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Hemp (Cannabis sativa L.) is a multifunctional crop that is capable of prompt environmental 
adaptation. In this study, a monoecious cultivar (Futura 75) and a dioecious one (Finola) 
were tested in a mountain area in Valsaviore (Rhaetian Alps, Italy; elevation: 1,100 m a.s.l.) 
during the growing season 2018. Phytochemical behavior was evaluated by different 
analytical approaches: HPLC-high-resolution mass spectrometry, SDS-PAGE LC-MS/
MS, HS-SPME GC-MS, and GC-FID in order to obtain complete profile of two varieties 
cultivated in altitude. CSR functional strategy used for ecological evaluation revealed 
that both genotypes are mainly competitors, although Finola is more stress tolerator 
(C:S:R = 57:26:17%) than Futura (C:S:R = 69:15:16%). The Finola inflorescences were 
characterized by higher quantities of β-ocimene and α-terpinolene, while α- and β-pinene 
accompanied by extremely high β-myrcene were found as predominant in Futura. Both 
varieties were rich in sesquiterpenes (45 recognized) among which trans-caryophyllene 
and α-humulene were the most abundant. Total tetrahydrocannabinol level was lower 
than 0.1%, while the most abundant cannabinoid was cannabidiolic acid (CBDA): 2.3% 
found in Finola vs. 2.7% revealed for Futura. The level of corresponding neutral form, 
cannabidiol, varied drastically: 0.27% (Finola) vs. 0.056% (Futura). Finola showed the 
unique cannabinoid profile with unexpectedly high cannabidivarin, 2-fold higher that 
corresponding acidic analogue, whereas the particularity of Futura 75 was the occurrence 
of cannabigerolic acid (CBGA) in the quantities that was double than those exposed for 
Finola. The seeds from both chemovars proved to be rich in polyunsaturated fatty acids, 
and Finola showed a higher ratio ω6/ω3. No difference was found in the protein content, 
and the SDS-PAGE profile was similar. The most abundant protein was edestin, followed 
by heat shock protein 70, β-conglycinin, and vicilin. In conclusion, comprehensive 
phytochemical and ecological study of two fiber-type varieties cultivated in Italian Alps 
displayed specific, legal, and safe cannabinoids profile, followed by particular terpene 
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INTRODUCTION

Hemp (cannabis, Cannabis sativa L.) has been emerging as a 
resourceful plant that is highly adaptable to the most of European 
climate and geographical conditions (Salentijn et al., 2015). Plenty 
of advantageous ecological, agronomical, and pharmaceutical 
properties that this multifunctional crop possesses qualifies it as 
a convenient raw material for various traditional (fiber, food, oil, 
medicine) or innovative industrial application (new biomaterials 
and biofuels) (Amaducci et al., 2015, Bonini et al., 2018). A modest, 
non-demanding cultivation accompanied by a sustainability of 
cannabis-derived products are the main reasons of its evident 
agronomic expansion. Historically, hemp was frequently grown 
in 1930s/40s mainly for the production of technical textiles, but 
despite its versatility, the cultivation of hemp was prohibited in 
the beginning of the 1950s by reason of problematic presence of 
psychoactive substance Δ-9-tetrahydrocannabinol (THC) that is 
produced by some hemp varieties. Nowadays, this has been partly 
abolished and the European Union permits the cultivation of hemp 
with THC content being less than 0.20% (EU Regulation, 2013) 
In Italy, regulation published on 14th of January 2017 delineates 
the conditions for hemp production, its commercialization and 
utilization in for specific industrial purposes (Legge 242/2016). 
Different genotypes have been selected and registered along with 
standardized cultivation methods.

The uniform taxonomy of the Cannabis sativa L. has been 
proven rather challenging and often confusing, due to the 
huge variability within the same genus (McPartland, 2018). 
Recently, a simple and practical classification into few different 
chemotypes on the base of the cannabinoids profile has been 
proposed (Aizpurua-Olaizola et al., 2016). However, two main 
phenotypes according to THC content are most frequently taken 
into consideration: the first one is drug-type cannabis with high 
THC amount issued for medical and recreational purposes and 
the second one is fiber-type (industrial) hemp with THC less 
than 0.2%.

Cannabis sativa L. is naturally dioecious, with the staminate 
plants that are usually slender, taller, and that come to flower 
earlier that the pistillate ones. Hemp is wind pollinated, and the 
male plants die after producing millions of pollen grains. A small 
percentage of monoecious plant can naturally occur, particularly 
in short-day conditions. Monoecious varieties have been selected 
in modern times to reduce the agronomic problems related to 
the sexual vegetative dimorphism present in dioecious varieties, 
in particular the lack of an efficient mechanization for harvesting 
the seeds, and the lower fiber quality and yield losses encountered 
when harvesting dioecious varieties at seed maturity (Faux et al., 
2013). Usually seeds in monoecious varieties are smaller than in 
dioecious ones.

Currently, the European Union has regulated commercial 
production and distribution of about 70 hemp varieties (Plant 
Variety Catalogues, Databases & Information Systems, 1995). 
Among all those varieties, two are particularly spread in Italy: 
Finola and Futura 75. Finola is dioecious, an auto-flowering 
hemp variety with a short stature, adaptation to high latitudes, 
high yield, and it is presently one of the most popular seed 
cultivar (Schluttenhofer and Yuan, 2017). Futura 75 (French 
monoecious) has been the most cultivated hemp variety in Italy 
in the last 5 years (Frassinetti et al., 2018). Generally, monoecious 
variates are a result of long breading efforts and are driven by the 
search of tall stalks that would give a high fiber output.

As mentioned previously, industrial hemp has been 
traditionally cultivated as a source of fibers but increasing concern 
in the nutritional properties of the seeds has promoted its further 
development, especially for the fatty acid (Callaway, 2004) and 
protein portions (Tang et al., 2006). Furthermore, there is a 
growing interest about the valorization of a hemp inflorescence 
that could display potential pharmacological effects (Amaducci 
et al., 2015). To this regard, hemp essential oil is reported to have 
an intriguing antimicrobial activity, whereas the whole decocted 
plant is used against migraine, or as pain-relieving substance 
(Zengin et al., 2018, Bonini et al., 2018).

Hemp is also a prolific producer of bioactive secondary 
metabolites, and their recovery from inflorescences contributes 
to identification of this plant as a multipurpose crop. The most 
important secondary metabolites are phytocannabinoids that 
have received attention owing to their biomedical relevance. 
Acidic forms of cannabinoids are exclusively biosynthesized in 
the trichromes: inflorescences of industrial hemp varieties are 
particularly rich in cannabidiolic acid (CBDA) that is susceptible 
to the spontaneous decarboxylation to cannabidiol (CBD) under 
favorable environmental/conservational conditions, such as heat 
and light. CBD is responsible for a variety of pharmacological 
actions that could have some remarkable applications, but unlike 
THC, CBD does not possess any psychoactive effects (Russo, 
2011). That is the reason why the CBD dietary supplements 
obtained from different industrial cannabis chemotypes have 
become particularly widespread (Pavlovic et al., 2018).

Although CBD and THC are the key molecules, the plant itself is 
capable of generating a whole series of phytocannabinoids: about 
120 have been isolated to date (ElSohly et al., 2017). Based on the 
diversity of their structure, phytocannabinoids are classified into 
11 general types (Hanuš et al., 2016). The biosynthetic pathway of 
the most abundant members of the phytocannabinoid class (with 
appurtenant enzymes involved) is presented in the Figure  1. 
This metabolic sequence includes the production of central 
precursor cannabigerolic acid (CBGA) that is synthesized from 
geranyl diphosphate and olivetolic acid. The activities of specific 

composition, polyunsaturated fatty acids content, and favorable protein profile. This 
postulates that geographical provenience of hemp should be considered in selecting a 
variety that would be suitable for a specific end-use nutraceutical application.
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FIGURE 1 | Biosynthesis of main phytocannabinoids. Cannabigerolic acid (CBGA), synthetized from geranyl diphosphate and olivetolic acid, is the central precursor 
of tetrahydrocannabinolic acid (Δ9-THCA), cannabidiolilc acid (CBDA), and cannabichromenic acid (CBCA), which contain an n-pentyl side chain. Decarboxylation 
of acidic precursors gives respectively Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and cannabichromene (CBC). Cannabinol (CBN) and cannabinolic 
acid (CBNA) are formed by non-enzymatic oxidation of THC(A), while cannabielsoin (CBE) and cannabielsoinic acid (CBEA) are produced by intramolecular CBD(A) 
modifications.

synthases lead to the production of tetrahydrocannabiolic 
acid (THCA), CBDA, and cannabichromenic acid (CBCA). 
Corresponding chemically neutral, but physiologically active 
counterparts are produced following decarboxylation in order to 
generate cannabigerol (CBG), THC, CBD, or cannabichromene 
(CBC). Other phytocannabinoids detected in plant samples 
include principal oxidation products of THC(A) and CBD(A): 
cannabinol (CBN) and cannabinolic acid (CBNA) obtained from 
THC(A) and cannabielsoin (CBE) and cannabielsoinic acid that 
derive from CBD(A) (Figure 1). Furthermore, the important 
phytocannabinoids family, so-called “cannabivarin” class, 
that regularly accompanies the main ones, is produced from 
condensation of geranyl diphosphate with divarinic acid, which 
results in a propyl instead of the pentyl side chain.

Although the attention of scientific community has been 
focused on major phytocannabinoids, the phytochemical 
characterization of cannabis highlights the presence of various 
non-cannabinoids constituents including flavonoids, spiroindans, 
dihyrostilbenes, dihydrophenanthrenes, lignanamides, steroids, 
and alkaloids (Pollastro et al., 2018). Their characterization 
is scarce and random, especially when the inflorescences of 
industrial hemp is concerned.

On the other hand, one non-phytocannabinoid class that is 
studied in much more details is terpene category. They represent 
the volatile component that has been claimed to have a synergic 

action with cannabinoids (Russo, 2019). Hemp plants produce and 
accumulate a terpene-rich resin in glandular trichomes, which 
are abundant on the surface of the female inflorescence. Bouquets 
of different monoterpenes and sesquiterpenes are important 
components of cannabis resin as they define some of the unique 
organoleptic properties and may also influence medicinal qualities 
of different cannabis strains and varieties (Lewis et al., 2018).

Choosing a genotype suitable for a specific end-use application 
and adapted to an environment is of paramount importance to 
the success of hemp cultivation. Hemp is a plant adaptable to 
various growing and ecological conditions, but there is no data 
available in literature that concern the mountain environment. 
A higher altitude could affect the secondary metabolites profile 
of flowers (cannabinoids and terpenes) and main nutritional 
components of seeds (fatty acids and proteins). In this research, 
a monoecious cultivar, Futura 75, and a dioecious one, Finola, 
were studied in a mountain environment of Italian Alps 
(Valsaviore, 1100 m a.s.l.) during the growing season 2018 for 
their potential to provide nutraceutical substances and to study 
their behavior from an ecological and phytochemical point of 
view to assess their usefulness as mountain crop. The special 
attention was given to the inflorescences that were studied by 
new metabolomic, untargeted analytical approach by means of 
high-resolution mass spectrometry (HRMS), which enabled the 
detection of a whole series of secondary metabolites.
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MATERIALS AND METHODS

Experimental Fields and Sample 
Collection
Valsaviore is an alpine valley on the orographic left of the 
upper-middle Valle Camonica; experiments were carried out 
on two terraced fields of two local farms (Dimensione Natura 
and Shanty Maè) in the municipality of Saviore dell’Adamello 
(latitude 46°4’53”04 N, Longitude 10°24’2”52 E, elevation 
1,100 m a.s.l.) during the season 2018. This area belongs to the 
Temperate Oceanic bioclimate (Rivas-Martinez and Rivas-Saenz, 
2009). It has a rainfall of 1.100 mm per year, concentrated mainly 
in the spring and the autumn; the annual average temperature 
is about 8,9°C; minimum temperatures and precipitation 
are during the winter months (data source: Centro Meteo 
Lombardo). According to Blasi et al. (2014), the area is within the 
Northeastern Alps Ecoregional Subsection (Central and Eastern 
Alps Section, Alpine Province, Temperate Division).

The experimental fields were obtained from terraced 
mountainside, from abandoned fields that had not been 
cultivated for more than 60 years. Thus, fertilization was not 
done, and soil was prepared ploughing with an excavator at 
depth 70–80 cm without soil tipping, manual removal of weed 
roots, and successive mechanical milling. No irrigation supplies 
were needed after sowing either in summer period thanks 
to the natural soil water availability. Plants were maintained 
under identical fertilization conditions throughout the field 
experiments. Finola (FINOLA DE 166 -2700754 11-2016) and 
Futura 75 (FUTURA 75 FR 484520 AA COD. B 174613 02/2018) 
seeds were donated by Hemp Farm Italia in February 2018.

The two varieties were planted in six randomized blocks: 3 
blocks of Finola variety plus 3 blocks of Futura 75 (for final surface 
of about 130 m2 for each variety) in the two terraced fields; in 
both cases, Finola had a planting pattern of 10 cm between rows 
and at intervals of 10 cm within the row, while Futura 75, a higher 
and larger variety, requested a more spacious planting pattern of 
20 cm between rows and at intervals of 20 cm within the row. 
Crop was protected against weeds by frequent hand weeding, but 
no pesticides were supplied.

