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Plant hormone auxin regulates several aspects of plant growth and development. Auxin is 
predominantly synthesized in the shoot apex and developing leaf primordia and from there 
it is transported to the target tissues e.g. roots. Auxin transport is polar in nature and is 
carrier-mediated. AUXIN1/LIKE-AUX1 (AUX1/LAX) family members are the major auxin influx 
carriers whereas PIN-FORMED (PIN) family and some members of the P-GLYCOPROTEIN/
ATP-BINDING CASSETTE B4 (PGP/ABCB) family are major auxin efflux carriers. AUX1/
LAX auxin influx carriers are multi-membrane spanning transmembrane proteins sharing 
similarity to amino acid permeases. Mutations in AUX1/LAX genes result in auxin related 
developmental defects and have been implicated in regulating key plant processes 
including root and lateral root development, root gravitropism, root hair development, 
vascular patterning, seed germination, apical hook formation, leaf morphogenesis, 
phyllotactic patterning, female gametophyte development and embryo development. 
Recently AUX1 has also been implicated in regulating plant responses to abiotic stresses. 
This review summarizes our current understanding of the developmental roles of AUX1/
LAX gene family and will also briefly discuss the modelling approaches that are providing 
new insight into the role of auxin transport in plant development.
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INTRODUCTION

Auxin is a key plant hormone that regulates several aspects of plant growth and development 
including plant tropic responses, embryo development, root development, shoot development, leaf 
development and phylotactic patterning and there are several good reviews highlighting the role of 
auxin in plant development (Reinhardt, 2003; Leyser, 2006; Sieburth and Deyholos, 2006; Vanneste 
and Friml, 2009; Wang and Estelle, 2014; Lavy and Estelle, 2016).

It is known for a long time that auxin transport is polar in nature. Following its synthesis in the 
leaf primordia and shoot apical meristem, auxin is transported downwards to its target tissues using 
either through the bulk flow in the phloem or through the polar auxin transport stream (Swarup 
et al., 2001; Vanneste and Friml, 2009; Swarup and Péret, 2012; Swarup and Bennett, 2014).

Auxin was the first plant hormone to be discovered (Went, 1927). Indole-3-acetic acid (IAA), 
the major form of auxin in higher plants, is a weak acid (pKa = 4.85) and, at the intracellular pH, 
exists in its membrane impermeable (IAA-) form. However, in the extracellular apoplast, where 
the pH is slightly acidic (pH ~5.5), IAA exists both as membrane permeable IAAH form and 
membrane impermeable (IAA-) form (Zazímalová et al., 2010; Swarup and Péret, 2012; Swarup 
and Bennett, 2014). Zazímalová et al. (2010) highlighted the importance of auxin influx carriers 
when they calculated that at apoplastic pH, 83% of IAA is in its membrane impermeable IAA- form 
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and would need a carrier for its import in the cell. Interestingly, 
even before any of the auxin carriers were discovered, as part 
of the chemiosmotic hypothesis, Rubery and Sheldrake (1974) 
and Raven (1975) independently proposed that auxin transport 
is carrier-mediated and the polarity of auxin movement is likely 
to be provided by asymmetric localization of auxin transporters 
(Swarup and Bennett, 2014; Mohanta et al., 2018). It is now 
well established that auxin transport is carrier-mediated and 
is facilitated by auxin influx carriers and efflux carriers. Auxin 
influx carriers mediate the uptake of auxin inside the cells 
whereas auxin efflux carriers are required for the export of auxin 
out of the plant cells. In Arabidopsis, the AUX1/LAX family of 
auxin transporters represent the major influx carriers (Bennett 
et al., 1996; Swarup et al., 2001; Swarup et al., 2008; Péret et al., 
2012) whereas PIN (Chen et al., 1998; Gälweiler et  al., 1998; 
Luschnig et al., 1998; Steinmann et al., 1999; Friml et al., 2002; 
Friml et al., 2003; Blilou et al., 2005; Wisniewska et al., 2006; 
Rahman et al., 2010; Bosco et al., 2012) and PGP/ABCB (Noh 
et al., 2003; Terasaka et al., 2005; Blakeslee et al., 2007; Cho 
et  al., 2007; Zhang et al., 2018) family members encode the 
major auxin efflux carriers. Using an in-silico approach, Barbez 
et al. (2012) identified PILS (PIN LIKES) gene family that also 
appears to be regulating auxin homeostasis. In addition, it has 
been suggested that nitrate transporter NRT1.1 can also be 
involved in auxin transport (Krouk et al., 2010) and can regulate 
lateral root formation depending on the nitrogen status of the 
plant (Krouk et al., 2010). This may provide a direct mechanism 
for soil nutrient status mediated auxin dependent regulation of 
lateral root development.

