2017, X2018), each with g × t × d rows and 15 columns, 
which contained the scores used for partial least squares 
regression analysis of the traits.
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Partial Least Squares Regression (PLS-R)
To prepare for partial least squares regression (PLS-R), a technique 
commonly used when the number of observations is greater 
than the number of trials, the measured traits (r = tassel time, 
silk time, kernel thickness, kernel width, kernel depth, and grain 
yield) for all genotypes (g) were stacked into three matrices (Y2016, 
Y2017, Y2018) with 2g rows (because there were two trials of each 
genotype) and one column for each separate r. The goal of the 
PLS-R was to obtain a low dimensional model that maximized the 
covariance between Xyear and Yyear. For each Xyear and Yyear pair, one-
hundred PLS-R models were constructed, with 30% of the data 

randomly selected for hold out. To guard against overfitting, the 
model was applied to the hold-out group and the factor threshold 
(fT) was found where the predictive power of the model began to 
diminish. The average threshold (fA) across the 100 hold-out draws 
was computed and reported in Table 1 along with the correlation 
coefficients that indicate the degree of prediction accuracy. We also 
performed the PLS-R using the original histogram values instead 
of their corresponding 15 PCs. The predictions were generally 
slightly higher when the original histogram data was used but 
the distribution of correlation values obtained from 100 different 
hold-out trials were not statistically different (p = 0.05).

FIGURE 1 | Aerial image data obtained by the UAV platform. (A) A representative image of a field containing all the genotypes obtained with a camera modified to 
have an NIR, green, and blue channel. (B) The calculated BNDVI image layer. (C) Histogram of BNDVI values from canopy (red line) and soil background (black line). 
The threshold 0.06 was used as cutoff to extract plant BNDVI in all plots. 
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RESULTS

BNDVI Profiles During Growing Season
Figure 2A shows mean BNDVI values for the canopy pixels 
(average of the duplicated plots) for each of the 25 hybrids grown 
in 2016, at each flight date. BNDVI increased during the early 
growing season, peaked during the flowering period, and then 
decreased as senescence progressed as previously reported (Viña 
et al., 2004). A dip in BNDVI was consistently observed a few days 
preceding flowering for all genotypes in 2016. This phenomenon 
was observed again in 2017 and 2018 although it was not as 
obvious as in 2016 (Figures 2B, C). Han et al. (2018) also 
detected a transient reduction in NDVI near flowering time. The 
appearance of tassels in the images at flight dates corresponding 
to the dip support the idea that the reduced BNDVI was due to 
a small but significant contribution of non-green tassel material 
entering the scene. These results indicate that BNDVI could be 
monitored to detect flowering time.

Principal Components Analysis of BNDVI 
Histograms
Instead of calculating the mean BNDVI value for each plot, at 
each flight date, the BNDVI values were treated as a frequency 
histogram. Figure 3A shows histograms of BNDVI values 
including those below the 0.06 threshold from one of the plots 
at each flight date during the 2016 season. The distributions 
change shape as the canopy covers the ground, becomes 
greener, then senesces.

The shape of histograms may carry important information that 
aids the prediction of maize traits. The meaning of the eigenvectors 
was explored by independently sweeping the score values, back-
projecting the corresponding histogram model, and adding back 
the average. Shown in Figures 3B–D are the back-projection 
models for the three eigenvectors that explain 96% of the variance. 
The first principal component (PC1) accounts for 71% of the total 
variability. The sweeps indicate that it captures the shift in the 
distribution of BNDVI from low values corresponding to soil to 
high values indicative of maize canopy. PC2, which accounts for 
19% of the total variance, shifts the overall distribution to greater 
BNDVI values. PC3, which explains 6% of the variance, changes 
the shape of histogram toward a bimodal distribution.

The principal component scores were plotted as a function of 
flight date made relative to the mean flowering date for all genotypes 
for each of the three years (Figure 4). In 2016, the year in which 
flights were spread most evenly across the season, PC1 rapidly 

decreased early, consistent with it interpreting soil background. The 
same was observed in 2017 but in 2018 the early season was not 
surveyed. In each year, PC2 showed a tendency to drop from a mid-
season high, consistent with it interpreting average greenness. No 

TABLE 1 | Correlation coefficients (r) of partial least squares regression analysis 
of various maize traits. Numbers in parentheses are the minimum number of 
factors needed for accurate predictions.