Finola seeds were sown the 23rd of May 2018, while Futura 75 
seeds were sown the 30th of May 2018 in both farms. The seeds 

were sown with manually 3–4 inches deep. It was decided to use 
experimental fields from Dimensione Natura farm to concentrate 
data analysis about inflorescences, while experimental fields 
from Shanty Maè farm were designated to obtain seeds.

For both cultivars, it took about 5 days to obtain over the 
50% germination of seeds. In the Dimensione Natura farm, 
male plants of dioecious cultivar Finola were eliminated (to 
obtain the maximum concentration of secondary metabolites 
in the inflorescences trichomes) starting from the third week 
from sowing (15th of June 2018) and removing them every 3 
days. Male plants were estimated being about 50% of total plants 
and reached a final height from 15 to 70 cm (measured on 30 
plants randomized) before being removed. The final crop density, 
considering removing males and other factors as snails and mice, 
was about 10 plants per m2. The height of Finola female plants 
was calculated on a randomized sample of 30 plants (Table 1).

Futura 75, as monoecious plant, started producing male 
flowers the second week of August, after the complete flowering 
of Finola. No plants were removed, and the final crop density 
was about 20 plants per m2 in both experimental fields. Futura 
75 male and female flowers appeared from the second week of 
August until the second week of September. The male flowers 
of Futura were also removed in Dimensione Natura farm, 
but it was not possible to completely avoid some pollination. 
Visual estimation of flowering calendar for both chemotypes is 
presented in Table 2.

Harvest of inflorescences was carried out at flowering, 
corresponding to the phenological codes 2202 and 2302 
(Mediavilla et al., 1998) for dioecious and monoecius varieties, 
respectively. The fresh inflorescences were manually sampled 
from the same plants, cutting the 30 cm upper part of the stem, 
from 10 to 20 plants per plot randomly chosen. Then they were 
left to air-dry, protected from light in open containers on room 
temperature (25°C) for 2 weeks (Hillig, 2004). Afterwards, dried 
inflorescences were collected, placed in the plastic bags, put 
under the vacuum, and stored in cool room until analysis. Low 
temperature was kept, avoiding as much as possible changes in 
metabolites, as cannabinoids and terpenes.

Harvest of seeds was performed at the start of September for 
Finola and start of October for Futura 75 in Shanty Maè farm. 
The seeds were manually sampled cutting the 30 cm upper part 

TABLE 1 | Height of Finola and Futura 75 plants for inflorescence harvesting (average of 30 plants randomly selected).

Day 15 30 45 60 75 90

Height of plants (cm) Finola 15 40 100 120 150 /
Futura 75 30 70 100 150 230 300

TABLE 2 | Flowering calendar for Finola and Futura. 

Percentage of 
flowering

10% 50% 100
(full flowering)

Inflorescence harvesting

Issue date female 
inflorescences

Finola 01/07/2018 07/07/2018 12/07/2018 06/08/2018
Futura 75 15/08/2018 30/08/2018 15/09/2018 28/09/2018
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of the stem of every plant (phenological codes: 2204 and 2306, 
Mediavilla et al., 1998), then left to dry in a cool and dry room for 
2 weeks. Seeds were then sieved, and a random sample of about 
30 grams of each variety was chosen for laboratory tests.

Functional Strategy
The analysis of the CSR (C—competitors, S—stress-tolerators, 
R—ruderals) functional strategy of Grime, 1974, Grime, 1977, 
Grime, 2001 of the two varieties of Cannabis sativa L. was 
performed according to the method proposed by Pierce et al. 
(2017). In detail, 10 fully expanded leaves for each variety were 
collected in July 2018. The leaf samples were wrapped in moist 
tissue paper and stored in the dark overnight at 4°C. Leaf fresh 
weight (LFW) was determined from these saturated organs using 
analytical balance Precisa XB 220A and the leaf area (LA) was 
measured using ImageJ software (Schneider et al., 2012) after 
scanning the leaves with high resolution digital scanner (hp 
Scanjet 3670). Leaf dry weight (LDW) was measured after oven 
drying at 105°C for 24 h. CSR values and functional strategy were 
determined using “StrateFy” tool (Pierce et al., 2017). Finally, CSR 
coordinates were projected in the CSR ternary graph using the 
“ggplot2” package of R (R Development Core Team, 2018) and 
one-way ANOVA was performed considering C, S, and R values 
as dependent variables and varieties as independent variables.

Seed Weight and Proteins Analysis
The seed weight was assessed by weighing (using analytical 
balance Precisa XB 220A) a sample of 50 seeds per genotype. The 
test was performed for the commercial seeds and for the seeds 
obtained from the experimental fields of both varieties and was 
done in triplicate.

Hempseed (1 g) were ground in a mortar at 4°C, added 
with 20 ml of a solution of 10% trichloroacetic acid (TCA) in 
cold acetone (−20°C), containing 20 mM dithiothreitol and 
1% protease inhibitors cocktail (Sigma), filtered, and incubated 
overnight at −20°C. Seed protein precipitate was obtained by 
centrifugation (18,000g, 1 h, 4°C), and the pellet was washed 
(three times) with acetone and dried. The protein precipitate 
was extracted with a solution of 7 M urea, 2 M thiourea, 4% w/v 
CHAPS, 100 mM DTT, IPG-buffer (pH 3–10). Protein content 
was estimated by Bradford (1976).

Protein characterization was realized performing sodium 
dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-
PAGE) and direct protein identification by LC-MS/MS 
analysis. For SDS-PAGE, 10 µg of hempseed proteins were 
mixed with Laemmli buffer (2% w/v SDS, 10% glycerol, 5% 
b-mercaptoethanol,62 mM Tris-HCl pH 6.8), boiled for 5 min, 
and loaded on 10 × 8 cm vertical 12% polyacrylamide gels. SDS-
PAGE was performed at 15 mA for 30 min and 30 mA for 3 h at 
10°C with a Mini Protean II Xi System (Bio-Rad). The running 
buffer was 25 mM Tris-HCl, 200 mM glycine, 0.1% w/v SDS. Gels 
were stained with Colloidal Coomassie brilliant blue G250 (Bio-
Rad Laboratories).

Protein bands of interest were manually excised and in-gel 
trypsin digested as described in Spertino et al. (2012). Proteins 
were identified by liquid chromatography tandem mass 

spectrometry (LC-MS/MS) analysis by a micro-LC Eksigent 
Technologies (Dublin, USA) system (Spertino et al., 2018). 
Briefly, the mass spectrometer worked in information dependent 
acquisition (IDA) mode. MS data were acquired with Analyst TF 
1.7 (ABSCIEX, Concord, Canada). The mass spectrometry files 
were searched using Mascot v. 2.4 (Matrix Science Inc., Boston, 
MA, USA). A search tolerance of 0.6 Da was specified for the 
peptide mass tolerance, and 100 ppm for the MS/MS tolerance.

Seeds Fatty Acid Composition
Seed samples of the investigated varieties were grinded using 
superfine grinding extractor—intensive vibrational mill 
(Model MM400, Retsch GmbH, Haan, Germany). To obtain a 
representative seed powder, a 50 ml jar with 20 mm stainless steel 
balls at a frequency of 25 Hz for 1 min was used.

Lipid extraction (Bligh and Dyer, 1959) was performed using 
7.0 g of powdered seeds. The seed oil was extracted by a Soxhlet 
extractor and petroleum ether for 6 h at 60°C. n-Hexane was 
used as the solvent, and following the extraction method oil was 
separated from n-hexane using a rotator apparatus. The fatty acid 
composition of hemp seeds was determined using GC. In this 
method, the fatty acids were turned volatile using the method of 
methyl esterification (Metcalf et al., 1996). The prepared solution 
was injected into a GC Trace Ultra (ThermoFisher Scientific) 
equipped with a flame ionization detector (FID) detector, with 
the following specifications. Capillary column RTX-2560 (100 
m × 0.25 mm id, 0.20 μm); the carrier gas was nitrogen, with 
the purity of 99.9%. The injector and the detector temperature 
were equal to 260 and 280°C, respectively. The oven temperature 
was kept at 100°C for 5 min and increased to 240°C at the rate 
of 4°C per minute and maintained at 240°C for 30 min (Tang 
et al., 2015; Zhang et al., 2015). The chromatographic profiles 
of analyte were elaborated with an Azur Software (Analytical 
Technology, Brugherio, Italia). Identification and quantitative 
evaluation of fatty acids was realized confronting retention 
times and areas with the ones of standard mixes FAMEs (fatty 
acid methyl esters). All analyses were done in three biological 
replicates.

Inflorescence Analysis
Chemical and Reagents
All HPLC or analytical grade chemicals were from Sigma 
(Sigma–Aldrich, St. Louis, MO, USA). Formic acid 98–100% 
was from Fluka (Sigma–Aldrich, St. Louis, MO, USA). Ultrapure 
water was obtained through a Milli-Q system (Millipore, Merck 
KGaA, Darmstadt, Germany). For head-space (HS) analysis, 
the SPME coating fiber (DVB/CAR/PDMS, 50/30 µm) was 
from Supelco (Bellefonte, PA, USA). Acetonitrile, 2-propanol, 
and formic acid LC-MS grade were purchased from Carlo Erba 
(Milan, Italy). CBD, THC, CBN, CBG, CBC, cannabidivarin 
(CBDV), tetrahydrocannabivarin (THCV), CBDA, THCA, 
CBNA, CBGA, CBCA, cannabidivarinic acid (CBDVA), and 
tetrahydrocannabivarinic acid (THCVA) were purchased from 
Sigma Aldrich (Round Rock, Texas). All cannabinoids were 
analytical standards at concentration 1 mg ml−1 delivered as 
solutions in methanol.
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Superfine Grinding (SFG) Sample Preparation
Superfine Finola and Futura 75 inflorescence powder was 
prepared using mechanical grinding-activation in an energy 
intensive vibrational mill. Five biological replicates (1.0 g each) 
were ground in a high intensity planetary mill. The mill was 
vibrating at a frequency of 25 Hz for 1 min, using two 50 ml jars 
with 20 mm stainless steel balls. Prior to use, jars were precooled 
with liquid nitrogen. The speed differences between balls and jar 
result in the interaction of frictional and impact forces, releasing 
high dynamic energies. The interplay of all these forces results in 
the very effective energy input of planetary ball mills. Mechano-
chemical technology has been developed and successfully 
adopted in different fields (synthesis of superfine powder, surface 
modification, drug and pharmaceutical applications) and could 
represent a novel research tool.

Accelerated Solvent Extraction (ASE) for 
Cannabinoid Profiling
The extraction procedure was done according to the already 
published procedure (Calvi et al., 2018a, Calvi et al., 2018b). 
Briefly, all extractions to delineate the cannabinoid profile were 
performed by accelerated solvent extraction apparatus using an 
ASE 350 (Thermo-Fisher Scientific, Waltham, MA, USA) with 
34-ml stain steel cells. Inflorescence powder (100 mg) obtained 
by using SFG was weighed and then homogenized with an equal 
weight of diatomaceous earth and transferred into the cell. Then, 
100 μl of extraction solution containing the IS (diazepam 1 mg 
ml−1) was added. Afterwards, the remaining empty part of the 
cell was filled-up with diatomaceous earth. Room temperature of 
25°C, pressure (1500 psi), number of static cycles (2 cycles, 5 min 
each), purging time (60 s with nitrogen), and rinse volume (90%) 
were used for the study. Organic extracts (25 ml) were obtained 
using pure methanol and were dried under vacuum in a centrifugal 
evaporator. The residue was dissolved in 1 ml of acetonitrile, and 
after proper dilution (1:10) in starting mobile phase, 2 μl were 
submitted to analysis by HPLC-Q-Exactive-Orbitrap-MS. To 
obtain the matrix-matched calibration curves, blank samples (100 
mg of commercially available officinal plants mixture previously 
analyzed for the absences of cannabinoids) were used and spiked 
with appropriate standard solution of 14 commercially available 
cannabinoids listed above covering the two concentration range 
from 0.1 to 10 μg g−1 and from 10 to 1000 μg g−1.

Cannabinoids LC-Q-Exactive-Orbitrap-MS Analysis
The cannabinoid profile in both cultivars was evaluated applying 
the method recently published by us (Pavlovic et al., 2018) with 
modification that was essential for the untargeted analysis. In order 
to perform HPLC-Q-Exactive-Orbitrap®-MS analysis, samples 
extracted with ASE were prepared as specified in paragraph 2.5.3. 
Chromatography was accomplished on an HPLC Surveyor MS 
quaternary pump, a Surveyor AS autosampler with a column 
oven, and a Rheodyne valve with a 20 μl loop system (Thermo 
Fisher Scientific, San Jose, CA, USA). Analytical separation was 
carried out using a reverse-phase HPLC column 150 × 2 mm 
i.d., 4 μm, Synergi Hydro RP, with a 4 × 3 mm i.d. C18 guard 
column (Phenomenex, Torrance, CA, USA). The mobile phase 
was run as a gradient that consisted of water and acetonitrile 

both acidified with 0.1% formic acid. The gradient was initiated 
with 95% eluent 0.1% aqueous formic acid with a linear decrease 
up to 95% in 30 min. The mobile phase was returned to initial 
conditions at 35 min, followed by a 5-min re-equilibration 
period. This condition was maintained for 5 min. The flow rate 
was 0.3 ml/min. The column and sample temperatures were 
30°C and 5°C, respectively. The mass spectrometer Thermo 
Q-Exactive Plus (Thermo Scientific, San Jose, CA, USA) was 
equipped with a heated electrospray ionization (HESI) source. 
Capillary temperature and vaporizer temperature were set at 330 
and 380°C, respectively, while the electrospray voltage operating 
in positive was adjusted at 3.30 kV. Sheath and auxiliary gas were 
35 and 15 arbitrary units, with S lens RF level of 60. The mass 
spectrometer was controlled by Xcalibur 3.0 software (Thermo 
Fisher Scientific, San Jose, CA, USA). The exact mass of the 
compounds was calculated using Qualbrowser in Xcalibur 3.0 
software. The FS-dd-MS2 (full scan data-dependent acquisition) 
in positive mode was used for both screening and quantification 
purposes. Resolving power of FS adjusted on 70,000 FWHM at 
m/z 200, with scan range of m/z 100–900. Automatic gain control 
(AGC) was set at 3e6, with an injection time of 200 ms. A targeted 
MS/MS (dd-MS2) analysis operated in both positive and negative 
mode at 35,000 FWHM (m/z 200). The AGC target was set to 2e5, 
with the maximum injection time of 100 ms. Fragmentation of 
precursors was optimized as three-stepped normalized collision 
energy (NCE) (20, 40, and 40 eV). Detection was based on 
retention time and on calculated exact mass of the protonated 
molecular ions, with at least one corresponding fragment of 
target compounds (Pavlovic et al., 2018). Good peak shape of 
extracted ion chromatograms (EICs) for targeted compounds 
was ensured by manual inspection, as well.