This review will focus on our current understanding of the 
roles of AUX1/LAX proteins in regulating auxin transport during 
plant development. There have been a few comprehensive reviews 
covering the role of auxin influx carriers in plant development in 
general (Swarup and Péret, 2012; Swarup and Bennett, 2014) or 
AUX1 in particular (Singh et al., 2018) and so this review will 
only briefly discuss the topics covered in those reviews. Here, 
we focus primarily on new understanding of AUX1/LAX auxin 
influx carriers and their roles in plant development.

AUX1/LAX GENE FAMILY IN ARABIDOPSIS

In the chemiosmotic hypothesis, both Rubery and Sheldrake 
(1974) and Raven (1975) independently proposed that auxin 
transport is carrier-mediated but it was not until 1985 when 
Lomax et al. (1985) showed that IAA uptake is an active process 
and is driven by proton motive force.

Working on suspension-cultured tobacco cells, Delbarre et al. 
(1996) revealed that IAA and 2,4-D (2,4-Dichlorophenoxyacetic 
acid-a synthetic auxin) uptake in the cells is carrier-mediated but 
in contrast, lipophilic auxin 1-naphthalene acetic acid (1-NAA) 
enters the cells through passive diffusion. This indeed turned 
out to be true when the first auxin influx carrier was cloned and 
characterized (Bennett et al., 1996; Marchant et al., 1999). Cloning 
of AUX1 gene revealed similarity to amino acid permeases. 
Considering IAA is structurally similar to tryptophan, explains 
the evolution of these plant specific sub class of the amino acid 

permease superfamily that now is known as auxin amino acid 
permease superfamily. In Arabidopsis, the AUX1/LAX gene family 
is comprised of four members AUX1, LAX1, LAX2, and LAX3 
sharing 75–80% similarity at protein level (Swarup and Péret, 
2012; Swarup and Bennett, 2014). These genes encode multi-
transmembrane (TM) spanning proteins and share similarity to 
amino acid transporters (Young et al., 1999; Péret et al., 2012). 
Arabidopsis AUX1/LAX proteins have been shown to take up 
auxin in heterologous expression systems (Yang et al., 2006; 
Swarup et al., 2008; Péret et al., 2012) and mutations in AUX1/
LAX genes result in auxin related developmental defects (Bennett 
et al., 1996; Swarup et al., 2001; Swarup et al., 2004; Swarup et al., 
2005; Swarup et al., 2007; Swarup et al., 2008; Bainbridge et al., 2008; 
Péret et al., 2012). The founding member of this family, AUX1 has 
been well studied and shown to regulate root gravitropism (Bennett 
et al., 1996; Swarup et al., 2001; Swarup et al., 2004; Swarup et al., 
2005), whereas AUX1 and LAX3 both shown to regulate lateral 
root development (Swarup et al., 2008). LAX2 has been shown 
to facilitate vascular development (Péret et al., 2012) and AUX1, 
LAX1 and LAX2 have been shown to act in a redundant manner 
to regulate phyllotactic patterning (Bainbridge et al., 2008). These 
studies highlight the functional importance of AUX1/LAX proteins 
in auxin transport.