Year Tassel Silk Grain 
yield

Kernel 
length

Kernel 
thickness

2016 0.79 (4) 0.75 (6) 0.69 (4) 0.44 (5) 0.31 (4)
2017 0.54 (6) 0.55 (7) 0.45 (4) 0.41 (8) 0.35 (5)
2018 0.77 (6) 0.76 (7) 0.40 (3) 0.37 (4) 0.39 (7)

FIGURE 2 | Change in BNDVI for different maize genotypes across the 
growing season. (A) 2016, (B) 2017, and (C) 2018. Two vertical lines in each 
panel mark the flowering time range for all genotypes.
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FIGURE 3 | Principal component analysis of vegetation index histograms. (A) BNDVI histograms from a representative genotype shifted during the 2016 growing 
season. Parameter sweeps of the back-projection models for the three eigenvectors (PCs) that explain 96% of the variance in histogram data from all trials, years, 
genotypes, and flight dates (B–D). PC scores ranged from the minimum score to the maximum score at five steps along each eigenvector. See the Results section 
for an interpretation of the effects the three PCs.

FIGURE 4 | Average principal component scores derived from BNDVI histograms of all genotypes during the three growing seasons. The average date of flowering 
of all genotypes was set as day 0.
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pattern in PC3 across the season was apparent, consistent with PC3 
representing only 6% of the total variance.

The main aim of this study was to find factors that could be used 
to distinguish important traits among maize genotypes. Figures 
5A, B show the histograms from a low yield genotype (B14A/
C103; 10.1 kg/plot) and a high yield genotype (PHW52/TX205; 
27.6 kg/plot) at each flight date in 2016. Figures 5C-E show the 
seasonal course of average PC1, PC2, and PC3 from 6 genotypes 
with lowest grain yield and 7 genotypes with highest grain yield in 
2016. There was no difference in PC1 between the two genotype 
groups before the flowering period but 30 days after flowering, 
PC1 for the low yielding genotypes rose more quickly than the 
high yielding genotypes. PC2 was higher for the high-yielding 
genotypes for most of the season, while PC3 did not demonstrate 
any obvious trend across the whole season. The PC scores of these 
two contrasting genotypes indicate that higher yield is associated 
with a more persistent and full green canopy after flowering. This 
comparison of genotypes contrasting with respect to plot yield gave 
reason to seek other correlations between the BNDVI histogram 
principal components and other agronomically relevant traits.

Flowering Time: Correlations With 
Histogram Principal Components
Maize is a monoecious plant that produces a terminal male 
inflorescence (tassel) at the shoot apex and one or more lateral 

female inflorescences (ears) along the stalk axis (Bortiri and 
Hake, 2007). The timing of male and female flower maturation, 
or flowering time, greatly influences the potential grain yield at 
harvest time. Flowering time is therefore a very important trait 
to measure in a maize breeding program. To evaluate whether 
UAV-based BNDVI measurements contain information about 
male flowering time scored on the ground, we calculated 
Pearson’s correlation coefficients between the histogram PC 
values from each plot and tassel-appearance date. The most 
salient result in Figure 6 is that slightly before the manually 
scored male flowering time (average for all genotypes), PC2 
sharply increased and PC3 coordinately decreased. The 
biological basis of these coupled parameter changes is not 
known, but they could be useful indicators of maize flowering 
time.

Yield: Correlations With Histogram 
Principal Components
The genotypes studied here varied more than two-fold with 
respect to grain yield measured at the end of the season 
(Supplementary Table S1). Figure 7A shows the correlation 
between the principal components and grain yield were as 
high as 0.6 after the flowering period. PC2 correlated positively 
and PC1 correlated negatively with grain yield. Because PC2 
appeared to interpret the mean of the BNDVI distribution 

FIGURE 5 | BNDVI histogram principal components change across the growing season. BNDVI histograms from a low yield (A) and a high yield (B) genotype 
change shape during the 2016 growing season. (C–E) The principal components of the histograms corresponding to the 6 lowest-yielding genotypes (Low yield) 
and the 7 highest-yielding genotypes (High yield) in 2016 were averaged and plotted across the growing season. Significant differences in PC1 (C), especially PC2 
(D), and PC3 (E) were found between the low and high yielding pools of genotypes. An asterisk above a point indicates P < 0.05.
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(Figure 2C), we tested the correlation between mean BNDVI and 
grain yield. Mean BNDVI and PC2 correlated with grain yield 
almost identically, indicating a greener canopy post-flowering 
is associated with a higher yield. PC1 negatively correlated with 
yield, indicating less visible ground (higher canopy coverage) 
after flowering is associated with a higher yield. PC3 negatively 
correlated with yield, indicating a less uniform canopy is 
associated with higher yield. Plant leaf greenness indicated by 
NDVI is an important trait, probably reflecting the ability to 
maintain robust photosynthesis needed for grain filling in the 
final growth stage (Zheng et al., 2009).