Untargeted Metabolomics Approach
Raw data from Xcalibur 3.0 software were processed with 
Compound Discoverer™ (Thermo Scientific). In particular, 
this platform applies peak detection, retention time, profile 
assignment, and isotope annotation. A list of potential compounds 
was suggested for each chromatographic peak depending on 
the mass fragmentation of the parent pseudomolecular ion. 
Accurate mass determination generating elemental composition 
within a narrow mass tolerance window for identification based 
on accurate precursor mass. For some signals, the putative 
identification was confirmed by analysis performed on authentic 
standard. Metabolite identification was based on accurate mass 
and mass fragmentation pattern spectra against MS-MS spectra 
of compounds available on mzCloud database (HighChem LLC, 
Slovakia). The ChemSpider Web services platform was used as 
additional confirmation tool. If mass fragmentation pattern did 
not correspond to any of databases annotated by Compound 
Discoverer™ software, manual confirmation of their fragments 
was performed.

HS-SPME and GC-MS Analysis for Terpenes 
Examination
Exhaustive analytical procedures were described in detail in our 
recently published article (Calvi et al., 2018b). In brief, inflorescence 
powder (100 mg) previously grinded was weighed and put into 20 
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ml glass vials along with 100 μl of the IS (4-metil-2-pentanone, 20 
mg/ml in 2-propanol). Each vial was fitted with a cap equipped 
with a silicon/PTFE septum (Supelco, Bellefonte, PA, USA). To 
keep the temperature constant during analysis (37°C), the vials 
were maintained in a cooling block (CTC Analytics, Zwingen, 
Switzerland). At the end of the sample equilibration time (30 min), 
a conditioned (60 min at 280°C) SPME fiber was exposed to the 
headspace of the sample for 120 min using a CombiPAL system 
injector autosampler (CTC Analytics, Zwingen, Switzerland).

Analyses were performed with a Trace GC Ultra coupled to 
a Trace DSQII quadrupole mass spectrometer (MS) (Thermo-
Fisher Scientific, Waltham, MA, USA) equipped with an Rtx-
Wax column (30 m × 0.25 mm i.d. × 0.25 µm film thickness) 
(Restek, Bellefonte, PA, USA). The oven temperature program 
was: from 35°C, held for 8 min, to 60°C at 4°C/min, then from 
60 to 160°C at 6°C/min and finally from 160 to 200 at 20°C/min. 
Helium was the carrier gas, at a flow rate of 1 ml/min. Carry over 
and peaks originating from the fibers were regularly assessed 
by running blank samples. After each analysis, fibers were 
immediately thermally desorbed in the GC injector for 5 min at 
250°C to prevent contamination. The MS was operated in electron 
impact (EI) ionization mode at 70 eV. An alkanes mixture (C8-
C22, Sigma R 8769, Saint Louis, MO, USA) was run under the 
same chromatographic conditions as the samples to calculate 
the Kovats Retention Indices (RI) of the detected compounds 

(Giorgi et al., 2012, Giorgi et al., 2013a; Giorgi et al., 2015). The 
mass spectra were obtained by using a mass selective detector, a 
multiplier voltage of 1456 V, and by collecting the data at a rate of 1 
scan/s over the m/z range of 35–350. Compounds were identified 
by comparing the retention times of the chromatographic peaks 
with those of authentic compounds analyzed under the same 
conditions when available, by comparing the Kovats retention 
indices with the literature data and through the National Institute 
of Standards and Technology (NIST) MS spectral database. The 
quantitative evaluation was achieved using the internal standard 
procedure, and the results were finally expressed as µg/g. For both 
chemotype, all analyses were done in five biological replicates.

Statistical Analysis
Differences between two varieties for the quantitative analysis were 
determined using a two-tailed Student’s t-test from the BioVinci 
statistical program (Version 1.1.4., BioTurning Inc 2018). A 
p-value of less than 0.05 was considered statistically significant.

RESULTS

CSR Strategy
Figure 2 reports the triangular diagram obtained by CSR analysis. 
Both the varieties are competitors, although Finola is more stress 

FIGURE 2 | CSR classification of the two variety of Cannabis sativa. Mean CSR strategy of Futura 75 = C/CR (C:S:R: = 69:15:16%); mean CSR strategy of Finola = 
C/CSR (C:S:R: = 57:26:17%). ANOVA test revealed significant differences (p < 0.01) for what concerns C (competitiveness) and S (stress tolerance).
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tolerator (C:S:R = 57:26:17%) than Futura (C:S:R = 69:15:16%), 
meaning for stress all those conditions able to reduce the 
photosynthetic activity in plants (Grime, 2001). This difference 
was confirmed from the results of the ANOVA test (Table 3) 
showing how the two varieties are significantly different (p < 0.01) 
for what concerns C (competitiveness) and S (stress tolerance.

Protein Yield and Characterization
As shown in Table 4, the seeds of Finola and Futura 75 are 
consistently smaller than the commercial seeds used to set up 
experimental fields. The protein yield resulted of 19.96 ± 2.20 mg/
ml for Futura 75, for a total content of 39.9 mg of protein starting 
from 1 g of seeds. For Finola, the protein yield was of 19.69 ± 
3.02 mg/ml for a total content of 39.4 mg of protein starting from 
1 g of seeds. No difference was found in the protein content, and 
the SDS-PAGE profile was similar. The most abundant protein 
was the storage protein edestin, directly identified by mass 
spectrometry; some other proteins such as heat shock protein 
70, beta conglycinin, and vicilin were also found. As shown in 

Figure 3, in fact, MS/MS analysis of the principal bands revealed 
the two subunits (35 and 18 kDa) of the reserved protein edestin 
as recently reported (Mamone et al., 2019); moreover, we can 
detect edestin at higher molecular weight, together with the heat 
shock protein (70 kDa) and conglycinin (around 50 kDa).

Seeds Fatty Acid Profile
In Table 5, the results of fatty acid profiling of Finola and 
Futura 75 seeds and the total of saturated fatty acids (SFA), 
monounsaturated (MUFA), polyunsaturated (PUFA), and 
omega-3 (ω3) and omega-6 (ω6) fatty acids are shown.

The principal SFA was palmitic acid (PA; 16:0) for Futura 75 
(6.4%) and pentadecanoic acid (C15:0) for Finola (6.08%), then 
followed by stearic acid (SA; 18:0) that was in similar percentage in 
both varieties (the 2.18% in Finola and 2.91% in Futura 75). Also, 
if with a different composition, the total SFA content showed to 
be in analogous quantity in the two varieties (9.33% in Finola and 
10.27% in Futura 75). The most abundant unsaturated fatty acids 
in the seeds of the two varieties proved to be linoleic acid (LA; 
C18:2 ω6c), in average percentage of 57.69% for Finola and 57.22% 
for Futura 75 and oleic acid (OA; C18:1 ω9c), and 9.41% and 
11.50% for Finola and Futura 75, respectively. Another fatty acid 
contained in high quantity was the ω3 linolenic acid (C18:3ω3) 
that was found in higher quantity in Futura 75 (18.42%) compared 
to Finola (9.96%). Cis-11-eicosenoic acid (C20:1) was found in a 
significative percentage only in Finola, while only 0.37% in Futura 
75. This affected the total MUFA percentage, which resulted higher 
in Finola (18.7%), while in Futura 75 it was 12.13%.

TABLE 3 | ANOVA results of variety effect on C, S, and R values.

Source of 
variance

Degrees of 
freedom

Sum of squares Mean square F-value p-value Sign.

C 1 684.20 684.20 10.57 0.0044 *
S 1 539.50 539.50 8.45 0.0095 *
R 1 8.60 8.59 0.31 0.582 ns

*, significant (p-value < 0.01); ns, not significant.

TABLE 4 | Mean seeds weight for Futura and Finola genotypes.

50 seeds weight (g) Mean value

Sown FUTURA 0.923153 ± 0.008247
Sown FINOLA 0.617274 ± 0.016463
Harvested FUTURA 0.531317 ± 0.093085
Harvested FINOLA 0.517487 ± 0.019501

FIGURE 3 | SDS-PAGE profile of hemp seed proteins. Resolved proteins were detected by Colloidal Coomassie staining and identified by MS/MS analysis.
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It is clearly shown how the seeds of both varieties are rich 
in PUFA, which are 71.98% for Finola and 77.61% for Futura 
75. Both the genotypes are exceptionally rich source of the two 
essential fatty acids (EFAs) LA (18:2 ω6) and α-linolenic acid 
(18:3 ω3). However, as expected, the Finola showed the highest 
content of γ-linolenic (GLA, 4.22%), accompanied with higher 
average values of ω6/ω3 ratio (6.22 Finola vs. 3.21 for Futura).

Inflorescences Analysis
Quantification of Cannabinoids: Targeted 
Metabolomics With Commercially Available 
Phytocannabionids
In the presented work, the absolute quantification of 14 
cannabinoids (7 acids with appurtenant neutral counterpart) in 
Finola and Futura 75 inflorescences was performed. Extracted 
ion chromatograms (EICs) were obtained with an accuracy 
of 2 ppm m/z from total ion chromatogram engaging the m/z 
corresponding to the molecular ions. EICs of the acidic forms 
found in Finola chemovar are shown in Figure 4. According 
to this chromatogram, the observed relative order of elution 

of the detected acidic forms of pentyl phytocannabinoids is 
as follows: CBDA > CBGA > CBNA > Δ9-THCA > CBCA. 
This order of elution is due to increased polarity according 
to the increased number of polar phenolic groups (CBGA vs. 
Δ9-THCA, for example) as well as due to and formation of 
chromene moiety, which increased the lipophilcity of CBCA. 
CBDVA and Δ9-THCVA, the propyl homologues of CBDA and 
Δ9-THCA, respectively, have faster retention times compared 
to their respective pentyl analogues because of shorter (C-3) 
aliphatic chain. CBCA and Δ9-THCA, the acid precursors 
of CBC (RT-29.82min) and Δ9-THC (RT-29.43min), 
respectively, have longer retention times. On the contrary, 
CBDA and CBDVA elute before the corresponding neutral 
forms (CBD and CBDV), which appeared at RT-27.38min 
and 25.29min, respectively. This chromatographic behavior of 
the available standards, accompanied with characteristic mass 
fragmentation, enabled putative identification of additional 43 
cannabinoids that express the analogous chromatographical 
elution behavior and analogous mass fragmentation pattern. 
For example, the peak that appeared at RT 29.63 was identified 
as CBCVA (Figure 4).

TABLE 5 | Fatty acid profile and composition (w/w, %) in Finola and Futura 75 seeds.

Finola Futura Statistical 
evaluationa 

Fatty acids Abbreviation Mean SD Mean SD

Miristic C14:0 0.04 0.001 0.10 0.006  <0.001
Miristoleic C14:1 0.01 0.001 0.06 0.000  <0.001
Pentadecanoic C15:0 6.08 0.040 0.02 0.001  <0.001
Palmitic C16:0 0.10 0.006 6.40 0.090  <0.001
Palmitoleic C16:1 ndc nd 0.15 0.006  <0.001
Eptadecanoic C17:0 0.06 0.006 0.05 0.006 nsb

Cis-10 eptadecanoic C17:1 0.01 0.001 nd nd  <0.001
Stearic C18:0 2.18 0.220 2.91 0.006 ns
Elaidic C18:1ω9t nd nd 0.01 0.001  <0.001
Oleic C18:1ω9c 9.41 0.020 11.50 0.015  <0.001
Linolelaidic C18:2ω6t nd nd nd nd ns
Linoleic C18:2ω6c 57.69 0.135 57.22 0.090 ns
Arachic C20:0 0.86 0.006 0.79 0.015 0.00176
γ-Linolenic C18:3ω6 4.22 0.025 1.86 0.006  <0.001
Cis-11-eicosenoic C20:1 9.26 0.875 0.37 0.006  <0.001
Linolenic C18:3ω3 9.96 0.915 18.42 0.035  <0.001
Eneicosanoic C21:0 0.02 0.001 0.02 0.0001 ns
Cis-11,14-eicosenoic C20:2 0.07 0.006 0.04 0.010 0.0161
Cis-8,11,14-eicosatrienoic C20:3ω6 0.02 0.001 0.01 0.001  <0.001
Erucic C22:1ω9 nd nd 0.02 0.002  <0.001
Cis-11,14,17-eicosatrienoic C20:3ω3 nd nd 0.01 0.001  <0.001
Arachidonic C20:4ω6 nd nd 0.04 0.001  <0.001
Cis-13,16- docosadienoic C22:2 0.01 0.001 0.01 0.000 ns
Cis-5,8,11,14,17-eicosapentanoic C20:5ω3 0.02 0.005 nd nd  <0.001
Nervonic C24:1 0.02 0.006 0.03 0.000 0.0104
Saturated fatty acids (SFA) 9.33 0.195 10.27 0.080 0.005
Monounsaturated fatty acids 
(MUFA)

18.70 0.890 12.13 0.015  <0.001

Poliunsaturated fatty acids (PUFA) 71.98 1.085 77.61 0.065 0.0021
Omega-3 (ω3) 9.97 0.920 18.43 0.035  <0.001
Omega-6 (ω6) 62.01 0.165 59.18 0.100 0.0028
ω6/ω3 6.25 0.56 3.21 0.01  <0.001

Fatty acid contents are expressed as means ± SD (n = 3, independent biological replicates); aThe statistical significance, tested by t-test (two-tailed distribution) p-value less than 
0.05, was considered statistically significant; bnd, not detected; cns, not significant.