In the following sections, we will review our understanding 
of the role of AUX1/LAX auxin influx carriers in regulating 
plant development in Arabidopsis and highlight their importance 
in several biological processes from seed germination to root, 
shoot, and flower development and embryogenesis (Figure 1).

Root Gravitropism
Gravity in the roots is perceived in the columella cells. Upon 
gravity perception, differential movement of auxin from the 
site of gravity perception to the gravity-responsive tissues of the 
elongation zone results in root bending as higher auxin levels 
on the lower side of the root inhibits cell elongation whereas 
cells on the upper side are still elongating (Ottenschläger et al., 
2003; Swarup et al., 2013; Sato et al., 2015; Muller et al., 2018). 
Differential auxin gradient is facilitated by auxin efflux carrier 
PIN3 that relocalizes to the new bottom of the cell within minutes 
after the gravity stimulus (Friml et al., 2002). In addition, PIN7 
that has been reported to regulate root bending in detached 
lateral roots (Ruiz Rosquete et al., 2018), appears to be involved 
in some kind of compensation mechanism in primary roots as 
PIN7-GFP is expanded into the PIN3 expression domain in 
the pin3 mutants (Kleine-Vehn et al., 2010). Using a modelling 
approach, Band et al. (2012), revealed that auxin asymmetry is 
transient and lasts only about 100 min and after which the auxin 
distribution becomes symmetric. They proposed a “tipping point 
mechanism” that reverses the auxin flow as the root tips reach an 
angle of 40º.

Among the AUX1/LAX family members in Arabidopsis, only 
AUX1 has been implicated in regulating root gravitropic response. 
A recent report suggests that AUX1 acts upstream of PIN2 in 
regulating root gravitropism (Liu et al., 2018) but we believe 
that they act in concert. Mutation in aux1 results in agravitropic 
roots. AUX1 is expressed in tissues involved in gravity perception 
(columella), gravity signal transmission (lateral root cap) and 
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gravity response (epidermis) (Swarup et al., 2001; Swarup 
et al., 2004; Swarup et al., 2005). Using a transactivation-based 
approach, Swarup et al. (2005) probed which AUX1 expression 
domains are required for root gravitropism and revealed that 
AUX1 expression in lateral root cap and epidermal cells was 
sufficient to rescue root gravitropic defect of aux1 mutants. 
Interestingly, AUX1 columella expression was not required for 
restoration of root agravitropic defect of aux1 mutants. Genetic 
redundancy could be a possible explanation as both LAX2 and 
LAX3 are known to express in the columella cells.

Recently, Pernisova et al. (2016) proposed that AUX1 mediated 
auxin influx is subject to regulation by cytokinins. They found 
that multiple cytokinin receptor mutants show altered root angles 
in gravi-stimulated roots and 35S:CKX lines over expressing 
cytokinin degradation enzyme cytokinin dehydrogenase/
oxidase show delayed root gravitropism. Interestingly, treatment 
with exogenous cytokinins does not affect root gravitropic 
response and so the authors suggest that proper concentration 
of endogenous cytokinins is crucial for gravity induced auxin 
redistribution. They also show that AUX1-YFP signal is reduced 
in these cytokinin depleted lines but the relocalization kinetics of 
PIN3 and PIN7 was comparable to wild type. It will be interesting 

to check if treatment with exogenous cytokinins can restore AUX1 
signal in the cytokinin depleted lines to further understand the 
role of cytokinin in regulating auxin influx and root gravitropism.