Kernel Traits: Correlations With Histogram 
Principal Components
Grain yield is the product of kernel number and kernel weight. 
The latter is a function of kernel length, width, and thickness. 
The correlation between NDVI histograms and these separate 
components of yield was calculated. Figure 7B shows that kernel 
length displayed a correlation pattern similar to that displayed 
by grain yield (Figure 7A) while kernel thickness (distance each 
kernel occupies along the axis of the ear) displayed an inverse 
but otherwise similar correlation pattern (Figure 7C). The kernel 
width measurement returned by the analysis pipeline is probably 
related to and constrained by kernel row number, which is a 
highly heritable trait (Liu et al., 2016). This may explain why 
kernel width did not correlate well with BNDVI histogram 
principal components. Together, these results indicate that 
the features extracted from UAV-based images can be used to 
distinguish high-yielding genotypes from low yielding genotypes 
and that the higher yields are comprised of tall, thin kernels.

Partial Least Squares Regression (PLS-R) 
Modeling
The analyses described thus far were designed to evaluate 
correlations at each sample date. As an alternative approach, we 
performed partial least squares regression (PLS-R) modeling 
to determine if the data contained in the BNDVI histograms 
obtained for each plot at all sample dates could predict the 

measured agronomic traits (flowering time, grain yield, and kernel 
dimensions). The PLS-R model was run 100 times, each time with 
30% of the trials held out. The correlation coefficients obtained for 
each of the 100 runs were averaged and displayed in Table 1. The 
minimum number of factors needed to maintain predictive power 
of the model is also presented in Table 1. In some cases, especially 
for male and female flowering dates, a predictive relationship was 
discovered.

The results presented here are most useful if it can be assumed 
that the subjects (hybrid genotypes) are each unique and genetically 
unrelated. More caution would need to be exercised when 
interpreting the results if the genotypes belonged to a smaller 
number of classes characterized by shared portions of the genome. 
The potential source of misleading correlation to guard against is a 
familial relationship called population structure. It can be assessed by 
performing principal component analysis of genotype marker sets. 
Such an analysis of many of the genotypes used here is presented in 
Supplementary Table S2. The percent of genetic variation explained 
by the first four principal components of the genotype data was found 
to be 12.3, 6.0, 4.7, and 4.5. These genotype principal components did 
not correlate well with the BNDVI histogram principal components 
(Supplementary Table S3). Furthermore, PLS-R predictions 
of grain yield in 2016 and 2017 based on genotype principal 
components was 0.3, substantially lower than the predictions based 
on BNDVI histograms (Table 1). Thus, the BNDVI values derived 
from the UAV platform contain more predictive information than 
the genotype variables; population structure does not appear to be a 
significant confounder of the results and conclusions presented here.

DISCUSSION

Automated image acquisition followed by computational analysis 
promises to advance research on crops by producing better and new 
phenotype measurements (Perez-Sanz et al., 2017). Any approach 
begins with a decision about how to acquire images that will contain 
information about the process or trait of interest. Simplicity of design 
and operation is an important consideration when deciding on an 
image-acquisition platform (Kasampalis et al., 2018). The platform 

FIGURE 6 | Correlations between male flowering (tassel) time and BNDVI histogram principal components in 2016, 2017, and 2018. In each panel, the blue line 
indicates the correlation between tassel time and mean BNDVI. The other lines represent correlation with the indicated principal component. Any correlation value 
that is significant at the P < 0.05 level is marked with a red dot.
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used here was based on a generic UAV and a compact digital camera 
mounted with its optical axis perpendicular to the ground. Open-
source computer code developed by a photography community 
controlled the camera and the UAV was guided along routes created 
by free software running on a standard portable computer. The 
platform used standard global positioning systems (GPS) to navigate 
but not to tag the images. Neither GPS information nor ground 
reference points were necessary to construct full-field images from 
the highly overlapping component images. During a 5 minute flight 
session, the simple, low-cost UAV platform collected all the data 
needed to construct a full-field image comprising 50 plots with sub-
centimeter resolution. Preliminary surveys of 1,000 two-row plots 
were completed in less than one hour.

There are some tradeoffs associated with the simple design 
and easy operation of the platform. The spectrally modified 
camera does not produce a standard NDVI measurement so the 
index values reported here can only be qualitatively compared 
with the results of other studies. To minimize the size of data 
files, the images were compressed and saved in jpeg format, 
which can distort color ratios and therefore affect vegetation 
indices (Verhoeven, 2010). Calibration against a color standard 
in the field was not performed so the effects of seasonal variation 
in sunlight quality were not removed from the data. While 
these issues would negatively affect the accuracy of an NDVI 
measurement, none of them affects the ability of the platform to 
quantitatively compare genotypes on a given date because images 

FIGURE 7 | Correlations between yield, kernel dimensions and BNDVI histogram principal components in 2016, 2017, and 2018. (A) grain yield, (B) kernel length, 
and (C) kernel thickness. In each panel, the blue line indicates the correlation between the trait and mean BNDVI. The other lines represent correlation with the 
indicated principal component. Any correlation value that is significant at the P < 0.05 level is marked with a red dot.
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of each were acquired on clear days within minutes of each other. 
In fact, this platform produced an index that displayed a wide 
range and no saturation as the corn grew and matured, in contrast 
to a recent report of NDVI and its correlation with maize yield in 
different nitrogen conditions (Buchaillot et al., 2019).