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org


Pavlovic et al.

10 October 2019 | Volume 10 | Article 1265Frontiers in Plant Science | www.frontiersin.org

Phytochemico-Ecological Analysis of Hemp

Based on the disposability of commercially available 
standards, the absolute quantification of phytocannabinoids in 
inflorescence extracts was performed by applying our validated 
method with external calibrations as it was explained in detail 
in experimental section (Calvi et al., 2018a; Calvi et al., 2018b). 
Quantitative data related to the content of phytocannabinoids 

in two hemp inflorescences determined by means of the HPLC-
HRMS method are shown in Table 6. Since both varieties analyzed 
belong to the fiber-type hemp, it is not surprising that the most 
abundant phytocannabinoids were CBDA and CBD. The CBDA 
content did not vary drastically, although Futura inflorescence 
contained slightly higher concentration. On the contrary, the 

FIGURE 4 | Extracted ion chromatogram for the acidic forms of phytocannabionids (CBGA, CBDA, THCA, CBDVA, and THCVA) identified according to analytical 
standards. The retrospective data analysis reveals the presence of CBCVA.

TABLE 6 | Phytocannabinoids content (µg/g) in investigated hemp inflorescences (average ± SD, n = 5 independent biological replicates).

FINOLA FUTURA Statistical significance

Mean SD (±) Mean SD (±)

Neutral forms
CBD 2,614 58 561 49 <0.001
Δ9-THC 299 14 212 22 0.005
CBN 12 2 58 12 0.005
CBC  <LOQa / 69 5  <0.001
CBG 19 8 45 9  <0.001
CBDV 4,888 126 1,804 129  <0.001
Δ9-THCV  <LOQ /  <LOQ / /
Acid forms
CBDA 23,479 2,404 27,593 2,617 ns
Δ9-THCA 384 28 362 23 ns
CBNA 214 48 410 31 0.004
CBCA 457 33  <LOQ / 0.008
CBGA 698 44 1,184 45  <0.001
CBDVA 2,862 276 1,233 56  <0.001
Δ9- THCVA THCVA  <LOQ /  <LOQ / /

a LOQ, limit of quantification 1 µg/g for all phytocannabinoids.
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level of CBD was 5-times higher in Finola samples. Besides, 
the Finola showed the unique phytocannabinoid profile with 
unexpectedly high CBDV, twice higher than the corresponding 
acidic form (CBDVA). Futura exhibited the same trend regarding 
the “varin” phytocannabinoids, although not as accentuated as 
for Finola. Both varieties contained the neglected levels of THCA 
and THC, with corresponding C3 analogues detected under the 
limit of quantification (LOQ). The content of CBNA especially in 
Futura should not be underestimated, as CBNA is formed from 
THCA by non-enzymatic oxidation. Characteristically, Finola 
presented the small amount of CBCA, whereas the particularity 
of Futura was the occurrence of CBGA in the quantities that was 
double that those exposed for Finola.

Un-Targeted Metabolomics: Phytocannabinoid 
Profiling and Putative Identification of Non-
Phytocannabinoic Compounds by Means of 
HPLC-HRMS
Two chemovars (each in five biological replicates) after being 
analyzed by LC-HRMS in FS-dd-MS2 acquisition mode were 
further processed by Compound Discoverer platform that 
enabled differential analysis applying Volcano plot model 
(Figure 5).

After performing differential analysis, the chromatographical 
signals were then subjected to the putative identification 
according to exact mass of the pseudomolecular ion (M+1)+ with 
appropriate mass fragmentation pattern found in the available 
databases (mzCloud, ChemSpider, FooDB) metabolomics 
platforms (MyCompoundID, Li et al., 2013) and/or reported in 

the literature (Brighenti et al., 2018; Calvi et al., 2018a; Berman 
et al., 2018; Citti et al., 2019). Our initial experiment data analysis 
involved about 100 known phytocannabionids that are listed in 
the recently published inventories (Hanus at al., 2016; Berman 
et al., 2018; ElSohly et al., 2017). The overall 43 additional 
phytocannabinoids from the seven phytocannabinoid subclasses 
were recognized in this study. In Table 7, the compounds that 
characterize the Cannabis sativa L. inflorescences have been by 
listed/identified by applying the CompoundDiscover platform. 
Both chemovars displayed a similar phytocannabinoids profile 
with some exceptions that are evident for the quantitative 
analysis presented above. The most abundant class was CBC-type 
with the C-1 and C-3 side chain length that was up-regulated 
in Finola, while the both neutral and acidic forms of C4 (Nor) 
and C-5 were found to be higher in Futura 75. The ample class 
of CBL-type (that derives from the CBC-counterparts) was 
also worth of noting, as the signals attributed to this class did 
not differ significantly between two varieties. The solid signals 
with the particular fragmentation of the cannabicitrans (CBCT-
type) were observed in the both varieties without statistical 
significance. CBCT itself was identified according to the m/z 
cloud database spectrum, while other members of this group 
showed the analogous fragmentation, taking into account the 
structural differences concerning the side chain length and 
the carboxylic function for the acidic forms. A substantial, 
power signal designated the presence of cannabielsoinic 
acid, both C3 and C5 analogues, that are considered as main 
oxidation products of CBDVA and CBDA, respectively. Also, 
it is important to note the occurrence of the compounds that 

FIGURE 5 | Differential analysis for the comparison between the relative intensity of chromatographic peak from Finola and Futura 75 samples. P-value (PV) was set 
on 0.05. Red region contains up-regulated signal, where the quantities from Futura were significantly higher than those found in Finola and were greater than the 
upper fold-change (FC) threshold. The green region comprises down-regulated peaks, where the quantity from Futura was significantly lower than that from Finola 
and was less than the lower FC threshold.
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TABLE 7 | Putative identification of phytocannabinoids, flavonoids, lignans, stilbenoids, and alkaloids based on (full scan data dependent) FS-dda-MS2 
characterization and chromatographical behavior.

Class Compound Formula RT (min) (M+H)+ dda-MS fragmenta FC, P-value
Futura 75 vs./

Finolab

Phytocannabionoids
CBG cannabigerol 
-type

CBGVA C20H28O4 26.03 333.2060 173.0962a nsc

6,7-epoxy-CBG C21H32O3 24.94 333.2424 315.1867a −3.41, 0.00045
6,7-epoxy-CBGA C22H32O5 23.25 377.2323 341.2113a −1.97, 0.00022
CBG C21H32O2 27.26 317.2475 193.1223a 2.11, 0.000051
CBGA C22H32O4 27.21 361.2375 219.1017a 0.95, 0.00082
Sesqui-CBG C26H40O2 30.63 385.3173 193.1223a ns

CBD (cannabidiol) 
–type

CBDO d C17H22O2 23.78 259.1693 187.0754a ns
CBDOA C18H22O4 23.41 303.1591 285.1485a ns
CBDV C19H26O2 25.33 287.2006 165.0914a −4.97, 0.0037
CBDVA C20H26O4 24.94 331.1904 313.1801a −3.28, 0.016
Nor-CBDe C20H28O2 26.36 301.2162 179.1070a −2.85, 0.013
Nor-CBDA C20H28O4 25.85 345.2060 327.1956a −3.22,0.0015
CBD C21H30O2 27.38 315.2319a 193.1223 ns
CBDA C22H30O4 26.77 359.2219 341.2114a ns

Δ9-THC 
tetrahydrocannabinol 
–type

THCV C19H26O2 27.17 287.2006 165.0914a ns
THCVA C20H26O4 28.90 331.1904 313.1801a ns
Nor-THC C20H28O2 28.34 301.2162a 179.1070 −1.09,0.0191
Nor-THCA C20H28O4 25.85 345.2060 327.1956a −0.95, 0.00021
THC C21H30O2 29.43 315.2319a 193.1223 −2.91, 0.0052
THCA C22H30O4 30.54 359.2219 341.2114 ns

CBC 
cannabichromene 
-type

CBCO C17H22O2 25.74 259.1693 187.0754a −1.11, 0.025
CBCOA C19H26O2 27.65 303.1591 285.1485a −0.58, 0.0042
CBCV C19H26O2 27.52 287.2006 165.0914a −4.42, 0.0041
CBCVA C20H26O4 29.64 331.1904a 313.1801 −3.82, 0.0016
Nor-CBC C20H28O2 28.69 301.2162a 179.1070 0.72, 0.0078
Nor-CBCA C20H28O4 29.47 345.2060 327.1956a 4.0, 0.0001
CBC C21H30O2 29.82 315.2319 193.1223a 0.55, 0.0014
CBCA C22H30O4 31.00 359.2219 341.2114a 0.31, 0.0241

CBL cannabicyclol 
-type

CBLV C19H26O2 28.58 287.2006a 165.0914 ns
CBLVA C20H28O2 29.47 331.2162 191.0703a ns
Nor-CBL C20H28O2 29.62 301.2162 179.1070a ns
Nor- CBLA C20H28O4 30.53 345.2060 205.0859a ns
CBL C21H30O2 30.69 315.2319 a 193.1223 ns
CBLA C22H30O4 33.34 359.2219 341.2114a ns

CBCT cannabicitran 
-type

CBCTV C19H26O2 28.58 287.2006a 165.0914 ns
CBCT C21H30O2 30.70 315.2319 193.1223a ns
CBCTA C22H30O4 33.74 359.2219 341.2114a ns

CBN cannabinol 
-type

CBN C21H26O2 28.94 311.2007a 223.1118 −1.93, 0.0062
CBNA C22H26O4 30.03 355.1904 337.1800a ns

CBE cannabielsoin 
-type

CBEVA C20H26O5 23.06 347.1853 329.1755a 0.90, 0.0062
CBEA C22H30O5 26.55 375.2176 357.2061a 0.57, 0.0020

CBND cannabinodiol 
type

CBND C21H26O2 23.62 311.2007a 223.1118 ns
CBDNA C22H26O4 23.34 355.1904 337.1800a ns

Miscellaneous types Cannabifuranic acid 
(CBFA) 

C22H26O4 30.03 355.1904 337.1800a ns

Cannabiripsol (CBR) C21H32O4 22.12 349.2373a 331.2276 ns
Cannabicoumaronone 
(CBON)

C21H28O3 29.75 329.2111 98.9843a ns

Cannabichromanone 
(CNCN)

C20H28O4 25.46 333.2060 95.0857a ns

5-Acetoxy-6-geranyl-
3-n-pentyl-1,4-
benzoquinone

C23H32O4 28.81 373.2373 209.1173 1.7, 0.0074

Flavonoids
Isoprenoid flavones Cannaflavin A C26H28O6 26.82 437.1964 313.0709a 4.14, 0.00037

Cannaflavin B C21H20O6 22.83 369.1333 313.0709a 2.7, 0.000017
Cannaflavin C C26H28O6 25.36 437.1964 313.0709 9.76, 0.000002

(Continued)
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are produced by non-enzymatic, post-biosynthetical oxidative 
modifications of main phytocannabinoids: cannabifouranic acid, 
cannabicoumaronone, cannabichromanone, cannabiripsol, as 
well as acidic and neutral forms of 6,7-epoxycanabigerol.

As far as non-phytocannabinoid secondary metabolites 
are concerned, untargeted metabolomic approach enabled the 
identification of the cannaflavines A, B, and C (Table 7). As 
it was not possible to find (neither in the literature nor in the 
available databases) their high resolution MS/MS spectrum done 
in positive mode, we have proposed the fragmentation outline as 
it was shown in the Figure 6 for the cannaflavin A and C found 
in Futura 75. Those two isoprenic flavones are the isomeric 
compounds, displayed almost identical fragmentation pattern 
(with differences in relative abundance of pseudomolecular ion), 
but they can be distinguished very well by the chromatography. 
Position of isprenyl chain in the molecule cannaflavin A 
contributes to its higher lipophilicity compared to the cannaflavin 
C, which is more polar due to its compact structural aspect. 
Therefore, cannaflavin A had been eluted almost 2 min after the 
cannaflavin C. Futura 75 had been shown as much more affluent 
regarding all three cannaflavines (Table 7). The important issue is 
that cannaflavin C content was extremely high in Futura 75 than 
in Finola inflorescences where practically was present in traces.