Vascular Development
Auxin is known to regulate vascular development. Direct 
treatment with auxin promotes vascular development and several 
auxin transport and response mutants have defects in vascular 
patterning (Reinhardt, 2003; Sieburth and Deyholos, 2006; Péret 
et al., 2009a, Péret et al., 2009b; Petrásek and Friml, 2009; Yang 
and Wang, 2016). Despite, the role of auxin influx carriers has not 
been very clear until recently. Now, there is some evidence for the 
role of LAX2 in regulating vascular patterning in the cotyledons 
as lax2 mutants have higher propensity of discontinuity in 
vascular strands in the cotyledon (Péret et al., 2012). More 
recently, Fàbregas et al. (2015) used a computational, modelling 
and experimental approaches to investigate the role of influx 
carriers in vascular development. Their theoretical approach 
predicted that the auxin influx carriers increase the periodicity 
of auxin maxima. They tested these predictions using aux1/lax 
quadruple mutants and showed that these mutants have fewer 
and more spaced vascular bundles. Additionally, they showed 

FIGURE 1 | Roles of AUX1/LAX family in development of Arabidopsis thaliana. Auxin influx carrier AUX1 and its homologs LAX1, LAX2, and LAX3 have been 
implicated in regulating root gravitropism; root, lateral & adventitious root development; root-hair development, leaf morphogenesis; female gametophyte 
development; embryo development; seed germination and apical hook development. Names in parenthesis indicate the genes controlling the respective role. 
*indicates the role of AUX1/LAX family deciphered from modelling studies and quadruple mutant analysis. Aradidopsis plant cartoon template adapted from (Bhosale 
et al., 2019).
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that AUX1/LAX proteins also regulate xylem differentiation in 
both the shoot and the root.

Seed Germination
Plant hormones such as Gibberellic Acid (GA) and Abscisic 
Acid (ABA) are known to regulate seed germination (Koornneef 
et al., 2002; Finkelstein et al., 2008). GA promotes germination 
and ABA inhibits germination. Auxin has also been implicated 
in regulating germination (Holdsworth et al., 2008). Low 
concentration of auxin promotes seed germination and higher 
concentrations inhibit germination (Hsueh and Lou, 1947; 
Brady et al., 2003). Auxin appears to affect seed germination 
through GA/ABA signaling pathways as auxin response factors 
ARF10 and ARF16 can modulate expression of ABSCISIC ACID 
INSENSITIVE 3 (ABI3) and imbibed seeds have increased 
expression of auxin influx and efflux carriers compared to 
dormant seeds (Carrera et al., 2007; Liu et al., 2013).

It is emerging now that histone modification may play a 
crucial role in regulating seed germination by regulating the 
expression of several auxin related genes. Recently, Wang et al. 
(2017) showed that mutations in histone deacetylase-binding 
factor genes, SNL1 (SWI-INDEPENDENT3 (SIN3)-LIKE1) 
and SNL2 result in increased speed of seed germination and 
faster radicle protrusion. They also showed that expression of 
several auxin synthesis, transport and responses genes were 
up regulated in snl1snl2 double mutants and these mutants 
accumulated significantly more IAA than wild type plants. This 
led Wang et al. (2017) to investigate the seed germination in 
auxin related mutants. Though many auxin related genes were 
upregulated in snl1snl2 double mutant, many of their mutants 
had no obvious seed germination defects. However, they did 
find that aux1 mutants had weakly decreased germination of 
fresh seeds compared to controls. Further investigation showed 
that AUX1 levels were higher in the radicle tip of the snl1snl2 
double mutants and AUX1 was a target for SNL mediated 
H3K9/18 histone deacetylation. Moreover, they also showed that 
the cell cycle genes CYCD1;1 and CYCD4;1 were upregulated 
in snl1snl2 double mutants, which is also in agreement with 
increased cell cycle activity in these mutants. In addition, auxin 
also can induce the expression of CYCD1;1 and CYCD4;1. Taken 
together, they showed that SNLs negatively regulate radicle 
protrusion and AUX1 plays a crucial role in SNL mediated seed 
germination. They further proposed a model, where during 
embryo development and seed maturation high SNL levels 
cause deacetylation of ABA hydrolysis genes causing high ABA 
levels inhibiting seed germination. During imbibition, the SNL 
levels go down that promotes expression of auxin synthesis and 
transport genes including AUX1. Increased auxin levels, in turn, 
switch on cell cycle genes that promote radicle growth.