It may be surprising that sampling two broad wavebands at 
200,000 points within a plot across genotypes and time could 
produce metrics that correlated strongly with differences in 
flowering time, yield, and kernel thickness, but that is the central 
conclusion of this study. The correlations were reproducible across 
years. The predictive metrics derived from principal component 
analysis of BNDVI histograms have no traditional analog or 
manually-measured equivalent, but the correlations with yield 
were high enough to be useful in a selection process and higher 
than other researchers found using average NDVI as the metric 
(Spitkó et al., 2016; Buchaillot et al., 2019). The BNDVI histogram 
may be more useful for predictions than a simple plot average 
because multivariate analysis of histogram shape can de-emphasize 
uninformative values, for example those that may correspond to 
soil. The present results indicate that the metrics derived from the 
BNDVI histograms predict yield as well or better than genomic 
selection methodologies (Zhao et al., 2012). Our results support 
a recent suggestion to combine spectral information and genomic 
selection to improve breeding processes (Crossa et al., 2017). Other 
uses for mid-season information that reliably relates to yield include 
forecasting a year’s harvest and for inferring yield outcomes that 
were not accurately measured due to late-season storm damage.

Flowering time in relation to growing season has an 
important effect on yield. Traditionally, flowering time is 
measured by humans visually inspecting plots. Therefore, the 
method is prone to individual subjectivity. In 2018, two people 
independently scored flowering time of the plots studied in this 
project. The correlation between their two data sets was 0.82. 
Acquiring BNDVI data frequently during the flowering window 
with a simple UAV platform may more accurately and efficiently 
measure flowering time than human scorers. The feature in the 
data that appears to cause the correlation between NDVI and 
flowering is a transient reduction or dip, possibly due to the 
abrupt appearance of tassel material that is not green. In addition 
to being useful for determining the timing of tassel emergence, 
this feature in the data could serve as a proxy measurement of 
tassel size and structure (Gage et al., 2017), which may affect 
photosynthesis by shading the canopy (Duncan et al., 1967).

At a high level, yield is a function of canopy photosynthesis 
(source) and utilization of photosynthetic products especially in 
developing kernels (sink). Because a vegetation index measures 
the interaction between light and photosynthetic pigments, and 
may even correlate with photosynthetic capacity (Gamon et al., 
1995), it is reasonable to consider that the platform used in this 
study measured source-related traits that affect yield. Lee and 
Tollenaar, (2007) argue that a slow rate of pigment loss in the 
latter stages of the season, a delay in senescence termed “stay 
green,” is associated with greater yield. The transcriptional and 
metabolic pathways associated with the stay-green phenomenon 
are beginning to be elucidated (Sekhon et al., 2019). The BNDVI 
histograms may have captured genotype-dependent differences 
in “stay green” that are associated with grain yield, resulting 

in the observed reproducible correlations with the histogram 
principal components. Performing more flights through the 
senescence period may improve yield predictions from BNDVI 
data by characterizing the senescence time course better. A 
more targeted or hypothesis-based analysis of the BNDVI 
histograms may capture the senescence time course better than 
the principal components approach taken here, resulting in 
better predictions.

The UAV platform described here collects data from which 
metrics that correlate well with flowering time, yield, and kernel 
dimensions can be computed. The bottleneck in the process is 
isolating the individual plots from the full field image. If future 
software development activities can automate this currently 
manual step, then the advantages of a simple aerial platform for 
measuring maize in a field can be put into full practice.

CONCLUSION

The present study demonstrated that a UAV-based imaging 
platform assembled from consumer-grade components can 
generate measurements of a vegetation index that allowed the 
flowering time, yield, and kernel dimensions of maize hybrids to be 
compared. Rather than averaging the index values to summarize 
the plot, the frequency histograms of the values were decomposed 
into principal components. The three principal components that 
explained most of the variance were interpretable and predictive 
of tassel time, grain yield, kernel length, and kernel thickness. If 
a future software development effort could automate the step of 
isolating individual plots from the full-field image, the methods 
described here could allow essentially any research group to 
incorporate high-throughput predictive NGB imaging in their 
maize genetic research or breeding programs.
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