Regarding the data obtained in positive ionization, it 
was possible to detect other secondary metabolites, already 
identified in some cannabis species (Pollastro et al., 2018). 

Between non-phytocannabinoid phenols, structurally unique 
compounds exist as lignans, spiroindan type, dihydrostilbene-
type, dihydrophenantrene derivatives, stilbenoids, and 
cannabispirans. Lignans belong to two main groups: phenolic 
amides and lignanamides (Yan et al., 2015). Both varieties 
included in this study exhibited the analogous phenolic amides 
profile: the substantial amount of N-trans-coumaroyltyramine 
and N-trans-feruloyltyramine accompanied with approximately 
10 times lower signal for the N-trans-caffeoyltyramine. N-trans-
coumaroyltyramine and N-trans-feruloyltyramine found 
in Cannabis sativa L. are recognized as precursor of unique 
arylnapthalene bis-amides, cannabisins. The inflorescences of 
both genotypes contained substantial amount of cannabisin D 
and grossamide, while the presence of another 12 compounds of 
this class that was previously reported for the hemp seeds/fruits 
was not detected in our Futura 75 and Finola samples.

Stilbenoids identified in Cannabis sativa L. could be divided 
into three main structural types: phenanthrenes, dihydrostilbenes, 
and spiroindans. A rare quinoid stilbenoid denbinobin was well-
defined in both chemovars, and intensity of its signals reveals 
that it is one of the major constituents of phenanthrene-type with 
Futura 75 as preponderate chemovar. This was accompanied 
with significant decline of 4,5-dihydroxy-2,3,6-trimethoxy-
9,10-dihydrophenanthrene in Futura 75 compared to Finola, 
which implies toward divergent metabolic routes reserved for 
phenanthrenes. Furthermore, the differential analysis revealed 

TABLE 7 | Continued

Class Compound Formula RT (min) (M+H)+ dda-MS fragmenta FC, P-value
Futura 75 vs./

Finolab

Lignans
Phenolic amides N-trans-

coumaroyltyramine
C17H17NO3 15.46 284.1282 147.0442a ns

N-trans-feruloyltyramine C18H19NO4 15.67 314.1387 177.0548 ns

N-trans-
caffeoyltyramine

C17H17NO4 13.39 300.1230 147.0442a ns

Lignanamides Cannabisin D C36H36N2O8 18.31 625.2544 325.1072 1.68, 0.0004
Grossamnide C36H38N2O9 16.52 643.2650 462.1906 2.74, 0.021

Stilbenoids
Phenathrenes 4,5-Dihydroxy-2,3,6-

trimethoxy-9,10-
dihydrophenanthrene

C17H18O5 20.34 303.1227 271.0964 −3.06, 0.023

Denbinobin C16H12O5 21.33 285.0575 242.0573 0.71, 0.0050
Dihydrostibenes Canniprene C21H26O4 23.40 343.1904 287.1270 −3, 0.0050

Cannithrene 1 C15H14O3 18.45 243.1016 215.1067 4.15, 0.00016
Cannithrene 2 C16H16O3 21.17 273.1124 241.0861a 1.37, 0.00075
Cannabistilbene I C20H24O3 24.94 313.1798 191.0720a −0.66, 0.016
Dihydroresveratrol C14H14O3 25.68 231.1016 91.0544a ns

Spiroindans Cannabispiran C15H18O3 19.00 247.1329 189.0909a 3.91, 0.0006
Cannabispirenone C15H16O3 18.29 245.1172a 163.0749 4.77, 0.00038
Cannabispiradienone C15H14O3 17.63 243.1016a 165.0702 4.15, 0.00015
Cannabispiranol C15H20O3 18.98 249.1485 137.0598a 4.65, 0.0008

Alkaloids
Hordenine C10H15NO 1.54 166.1226a 121.0648 4.02, 0.000001

RT, retention time; (M+H)+, exact mass of pseudomolecular ion acquired in full scan mode; DDA-MS fragment a the base fragment in MS-MS spectrum; FC-fold change; Futura 75 
vs./Finola b Positive value of FC indicates red region from Volcano plot graphic – the compounds that are up-regulated in Futura 75 vs. Finola, Negative value of FC indicates red 
region from Volcano plot graphic – the compounds that are down-regulated in Futura 75 vs. Finola; ns c not significant differences between two chemovars; O d (orcol) C1 side chain 
length for cannabinoids; Nor e C4 side chain length for cannabinoids.

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org


Pavlovic et al.

14 October 2019 | Volume 10 | Article 1265Frontiers in Plant Science | www.frontiersin.org

Phytochemico-Ecological Analysis of Hemp

that the content of dihydroresveratrol, which is considered as 
dyhydrostylbenes precursor, was unaffected, while the level of 
its derivates, cannithrenes, was significantly higher in Futura 75. 
The sub-class of cannbisilbenes was not significantly represented, 
apart cannabistilbene I that was featured for Finola. Noteworthy 
results emerged for the spiroindans: Futura 75 inflorescences were 
particularly reached in cannabispiran and its oxidation analouges, 
while their concentration in Futura turns out to be neglected. 
Alkaloids were not detected, with the exception of hordenine, 
predominately observed in Futura 75 samples. Anyway, here we have 
to underline that, bearing in mind alkaloids prominent polarity, the 
absence of this previously well-defined compounds belonging to this 
group may be attributed to the limitation of our chromatographic 
conditions to retain and reveal the polar nitrogen species.

Terpenoids Profile Evaluated by HS-SPME- GC-MS 
Methodology
The untargeted HPLC-HRMS approach has revealed also the 
presence of some terpenoids in the inflorescence exanimated 
herein, but due to its non-polar and high-volatile characteristics 
the HS-SPME-GC-MS analytical strategy remains the best 
methodology for comprehensive profiling of terpenoid fraction. 
Complete data concerning the terpenes profile are summarized 
and reported in Table 8. Overall, up to 83 volatile compounds 
composed the terpene fingerprint and are further divided 
in the classes. The sum of mono/di/tri terpenes did not vary 
significantly, but the two genotypes expressed qualitatively 
different profile: Finola inflorescences were characterized by 
higher quantities of β-ocimene and α-terpiolene, while in 

FIGURE 6 | Extracted ion LC-HRMS chromatogram of Futura 75 inflorescence with the respective ful-MS2 spectra illustrating the presence of two isomeric 
compounds: Cannaflavin A and Cannaflavin C in Futura 75 inflorescence.
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TABLE 8 | Terpenes extracted and identified by HS-SPME-GC/MS in Finola and Futura 75 inflorescences.

FINOLA FUTURA Statistics 

Rta MONO/DI/TRI TERPENES Meanb  ± SD Mean  ± SD p-valuec

5.17 α-Pinene 1,536.72 47.82 2,985.65 568.01 0.008
6.29 Cyclofeuchene 40.90 0.50 90.30 1.45 0.002
6.56 Camphene 39.72 9.76 99.55 18.19  <0.001
8.63 β-Pinene 546.61 44.02 1,272.66 179.66  <0.001
9.54 Sabinene 20.02 1.37 – –  <0.001
10.96 δ-3-Carene 366.18 67.79 982.37 81.72  <0.001
11.91 α-Phellandrene 434.50 79.00 186.79 19.03  <0.001
12.66 β-Myrcene 5,809.47 241.91 7,834.47 770.81 0.008
12.76 α-Terpinene 241.02 30.49 124.20 11.98  <0.001
13.48 Limonene 360.68 34.53 1,261.26 126.56  <0.001
13.81 β-Phellandrene 788.01 57.45 524.45 21.63  <0.001
15.54 γ-Terpinene 566.42 49.09 197.97 13.38  <0.001
16.22 β-Ocimene 2,971.80 200.55 1,001.70 77.63  <0.001
16.46 p-Cymene 160.17 17.34 92.92 10.37  <0.001
17.16 α-Terpiolene 6,493.32 655.84 2,425.00 234.94  <0.001
18.62 (3E)-3-Icosene 26.09 6.38 – –  <0.001
19.80 Alloocimene 13.60 1.72 4.10 0.54  <0.001
20.19 p-Mentha-1,5,8-triene 48.56 9.69 31.40 13.75 0.095
20.34 Neoalloocimene 46.58 7.29 15.92 2.88 0.008
21.33 Cymenene 130.67 14.86 77.84 16.46  <0.001
21.65 (2-Methylprop-1-enyl)-

cyclohexa-1,5-diene
41.62 1.48 – –  <0.001

Total 20,765.66 19,208.54
SESQUITERPENES

22.07 α-Cubebene 26.71 4.05 – –  <0.001
22.47 α-Ylangene 28.57 4.34 26.27 6.37 ns
22.86 α-Copaene 19.64 5.68 6.90 1.99 0.008
24.07 Zingiberene – – 17.44 4.27  <0.001
24.61 Sesquiterpene 189.60 48.99 119.36 27.05 0.008
24.60 Sesquiterpene – – 134.59 30.50  <0.001
24.90 α-Bergamotene – – 323.74 34.84  <0.001
25.22 Trans-Caryophyllene 5,003.84 981.42 1,126.71 194.40  <0.001
25.40 Sesquiterpene 65.84 11.91 – –  <0.001
25.71 Sesquiterpene 23.83 6.58 – –  <0.001
25.85 Sesquiterpene 5.16 2.76 – –  <0.001
25.73 β-Santalene 15.17 6.72 26.91 6.79 ns
25.94 α-Gurjunene 27.84 11.27 19.94 5.82 ns
26.02 Aromadendrene 14.53 6.03 32.53 9.49 0.007
26.10 Sesquiterpene 21.01 4.44 – –  <0.001
26.32 Sesquiterpene 5.08 1.15 – –  <0.001
26.53 α-Humulene 1,537.92 379.28 523.43 78.85  <0.001
26.60 γ-Selinene 193.50 44.13 0.46 0.09  <0.001
26.64 β-Farnesene – – 356.87 87.56  <0.001
26.90 Sesquiterpene – – 66.53 20.25  <0.001
26.95 α-Cadinene 101.11 35.10 15.23 7.38  <0.001
27.34 δ-Guaiene 43.68 44.14 – –  <0.001
27.44 β-Selinene 240.43 62.10 201.57 52.05 ns
27.57 α-Selinene 148.40 40.01 139.34 43.06 ns
27.77 β-Bisabolene 113.82 41.26 111.58 38.00 ns
27.95 Sesquiterpene 1.95 0.77 – –  <0.001
28.03 Sesquiterpene 4.42 2.17 – –  <0.001
28.09 α-Guaiene 37.35 15.61 22.55 7.40 ns
28.23 α-Farnesene 60.81 32.72 44.74 18.39 ns
28.29 Υ-Cadinene 25.45 14.60 17.89 6.05 ns
28.48 β-Maaliene 93.13 34.36 94.72 32.58 ns
28.55 β-Sesquiphellandrene 11.82 4.81 16.80 5.72 ns
28.64 Selina-3.7(11)-diene 120.23 19.38 240.13 56.96 0.008
28.92 α-Muurolen 1.34 0.39 – –  <0.001
29.00 Eremophilene – – 3.29 1.18  <0.001
29.03 (+)-Sativene 147.80 49.89 – –  <0.001

29.16 Sesquiterpene 18.20 7.38 8.61 3.86  < 0.001
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Futura 75 α- and β-pinene accompanied by extremely high 
β-myrcene were found as predominated. Both chemovars were 
partiality rich in sesquiterpenes: 45 different compounds from 
this subclass were identified, among which trans-caryophyllene 
and α-humulene were most abundant. The importance of ample 
sesquiterpene subclass is also reflected in the occurrence of 
sesqui-CBG that was documented during the HPLC-HRMS data 
elaboration (Table 7). The total content of sesquiterpenes was 
more than double in Finola than those discovered for Futura, 
while oxygenated products were more pronounced in Futura 
75. Concretely, it should be noticed that fenchone and α-fenchyl 
alcohol were, from quantitative point of view, the most important 
oxygenated terpenes found. Although rather speculative, we 
have to indicate the possibility that α-fenchyl alcohol also exists 
in ester form coupled with CBD as we have recorded a strong 
signal that with the pseudomolecular ions (C32H47O4, 495.34689) 
and fragmentation pattern (CBDA structure) corresponds to the 
fenchyl-cannabidiolate.

DISCUSSION

To support a sustainable development of industrial hemp 
in mountain areas, proper agronomic techniques should 

be optimized to preserve inflorescence and/or seed quality 
during the plant seasoning. This would enable suitable 
industrial processing and would improve high-added value 
applications, especially for the nutraceutical and homoeopathic 
purposes (Calzolari et  al., 2017). Hemp has a wide range of 
environmental adaptation, but varieties tend to perform better 
in their instinctive areas of growth (Dempsey, 1975) what was 
confirmed by our results regarding the functional strategy. 
Particularly, Finola has been proven as more stress-tolerant 
variety in comparison with Futura 75. These data contribute 
to fill the lack of studies of intraspecific variation of CSR 
strategy; in fact, until now, only May et al. (2017), Giupponi 
and Giorgi 2019a; Giupponi and Giorgi et al., 2019b, and 
Giupponi et al., 2017; Giupponi et al., 2019 have studied this 
intraspecific variation in Arabidopsis thaliana, Linaria tonzigii, 
and Fagopyrum tataricum, respectively. Finola is a Finnish 
short-cycle variety, considered as a self-flourishing for its ability 
to bloom in about 3 months and with a high germinability 
(Baldini et al., 2018). Having been conceived for northern 
Europe, it remains short and therefore more manageable, more 
“compact,” and more stress tolerant. Futura as monoic French 
variety of medium height (2–3 mt) with intermediate flowering 
is suitable for fabric transformation and with discrete levels of 
seed production as a main product.