Apical Hook Development
Apical hook protects the shoot apical meristem during 
seedling emergence from the soil (Abbas et al., 2013). Light 
and plant hormones such as auxin, ethylene, gibberellins, 
and brassinosteroids are key signals regulating apical hook 
development (Abbas et al., 2013; Smet et al., 2014). Vandenbussche 
et al. (2010) showed that apical hook formation requires fresh 

auxin synthesis on the inner side of the apical hook in an ethylene 
dependent fashion. This results in creation of an auxin gradient 
and the inhibition of cell elongation on the inner side, in turn, 
resulting in differential growth and apical hook formation.

Among the auxin influx carriers, AUX1 and LAX3 have 
been implicated in regulating apical hook development in 
Arabidopsis (Roman et al., 1995; Vandenbussche et al., 2010). 
Vandenbussche et al. (2010) showed that aux1 and lax3 mutants 
show less exaggerated apical hook upon ethylene treatment. 
AUX1 is expressed in the hook region and it is localized in the 
epidermal cell membranes (Vandenbussche et al., 2010). In 
contrast, LAX3 is localized to the plasma membrane in the outer 
tissues on the basal parts (but not in the apical hook region) of 
hypocotyl. Vandenbussche et al. (2010) proposed that LAX3 is 
the major auxin influx carrier in hook development with AUX1 
facilitating movement of auxin from the cotyledons and shoot 
apical meristem to the apical hook whereas LAX3 draining auxin 
out of the hook.

Though both AUX1 and LAX3 (along with auxin efflux carrier 
PIN3— Zádníková et al., 2010) regulate apical hook formation, 
their localization to the plasma membrane appears to be under 
distinct genetic regulation. Working in the echidna mutants, 
Boutté et al. (2013) showed that echidna mutants have defects in 
apical hook formation. They also have defects in differential auxin 
gradient formation in the apical hook. Boutté et al. (2013) showed 
that ECHIDNA is predominantly localized to the secretory 
vesicles at the trans-Golgi network (TGN) and in echidna 
mutants AUX1 trafficking to the plasma membrane is disrupted. 
In contrast, LAX3 or PIN3 trafficking is only marginally altered 
in echidna mutants. These findings suggest that not only there 
are distinct mechanisms for the trafficking of auxin influx and 
efflux carrier proteins to the plasma membrane, even the closely 
related AUX1 and LAX3 follow distinct trafficking pathways 
from the trans-Golgi network (TGN) to the plasma membrane 
in the hypocotyl.

Kleine-Vehn et al. (2006) had shown previously that polar 
AUX1 and PIN1 trafficking to the plasma membrane in the 
root protophloem cells follow distinct pathways with PIN1 but 
not AUX1 trafficking being GNOM dependent. GNOM encodes 
membrane-associated guanine–nucleotide exchange factor on 
ADP-ribosylation factor G protein (ARF-GEF) (Steinmann et al., 
1999). Guanine nucleotide exchange factors are involved in the 
activation of small GTPases which act as molecular switches in 
the intracellular signaling pathways (Casanova, 2007; Richter 
et al., 2014). In Arabidopsis, there are eight ARF-GEFs which are 
grouped into two classes based on their similarity to human big 
ARF-GEFs, GBF1, and BIG1 (not to be confused with calossin-
like protein BIG/DOC/CRM—Gil et al., 2001). There are three 
GBF1 related members (GNOM, GLN1, GLN2) and five BIG1 
related members (BIG1 to BIG5) (Richter et al., 2014). BIG1-4 
have been implicated in post Golgi trafficking.