TABLE 8 | Continued

FINOLA FUTURA Statistics 

Rta MONO/DI/TRI TERPENES Meanb  ± SD Mean  ± SD p-valuec

29.51 Sesquiterpene 48.23 19.96 78.02 29.49 ns
29.61 Calamenene 2.86 0.74 – – 0.001
32.30 Santalol 1.25 0.75 – – 0.001
32.66 Nerolidol 2.11 0.76 2.65 0.78 ns
33.51  Isolongifolen 1.58 0.46 – –  <0.001
33.80 Sesquiterpene 2.59 1.31 2.02 0.38 ns
34.36 α-Bisabolol 2.45 1.20 – –  <0.001

total 8,409.25 3,780.79
OXIGENATED TERPENES

20.03 Fenchone – – 102.13 10.52  <0.001
23.89 Cis-sabinene hydrate 17.96 7.77 0.008
22.13 Linalool oxide 1.44 0.86 29.22 3.81  <0.001
22.00 Trans-3-caren-2-ol 109.70 15.61 35.67 5.30  <0.001
23.02 β-Pinone 0.93 0.17 – – 0.001
24.00 Pinanol – – 48.46 25.57  <0.001
24.18 3-Pinanone – – 14.71 3.36  <0.001
24.20 β-Linalool 18.81 3.89 17.98 4.11  0.750
24.78 α-Fenchyl alcohol – – 73.25 11.31  <0.001
25.28 4-Terpineol 8.30 3.68 15.59 4.68  0.056
26.23 Trans-Pinocarveol 10.15 2.84 – –  <0.001
27.08 α-Terpineol 31.27 13.64 5.08 2.46  <0.001
29.35 3-Terpinolenone 6.14 2.37 – –  <0.001
26.79 Carotol 8.01 2.66 – –  <0.001
31.93 Caryophyllene oxide 32.47 17.24 13.10 4.65 0.016
32.13 Alloaromadendroneoxid 0.73 0.33 – – 0.008
32.55 Humulene oxide 6.14 3.50 4.94 2.20 0.536
34.58 Eugenol 2.36 0.18 – – 0.008

Total 254.41 380.13

Experimental conditions as in Sections material and methods.
RTa, retention time (min); Meanb, Data are given as mean ± SD, n = 5, independent biological replicates); p-valuec, T-test with 95% two-tailed confidence interval for difference of 
means; Bold, values are referred to the main constituents of the analyzed samples.
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Nowadays, environmental concerns and multi-purpose 
production have brought renewed interest in industrial hemp; 
however, there is little information that concerns phytochemical 
composition to support hemp cultivation in mountain areas. 
Besides hemp fiber production, there is growing interest in 
cultivating industrial hemp for other purposes such as using 
its inflorescence for extracting essential oils and its seeds for 
alimentary oil and flour production (Campiglia et al., 2017). 
However, few studies have compared the performance of 
the current commercial chemovar of industrial hemp (Tang 
et  al., 2016) and there is little available information regarding 
agronomical practices. Therefore, considering the lack of 
information on hemp genotypes, it is difficult for mountain 
farmers to select the most suitable genotype for different kinds 
of utilization.

The result that regards qualitative analysis of inflorescence 
phytocannabinoids profile in the inflorescences points out 
that, under same environmental conditions that yield the 
major cannabinoid, CBDA is similar in both varieties. The 
difference that is significant regarding the neutral derivate 
CBD indicated the higher amount revealed in Finola could be 
indirectly caused by genetic predisposition of Finola to flower 
in the full summer season when the average daily temperatures 
are higher than those that are present when Futura 75 develops 
its inflorescences (late summer/early autumn). Therefore, 
flowering season, itself, may have led to a partial conversion 
of the parent CBDA into its neutral counterpart, via a 
decarboxylation process, which naturally occurs under the 
action of heat and light. The sum of problematic, potentially 
toxic THC and THCA was found to be low (under 0.1%), which 
confirms the possibility to use inflorescences in nutraceuticals 
purposes. Notable amount of neutral CBDV for Finola opens 
possibility to exploit this variety for the medicinal (galenic) 
preparation as CBDV is considered to express a beneficial 
effect on human health (Iannotti et al., 2014).

Apart from the 14 phytocannabinoids that were quantified, 
untargeted metabolomics approached offered in-depth 
recognitions of the possible dissimilarities in the chemical 
profile between two chemovars. For the cannabinoids fraction, 
apart for the evident alterations that are produced by genetic 
differences (alterations found for CBC class, for example), it 
is important to consider also the phytocannabionoids that 
are produced due to non-enzymatic modifications of main 
phytocannabionids. In the first place, there is a substantial 
power signal that designates the presence of cannabielsoinic 
acid, both C3 and C5 analogues, that are considered as main 
oxidation products of CBDVA and CBDA, respectively. Also, 
the presence of four compounds from the miscellaneous 
type indicates that cultivation under uniform, mountain 
growing environment has led to the biotransformation of 
main phytocannabionids to the particular oxidation forms 
that were revealed as cannabifouranic acid (CBDFA) that 
derives from the CBDA, and the cannabicoumaronone 
and cannabichromanone originating from THC. Also, the 
appearance of cannabiripsol that is specific glycolic forms 
of THC indicates toward prompt hydroxylation of mayor 
phytocannabinoids. The presence of the 6,7-epoxycanabigerol 

acidic and neutral form with significantly higher amount in 
the Finola inflorescence should not be undervalued as it is not 
still clear weather the epoxidation had occurred as the part of 
the early phytocannabinoids metabolic pathway during the 
flowering, or it had aroused as result of the post-harvest CBG 
oxidative modifications.

Cannflavins, which belong to the class of prenylflavonoids, 
are secondary metabolite exclusive for the Cannabis genus and 
were detected in both varieties. Their notable presence points 
towards metabolic pathway at the outgoings of the polyketide 
cannabinoid machinery (Calzolari et al., 2017). The notably 
higher level of cannaflavin C detected in Futura 75 could be 
a consequence of the lower average temperature combined 
with high solar radiation experienced at the beginning of 
plant flowering. In fact, it was reported that different classes 
of flavonoids are involved in plant protection mechanisms, 
specifically for their radical scavenger activity and screening 
ability against short wavelength UV-B light (Agati and 
Tattini, 2010). Furthermore, Futura 75 inflorescences was 
characteristically rich in cannabispiran and its oxidation 
analogues, which can be in relation with the fact that Futura 75 
is more susceptible to oxidative stress.

Considering the terpenoids fraction, our results are 
qualitatively comparable with those reported by others 
(Bertoli et al., 2010; Elzinga et al., 2015; Aizpurua-Olaizola 
et al., 2016; Benelli et al., 2018, Namdar et al., 2018). The 
particularity of both chemovars presented in this study is the 
presence of the strong signal of sesqui-CBG accompanied with 
very reach sesquiterpenes fraction, indicating that geographic 
origin accompanied with environmental conditions is one of 
the important variables that determine the terpene fingerprint 
(Giorgi et al., 2013b; Marchini et al., 2014; Giupponi et al., 
2017). The presumed appearance of fenchyl-cannabidiolate 
might also be defined as possible discrimination factor that 
concerns cultivation/ecological conditions. Apart from 
environmental impact, a genetic predisposition of variety could 
thoughtfully affect the terpene family: the qualitative profile of 
our Futura inflorescence is similar to this recently reported by 
Benelli et al. (2018). The significant differences found in the 
quali-quantitative terpenes profile (such as α- and β-pinene, 
myrcene, terpinolene, β-ocimene, trans-caryophyllene, and 
α-humulene) between Futura and Finola inflorescences 
reported herein permit to distinguish monoecious from 
dioecious hemp cultivars (Bertoli et al., 2010).

The fatty acid composition is a primary value of hemp seed. 
The composition of the fatty acid profile has been demonstrated 
to vary according to the plant cultivars. Both varieties grown 
in mountain have been shown as a good resource of PUFA 
(71.98% for Finola and 77.61% for Futura 75). Fundamentally, 
ω6/ω3 is found to be in range 2.5–3:1 (Simopoulos, 2008), 
which has been claimed as ideal for human nutrition. In 
fact, the value of 3.21 calculated for Futura 75 qualifies this 
genotype as favorable for human diet (Callaway, 2004, Galasso 
et al., 2016), Particularly, the level of ω6 is thus an interesting 
resource for manufacturing dietary supplement (Mölleken 
and Theimer, 1997). Finola contained much lower amount 
of ω3, which influenced final ω6/ω3 (6.25), which is higher 
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than values reported recently (Galasso et al., 2016) for Finola 
and for the other varieties of industrial hemp (Petrović et al., 
2015). The principal difference in ω3 PUFA profile involves 
the linolenic acid, which was surprisingly two times lower 
in Finola than in Futura 75. On the other hand, our findings 
have demonstrated that Finola has an important content of 
GLA if grown in an mountain area of the Alps, which is in 
accordance with results published by Mölleken and Theimer 
(1997) that the cultivars from the cooler regions displaying 
a higher concentration of GLA (Callaway, 2004; Vonapartis 
et al., 2015).

Our results confirmed that about 65% of the total hemp 
protein consists of a single storage protein, edestin, a hexamer 
composed of acidic and basic subunits linked by disulfide 
bonds. It has been stated that, differently from soybean seeds 
that are abundant in trypsin inhibitors that require thermal 
treatment for inactivation, hemp seeds present very low 
amounts of these anti-nutritional factors and are therefore 
more digestible (Malomo et al., 2015). Due to the high content 
in essential amino acids of edestin, hemp seed proteins could 
be considered as a superfood, possessing a health-promoting 
property that might reduce a risk of disease or improving some 
aspect of well-being.

CONCLUSIONS

Hemp is recognized as a crop that could be cultivated in 
different surroundings, exploiting marginal land. Generally, 
it can be grown without pesticides (Desanlis et al., 2013) and 
with a low input technique (Struik et al., 2000), so it becomes a 
very interesting option for farm working in organic regime in 
very delicate environments as mountain areas. That is reason 
why it is considered as alternative viable crop for sustainable 
agriculture (Amaducci et al., 2015). As a multifunctional crop, 
it can have different end use: traditional ones as fiber but also 
innovative ones as the use of seeds and inflorescences as sources 
of interesting bioactive secondary metabolites for nutraceutical 
(Frassinetti et al., 2018), medicinal (Calvi et al., 2018b), and 
cosmetic (Sapino et al., 2005) purposes or for producing 
essential oils as natural flavor and fragrance additives (Bertoli 
et al., 2010). Comprehensive quality study of two fiber-type 
hemp varieties cultivated in Italian Alps points out a specific, 
legal, and safe cannabinoids profile and particular terpene 
composition in the inflorescences that is followed by a favorable 
polyunsaturated fatty acids and protein content in the seeds.

Due to its different application and since this crop 
was abandoned for long time in mountain environment, 
geographical provenience of hemp should be considered 
in selecting a variety that would be suitable for a specific 
nutraceutical destination. Further and targeted studies should 
be addressed to the ecological and phytochemical behavio of 
most popular varieties in diverse edaphic and environmental 
conditions. This would be important for the possible end-use 
of the hemp and to support mountain farmers to select the 
correct variety for their purposes and agronomic environment. 
Additionally, due to its ecological and phytochemical 
complexity, the comprehensive chemical profiling of this plant 
could be an interesting case study for investigations on plant 
physiology and plant behavior in response to different biotic 
and abiotic environmental factors.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this manuscript will 
be made available by the authors, without undue reservation, to 
any qualified researcher.

AUTHOR CONTRIBUTIONS

AG, RP, VL, SP, LG, and MC conceived and designed the study 
and interpreted the results. RP, VL, MC, CCi, and CCa performed 
phytochemical analyses and statistical analyses. VL and LG 
followed the experimental fields and performed ecological 
and statistical analyses. RP and CCi completed metabolomic 
examination. All the authors contributed to writing, with AG as 
the leading author.

FUNDING

This research was supported by the “FISR-MIUR Italian 
Mountain Lab” project.

ACKNOWLEDGMENTS

We want to thank Paolo Messali of Shanty Maè Farm, and 
Fabrizio Bresciani of Dimensione Natura Farm.

REFERENCES

Agati, G., and Tattini, M. (2010). Multiple functional roles of 
flavonoids in photoprotection. New Phytol. 186, 786–793. doi: 
10.1111/j.1469-8137.2010.03269.x

Aizpurua-Olaizola, O., Soydaner, U., Öztürk, E., Schibano, D., Simsir, Y., 
Navarro,  P., et al. (2016). Evolution of the cannabinoid and terpene content 
during the growth of Cannabis sativa plants from different chemotypes. J. Nat. 
Prod. 79, 324–331. doi: 10.1021/acs.jnatprod.5b00949

Amaducci, D., Scordia, F. H., Liu, Q., Zhang, H., Guo, G., Testa, S. L., et al. (2015). 
Key cultivation techniques for hemp in Europe and China. Ind. Crops Prod. 68, 
2–16. doi: 10.1016/j.indcrop.2014.06.041

Baldini, M., Ferfuia, C., Piani, B., Sepulcri, A., Dorigo, G., Zuliani, F., et al. 
(2018). The performance and potentiality of monoecious hemp (Cannabis 
sativa L.) cultivars as a multipurpose crop. Agronomy 162, 1–16. doi: 10.3390/
agronomy8090162

Benelli, G., Pavela, R., Lupidi, G., Nabissi, M., Petrelli, R., Ngahang Kamte, S. L., 
et  al. (2018). The crop-residue of fiber hemp cv. Futura 75: from a waste 

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org
https://doi.org/10.1111/j.1469-8137.2010.03269.x
https://doi.org/10.1021/acs.jnatprod.5b00949
https://doi.org/10.1016/j.indcrop.2014.06.041
https://doi.org/10.3390/agronomy8090162
https://doi.org/10.3390/agronomy8090162


Pavlovic et al.

19 October 2019 | Volume 10 | Article 1265Frontiers in Plant Science | www.frontiersin.org

Phytochemico-Ecological Analysis of Hemp

product to a source of botanical insecticides. Environ. Sci. Pollut. Res. Int. 25 
(11), 10515–10525. doi: 10.1007/s11356-017-0635-5

Berman, P., Futoran, K., Lewitus, G. M., Mukha, D., Benami, M., Shlomi, T., 
et al. (2018). A new ESI-LC/MS approach for comprehensive metabolic 
profiling of phytocannabinoids in Cannabis. Sci. Rep. 8, 14280. doi: 10.1038/
s41598-018-32651-4

Bertoli, A., Tozzi, S., Pistelli, L., and Angelini, L. G. (2010). Fibre hemp 
inflorescences: from crop-residues to essential oil production. Ind. Crops Prod. 
32, 329–337. doi: 10.1016/j.indcrop.2010.05.012

Blasi, C., Capotorti, G., Copiz, R., Guida, D., Mollo, B., Smiraglia, D., et al. (2014). 
Classification and mapping of the ecoregions of Italy. Plant Biosyst. 148, 1255–
1345. doi: 10.1080/11263504.2014.985756

Bligh, E. G., and Dyer, W. J. (1959). A rapid method of total lipid extraction and 
purification. Can. J. Biochem. Physiol. 37, 911–917. doi: 10.1139/y59-099

Bonini, S. A., Premoli, M., Tambaro, S., Kumar, A., Maccarinelli, G., Memo, M., 
et al. (2018). Cannabis sativa: a comprehensive ethnopharmacological review 
of a medicinal plant with a long history. J. Ethnopharmacol. 227, 300–315. doi: 
10.1016/j.jep.2018.09.004

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of 
microgram quantities of protein utilizing the principle of protein-dye binding. 
Anal. Biochem. 72, 248–254. doi: 10.1016/0003-2697(76)90527-3

Brighenti, V., Pellati, F., Steinbach, M., Maran, D., and Benvenuti, S. (2018). 
Development of a new extraction technique and HPLC method for the analysis 
of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp). J. 
Pharm. Biomed. Anal. 143, 228–236. doi: 10.1016/j.jpba.2017.05.049

Callaway, J. C. (2004). Hempseed as a nutritional resource: an overview. Euphytica 
140, 65–72. doi: 10.1007/s10681-004-4811-6

Calvi, L., Pavlovic, R., Panseri, S., Giupponi, L., Leoni, V., and Giorgi, A. (2018a). 
“Quality traits of Medical Cannabis sativa L. inflorescences and derived 
products based on comprehensive analytical investigation,” in Recent Advances 
in Cannabinoid Research. (London: IntechOpen Limited) doi: 10.5772/
intechopen.79539

Calvi, L., Pentimalli, D., Panseri, S., Giupponi, L., Gelmini, F., Beretta, G., et al. 
(2018b). Comprehensive quality evaluation of medical Cannabis sativa L. 
inflorescence and macerated oils based on HS-SPME coupled to GC–MS and 
LC-HRMS (q-exactive orbitrap®) approach. J. Pharm. Biomed. Anal. 150, 208–
219. doi: 10.1016/j.jpba.2017.11.073

Calzolari, D., Magagnini, G., Lucini, L., Grassi, G., Appendino, G. B., and 
Amaducci, S. (2017). High added-value compounds from Cannabis 
threshing residues. Ind. Crops Prod. 108, 558–563. doi: 10.1016/j.
indcrop.2017.06.063

Campiglia, E., Radicetti, E., and Mancinelli, R. (2017). Plant density and nitrogen 
fertilization affect agronomic performance of industrial hemp (Cannabis 
sativa L.) in Mediterranean environment. Ind. Crops Prod. 100, 246–254. doi: 
10.1016/j.indcrop.2017.02.022

Citti, C., Linciano, P., Panseri, S., Vezzalini, F., Forni, F., Vandelli, M. A., et al. 
(2019). Cannabinoid profiling of hemp seed oil by liquid chromatography 
coupled to high-resolution mass spectrometry. Front. Plant Sci. 10, 120. doi: 
10.3389/fpls.2019.00120

Dempsey, J. M. (1975). Hemp fibre crops. Gainesville, FL: University of Florida 
Press, 46–89. 

Desanlis, F., Cerruti, N., and Warner, P. (2013). Hemp agronomics and 
cultivation. Ed.  p. Bouloc. Wollingford, UK: CABI, 98–124. doi: 
10.1079/9781845937935.0098

Elzinga, S., Fischedick, R., Podkolinski, J., and Raber, C. (2015). Cannabinoids and 
terpenes as chemotaxonomic markers in cannabis. Nat. Prod. Chem. Res. 3, 81. 
doi: 10.4172/2329-6836.1000181

ElSohly, M., Radwan, M., Gul, W., Chandra, S., and Galal, A. (2017). 
“Phytochemistry of Cannabis sativa,” in Phytocannabinoids: progress in the 
chemistry of organic natural products, vol. 103 . Eds. A. D. Kinghorn, H. Falk, 
S. Gibbons, and J. Kobayashi (Switzerland: Springer International Publishing), 
1–36. doi: 10.1007/978-3-319-45541-9_1

EU Regulation (2013). No 1307/2013 of the European Parliament and of the 
Council of 17 December 2013 establishing rules for direct payments to farmers 
under support schemes within the framework of the common agricultural 
policy and repealing Council Regulation (EC) No 637/2008 and Council 
Regulation (EC) No 73/2009. Off. J. Eur. Union, 347/608. 

Faux, A. M., Draye, X., Lambert, R., d’Andrimont, R., Raulier, P., and Bertin, P. 
(2013). The relationship of stem and seed yields to flowering phenology and sex 
expression in monoecious hemp (Cannabis sativa L.). Eur. J. Agron. 47, 11–22. 
doi: 10.1016/j.eja.2013.01.006

Frassinetti, S., Moccia, E., Caltavuturo, L., Gabriele, M., Longo, V., Bellani, L., et al. 
(2018). Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. 
Food Chem. 262, 56–66. doi: 10.1016/j.foodchem.2018.04.078

Galasso, I., Russo, R., Mapelli, S., Ponzoni, E., Brambilla, I. M., Battelli, G., et al. 
(2016). Variability in seed traits in a collection of Cannabis sativa L. Genotypes. 
Front. Plant Sci. 7, 688. doi: 10.3389/fpls.2016.00688

Giorgi, A., Panseri, S., Nanayakkara, N. N. M. C., and Chiesa, L. M. (2012). 
HS-SPME-GC/MS analysis of the volatile compounds of Achillea collina: 
evaluation of the emissions fingerprint induced by Myzus persicae infestation. 
J. Plant Biol. 55 (3), 251–260. doi: 10.1007/s12374-011-0356-0

Giorgi, A., Panseri, S., Mattara, M. S., Andreis, C., and Chiesa, L. M. (2013a). 
Secondary metabolites and antioxidant capacities of Waldheimia glabra (decne.) 
regel from Nepal. J. Sci. Food Agric.  93 (5), 1026–1034. doi: 10.1002/jsfa.5839

Giorgi, A., De Marinis, P., Granelli, G., Chiesa, L. M., and Panseri, S. (2013b). 
Secondary metabolite profile, antioxidant capacity, and mosquito repellent 
activity of Bixa orellana from Brazilian Amazon region. J. Chem. 409826. doi: 
10.1155/2013/409826

Giorgi, A., Manzo, A., Nanayakkara, N. N., Giupponi, L., Cocucci, M., and 
Panseri, S. (2015). Effect of biotic and abiotic stresses on volatile emission of 
Achillea collina Becker ex Rchb. Natural Product Research 29, 1695–1702 doi: 
10.1080/14786419.2014.997725

Giupponi, L., Borgonovo, G., Panseri, S., and Giorgi, A. (2019). Multidisciplinary study 
of a little known landrace of Fagopyrum tataricum Gaertn. of Valtellina (Italian 
Alps). Genet. Resour. Crop Evol. 66, 783–796. doi: 10.1007/s10722-019-00755-z

Giupponi, L., and Giorgi, A. (2019a). A contribution to the knowledge of Linaria 
tonzigii Lona, a steno-endemic species of the Orobie Bergamasche Regional 
Park (Italian Alps). Eco. Mon. 11, 16–23. doi: 10.1553/eco.mont-11-1s16

Giupponi, L., and Giorgi, A. (2019b). Effectiveness of modern leaf analysis tools 
for the morpho-ecological study of plants: the case of Primula albenensis Banfi 
et Ferl. Nor. J. Bot. 37, e02386, 1–10 doi: 10.1111/njb.02386

Giupponi, L., Pentimalli, D., Manzo, A., Panseri, S., and Giorgi, A. (2017). Effectiveness 
of fine root fingerprinting as a tool to identify plants of the Alps: results of preliminary 
study. Plant Biosyst. 152, 464–473. doi: 10.1080/11263504.2017.1306003

Grime, J. P. (1974). Vegetation classification by reference to strategies. Nature 250, 
26–31. doi: 10.1038/250026a0

Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants 
and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–
1194. doi: 10.1086/283244

Grime, J. P. (2001). Plant strategies, vegetation processes and ecosystem properties. 
Chichester: Wiley & Sons. 

Hanuš, L. O., Meyer, S. M., Muñoz, E., Taglialatela-Scafati, O., and Appendino, G. 
(2016). Phytocannabinoids: a unified critical inventory. Nat. Prod. Rep. 33, 
1357–1392. doi: 10.1039/C6NP00074F

Hillig, K. W. (2004). A chemotaxonomic analysis of terpenoid variation in 
Cannabis. Biochem. Syst. Ecol. 32, 875–891. doi: 10.1016/j.bse.2004.04.004

Iannotti, F. A., Hill, C. L., Leo, A., Alhusaini, A., Soubrane, C., Mazzarella, E., 
et al. (2014). Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) 
and cannabidiol (CBD), activate and desensitize transient receptor potential 
vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal 
hyperexcitability. ACS Chem. Neurosci. 5, 1131–1141. doi: 10.1021/cn5000524

Legge (242/2016). Disposizioni per la promozione della coltivazione e della filiera 
agroindustriale della canapa. (16G00258) 2016. https://www.gazzettaufficiale.
it/eli/gu/2016/12/30/304/sg/pdf.

Lewis, M. A., Russo, E. B., and Smith, K. M. (2018). Pharmacological foundations 
of cannabis chemovars. Planta Med. 84, 225–233. doi: 10.1055/s-0043-122240

Li, L., Li, R., Zhou, J., Zuniga, A., Stanislaus, A. E., Wu, Y., et al. (2013). 
MyCompoundID: using an evidence-based metabolome library for metabolite 
identification. Anal. Chem. 85, 3401–3408. doi: 10.1021/ac400099b

Marchini, L. M., Charvoz, C., Dujourdy, L., Baldovini, N., and Filippi, J. J. (2014). 
Multidimensional analysis of cannabis volatile constituents: identification of 
5,5-dimethyl-1-vinylbicyclo[2.1.1] hexane as a volatile marker of hashish, 
the resin of Cannabis sativa. J. Chromatogr. A. 1370, 200–215. doi: 10.1016/j.
chroma.2014.10.045

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org
https://doi.org/10.1007/s11356-017-0635-5
https://doi.org/10.1038/s41598-018-32651-4
https://doi.org/10.1038/s41598-018-32651-4
https://doi.org/10.1016/j.indcrop.2010.05.012
https://doi.org/10.1080/11263504.2014.985756
https://doi.org/10.1139/y59-099
https://doi.org/10.1016/j.jep.2018.09.004
https://doi.org/10.1016/0003-2697(76)90527-3
https://doi.org/10.1016/j.jpba.2017.05.049
https://doi.org/10.1007/s10681-004-4811-6
https://doi.org/10.5772/intechopen.79539
https://doi.org/10.5772/intechopen.79539
https://doi.org/10.1016/j.jpba.2017.11.073
https://doi.org/10.1016/j.indcrop.2017.06.063
https://doi.org/10.1016/j.indcrop.2017.06.063
https://doi.org/10.1016/j.indcrop.2017.02.022
https://doi.org/10.3389/fpls.2019.00120
https://doi.org/10.1079/9781845937935.0098
https://doi.org/10.4172/2329-6836.1000181
https://doi.org/10.1007/978-3-319-45541-9_1
https://doi.org/10.1016/j.eja.2013.01.006
https://doi.org/10.1016/j.foodchem.2018.04.078
https://doi.org/10.3389/fpls.2016.00688
https://doi.org/10.1007/s12374-011-0356-0
https://doi.org/10.1002/jsfa.5839
https://doi.org/10.1155/2013/409826
https://doi.org/10.1080/14786419.2014.997725
https://doi.org/10.1007/s10722-019-00755-z
https://doi.org/10.1553/eco.mont-11-1s16
https://doi.org/10.1111/njb.02386
https://doi.org/10.1080/11263504.2017.1306003
https://doi.org/10.1038/250026a0
https://doi.org/10.1086/283244
https://doi.org/10.1039/C6NP00074F
https://doi.org/10.1016/j.bse.2004.04.004
https://doi.org/10.1021/cn5000524
https://www.gazzettaufficiale.it/eli/gu/2016/12/30/304/sg/pdf
https://www.gazzettaufficiale.it/eli/gu/2016/12/30/304/sg/pdf
https://doi.org/10.1055/s-0043-122240
https://doi.org/10.1021/ac400099b
https://doi.org/10.1016/j.chroma.2014.10.045
https://doi.org/10.1016/j.chroma.2014.10.045


Pavlovic et al.

20 October 2019 | Volume 10 | Article 1265Frontiers in Plant Science | www.frontiersin.org

Phytochemico-Ecological Analysis of Hemp

Malomo, S. A., Onuh, J. O., Girgih, A. T., and Aluko, R. E. (2015). Structural and 
antihypertensive properties of enzymatic hemp seed protein hydrolysates. 
Nutrients 7, 7616–7632. doi: 10.3390/nu7095358

May, R. L., Warner, S., and Wingler, A. (2017). Classification of intra-specific 
variation in plant functional strategies reveals adaptation to climate. Ann. Bot. 
119, 1343–1352. doi: 10.1093/aob/mcx031

Mamone, G., Picariello, G., Ramondo, A., Nicolai, M. A., and Ferranti, P. (2019). 
Production, digestibility and allergenicity of hemp (Cannabis sativa L.) protein 
isolates. Food Res. Int. 115, 562–571. doi: 10.1016/j.foodres.2018.09.017

McPartland, J. M. (2018). Cannabis systematics at the levels of family, genus, and 
species. Cannabis Cannabinoid Res. 3, 1. doi: 10.1089/can.2018.0039

Mediavilla, V., Jonquera, M., Schmid-Slembrouck, I., and Soldati, A. (1998). Decimal 
code for growth stages of hemp (Cannabis sativa L.). J. Int. Hemp Assoc. 5, 68–74. 

Metcalf, L. C., Shmitz, A. A., and Pelka, J. R. (1996). Rapid preparation of methyl 
esters from lipid for gas chromatography analysis. Anal. Chem. 38, 514–515. 
doi: 10.1021/ac60235a044

Mölleken, H., and Theimer, R. R. (1997). Survey of minor fatty acids in Cannabis 
sativa L. fruits of various origins. J. Int. Hemp Assoc. 4, 13–17. 

Namdar, D., Moran, M., Ion, A., and Koltai, H. (2018). Variation in the 
compositions of cannabinoid and terpenoids in Cannabis sativa derived from 
inflorescence position along the stem and extraction methods. Ind. Crops Prod. 
113, 376–382. doi: 10.1016/j.indcrop.2018.01.060

Pavlovic, R., Nenna, G., Calvi, L., Panseri, S., Borgonovo, G., Giupponi, L., et  al. 
(2018). Quality traits of “cannabidiol oils”: cannabinoids content, terpene 
fingerprint and oxidation stability of european commercially available 
preparations. Molecules 23, 1920. doi: 10.3390/molecules23051230

Petrović, M., Debeljak, Ž., Kezić, N., and Džidara, P. (2015). Relationship between 
cannabinoids content and composition of fatty acids in hempseed oils. Food 
Chem. 170, 218–225. doi: 10.1016/j.foodchem.2014.08.039

Pierce, S., Negreiros, D., Cerabolini, B. E. L., Kattge, J., Dìaz, S., Kleyer,  M. 
et al. (2017). A global method for calculating plant CSR ecological 
strategies applied across biomes world-wide. Funct. Ecol. 31, 444–457. doi: 
10.1111/1365-2435.12722

Pollastro, F., Minassi, A., and Fresu, L. G. (2018). Cannabis Phenolics and their 
Bioactivities. Curr. Med. Chem. 25 (10), 1160–1185. doi: 10.2174/0929867324
666170810164636

Plant Variety Catalogues, Databases & Information Systems. (1995). Available 
online: https://ec.europa.eu/food/plant/plant_propagation_material/plant_
variety_catalogues_databases_en [Accessed January 18, 2019]. 

R Development Core Team (2018). R: a language and environment for statistical 
computing. Vienna, Austria: R Foundation for Statistical Computing. http://
www.r-project.org. 

Rivas-Martinez, S., and Rivas-Saenz, S. (2009). Sistema de Clasificacion 
Bioclimatica Mundial. Espana: Centro de Investigaciones Fitosociologicas. 
http://www.globalbioclimatics.org. 

Russo, E. B. (2019). The case for the entourage effect and conventional breeding 
of clinical cannabis: no “strain,” no gain. Front. Plant Sci. 9, 1969. doi: 10.3389/
fpls.2018.01969

Russo, E. B. (2011). Taming THC: potential cannabis synergy and 
phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 163, 1344–
1364. doi: 10.1111/j.1476-5381.2011.01238.x

Salentijn, E. M. J., Zhang, Q., Amaducci, S., Yang, M., and Trindade, L. (2015). New 
developments in fiber hemp (Cannabis sativa L.) breeding. Ind. Crops Prod. 68, 
32–41. doi: 10.1016/j.indcrop.2014.08.011

Sapino, S., Carlotti, M. E., Peira, E., and Gallarate, M. (2005). Hemp-seed and olive 
oils: their stability against oxidation and use in O/W emulsions. Int. J. Cosmet. 
Sci. 27, 355–356. doi: 10.1111/j.1467-2494.2005.00290_2.x

Spertino, S., Cipriani, V., De Angelis, C., Giuffrida, M. G., Marsano, F., and 
Cavaletto, M. (2012). Proteome profile and biological activity of caprine, 
bovine and human milk fat globules. Mol. BioSyst. 8, 967–974. doi: 10.1039/
C2MB05400K

Spertino, S., Boatti, L., Icardi, S., Manfredi, M., Cattaneo, C., Marengo, E., et al. 
(2018). Cellulomonas fimi secretomes: in vivo and in silico approaches for 
the lignocellulose bioconversion. J Biotechnol. 270, 21–29. doi: 10.1016/j.
jbiotec.2018.01.018

Schluttenhofer, C., and Yuan, L. (2017). Challenges towards revitalizing hemp: 
a multifaceted crop. Trends Plant Sci. 22 (11), 917–929. doi: 10.1016/j.
tplants.2017.08.004

Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH Image to ImageJ: 
25 years of image analysis. Nat. Methods 9, 671–675. doi: 10.1038/nmeth.2089

Simopoulos, A. P. (2008). The importance of the omega-6/omega-3 fatty acid ratio 
in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 233, 674–
688. doi: 10.3181/0711-MR-311

Struik, P. C., Amaducci, S., Bullard, M. J., Stutterheim, N. C., and Venturi G. and 
Cromack, H. T. H. (2000). Agronomy of fibre hemp (Cannabis sativa L.) in 
Europe. Ind. Crops Prod. 11, 107–118. doi: 10.1016/S0926-6690(99)00048-5

Tang, C. H., Ten, Z., Wang, X. S., and Yang, X. Q. (2006). Physicochemical and 
functional properties of hemp (Cannabis sativa L.) protein isolate. J. Agric. 
Food Chem. 54, 8945–8950. doi: 10.1021/jf0619176

Tang, Y., Li, X., Chen, P. X., Zhang, B., Hernandez, M., Zhang, H., et al. (2015). 
Characterization of fatty acid, carotenoid, tocopherol/tocotrienol compositions 
and antioxidant activities in seeds of three Chenopodium quinoa Willd. 
genotypes. Food Chem. 174, 502–508. doi: 10.1016/j.foodchem.2014.11.040

Tang, K., Struik, C., Yin, X., Thouminot, P., Bjelková, M., and Amaducci, S. (2016). 
Comparing hemp (Cannabis sativa L.) cultivars for dual-purpose production 
under contrasting environments. Ind. Crops Prod. 87, 33–44. doi: 10.1016/j.
indcrop.2016.04.026

Vonapartis, E., Aubin, M. P., Seguin, P., Mustafa, A. F., and Charron, J. B. (2015). 
Seed composition of ten industrial hemp cultivars approved for production in 
Canada. J. Food Comp. Anal. 39, 8–12. doi: 10.1016/j.jfca.2014.11.004

Yan, X., Tang, J., dos Santos Passos, C., Nurisso, A., Avello Simões-Pires, C., 
Ji, M., et al. (2015). Characterization of lignanamides from hemp (Cannabis 
sativa L.) seed and their antioxidant and acetylcholinesterase inhibitory 
activities. J. Agric. Food Chem. 63, 10611–10619. doi: 10.1021/acs.
jafc.5b05282

Zengin, G., Menghini, L., Di Sotto, A., Mancinelli, R., Sisto, F., Carradori, S., et al. 
(2018). Chromatographic analyses, in vitro biological activities, and cytotoxicity 
of Cannabis sativa L. essential oil: a multidisciplinary study. Molecules 23 (12) 
1–26. doi: 10.3390/molecules23123266

Zhang, J. L., Zhang, S. B., Zhang, Y. P., and Kitajima, K. (2015). Effects of phylogeny 
and climate on seed oil fatty acid composition across 747 plant species in 
China. Ind. Crops Prod. 63, 1–8. doi: 10.1016/j.indcrop.2014.10.045

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Copyright © 2019 Pavlovic, Panseri, Giupponi, Leoni, Citti, Cattaneo, Cavaletto 
and Giorgi. This is an open-access article distributed under the terms of the Creative 
Commons Attribution License (CC BY). The use, distribution or reproduction in 
other forums is permitted, provided the original author(s) and the copyright owner(s) 
are credited and that the original publication in this journal is cited, in accordance 
with accepted academic practice. No use, distribution or reproduction is permitted 
which does not comply with these terms.

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org
https://doi.org/10.3390/nu7095358
https://doi.org/10.1093/aob/mcx031
https://doi.org/10.1016/j.foodres.2018.09.017
https://doi.org/10.1089/can.2018.0039
https://doi.org/10.1021/ac60235a044
https://doi.org/10.1016/j.indcrop.2018.01.060
https://doi.org/10.3390/molecules23051230
https://doi.org/10.1016/j.foodchem.2014.08.039
https://doi.org/10.1111/1365-2435.12722
https://doi.org/10.2174/0929867324666170810164636
https://doi.org/10.2174/0929867324666170810164636
https://ec.europa.eu/food/plant/plant_propagation_material/plant_variety_catalogues_databases_en
https://ec.europa.eu/food/plant/plant_propagation_material/plant_variety_catalogues_databases_en
http://www.r-project.org
http://www.r-project.org
http://www.globalbioclimatics.org
https://doi.org/10.3389/fpls.2018.01969
https://doi.org/10.3389/fpls.2018.01969
https://doi.org/10.1111/j.1476-5381.2011.01238.x
https://doi.org/10.1016/j.indcrop.2014.08.011
https://doi.org/10.1111/j.1467-2494.2005.00290_2.x
https://doi.org/10.1039/C2MB05400K
https://doi.org/10.1039/C2MB05400K
https://doi.org/10.1016/j.jbiotec.2018.01.018
https://doi.org/10.1016/j.jbiotec.2018.01.018
https://doi.org/10.1016/j.tplants.2017.08.004
https://doi.org/10.1016/j.tplants.2017.08.004
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.3181/0711-MR-311
https://doi.org/10.1016/S0926-6690(99)00048-5
https://doi.org/10.1021/jf0619176
https://doi.org/10.1016/j.foodchem.2014.11.040
https://doi.org/10.1016/j.indcrop.2016.04.026
https://doi.org/10.1016/j.indcrop.2016.04.026
https://doi.org/10.1016/j.jfca.2014.11.004
https://doi.org/10.1021/acs.jafc.5b05282
https://doi.org/10.1021/acs.jafc.5b05282
https://doi.org/10.3390/molecules23123266
https://doi.org/10.1016/j.indcrop.2014.10.045
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Phytochemical and Ecological Analysis of Two Varieties of Hemp (Cannabis sativa L.) Grown in a Mountain Environment of Italian Alps
	Introduction
	Materials and Methods
	Experimental Fields and Sample Collection
	Functional Strategy
	Seed Weight and Proteins Analysis
	Seeds Fatty Acid Composition
	Inflorescence Analysis
	Chemical and Reagents
	Superfine Grinding (SFG) Sample Preparation
	Accelerated Solvent Extraction (ASE) for Cannabinoid Profiling
	Cannabinoids LC-Q-Exactive-Orbitrap-MS Analysis
	Untargeted Metabolomics Approach
	HS-SPME and GC-MS Analysis for Terpenes Examination
	Statistical Analysis


	Results
	CSR Strategy
	Protein Yield and Characterization
	Seeds Fatty Acid Profile
	Inflorescences Analysis
	Quantification of Cannabinoids: Targeted Metabolomics With Commercially Available Phytocannabionids
	Un-Targeted Metabolomics: Phytocannabinoid Profiling and Putative Identification of Non-Phytocannabinoic Compounds by Means of HPLC-HRMS
	Terpenoids Profile Evaluated by HS-SPME- GC-MS Methodology


	Discussion
	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