Recently, Jonsson et al. (2017) showed that in hook 
development, AUX1 trafficking is mediated by ECHIDNA, 
ARF1, and BIG proteins. They showed that ARF1 and BIG4 
colocalize with ECHIDNA in the TGN and arf1 and big mutants 
have defects in AUX1 trafficking and show hook developmental 
defects similar to aux1 mutants. In echidna mutants, ARF1 
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and BIG cannot localize to the TGN whereas in arf1 and big 
mutants, ECHIDNA localization is perturbed. They proposed 
that ECHIDNA and BIG facilitate recruitment of ARF1 to the 
TGN that then facilitates vesicle formation for AUX1 delivery to 
the plasma membrane, which is a prerequisite for the ethylene 
mediated hook development.

Root Development
During root development, cells arise linearly from a group of 
stem cells surrounding the quiescent center (QC). Stem cells 
divide asymmetrically to give rise to daughter cells that move 
away from the stem cell niche and differentiate (Scheres, 2007). 
Auxin is crucial for specification of the QC and QC is crucial 
for the maintenance of the stem cell fate. Cytokinin is important 
for promoting cell differentiation and auxin and cytokinin act 
antagonistically to regulate root development (Aloni et al., 2006).

Zhang et al. (2013) showed that auxin influx carrier LAX2 
plays a role in regulating QC patterning in the roots via an 
auxin–cytokinin module. In Arabidopsis, cytokinin signaling is 
mediated by a multi-step phosphorelay mechanism involving 
cytokinin receptors AHKs (Arabidopsis Histidine Kinases) 
AHPs (Arabidopsis histidine phosphotransfer proteins) and 
ARRs (Arabidopsis response regulators). Upon cytokinins 
perception, AHKs relay the signal to ARRs via AHPs. ARRs 
act as transcriptional regulators to regulate gene expression 
(Keshishian and Rashotte, 2015). Zhang et al. (2013) show that 
cytokinin promotes cell division in the QC and downregulate 
the expression of several genes including LAX2 in ARR1 and 
ARR12 dependent fashion and ARR1 directly binds to LAX2 gene. 
Moreover, lax2 mutants have increased cell division in the QC 
thus phenocopying cytokinin treatment. Taken together, Zhang 
et al. (2013) proposed that cytokinin suppresses lax2 expression 
to regulate auxin distribution in the root apical meristem.

Cytokinins inhibit cell elongation and cell proliferation. 
Street et al. (2016) recently showed that cytokinin inhibits 
root cell elongation but not cell proliferation in an AUX1 
dependent fashion. Using an innovative screen in arr1 and arr12 
background to identify novel regulators of cytokinin mediated 
root development. Two of the enhancers (termed enhancers of 
response regulators or err) turned out to have mutations in the 
AUX1 gene (Pro371Leu and Gly374Ser) in the extracellular loop 
between 9th and 10th transmembrane regions suggesting the role 
of AUX1 in cytokinin mediated root development. Indeed, aux1 
mutants showed reduced root growth inhibition to cytokinin 
treatment but not lax1, lax2 or lax3. They further observed that 
the expression of the type-B response regulator ARR10 is auxin 
and AUX1 dependent and led them to propose that cytokinin 
and auxin regulate expression of ARR10 and AUX1 as part of an 
auto regulatory circuit.

AUX1 has also been implicated in ABA mediated inhibition 
of root growth. ABA is known to inhibit root growth at high 
concentration and recently, Li et al. (2017) showed that this is 
mediated via AUX1 in an ethylene dependent pathway.

Lateral Root Development
Lateral roots originate from the xylem pole pericycle cells that 
undergo a series of division to create the lateral root primordia  

(Dubrovsky et al., 2000; Dubrovsky et al., 2001; Péret et al., 2009a; 
Lavenus et al., 2013; Du and Scheres, 2018). This new primordium 
has to penetrate several cell layers before emergence (Swarup 
et al., 2008; Péret et al., 2009b; Swarup and Péret, 2012). Auxin 
is one of the key signals regulating lateral root development 
(Benková et  al., 2003; Swarup et al., 2008; Péret et al., 2009a; 
Swarup and Péret, 2012; Du and Scheres, 2018). Mutations in 
auxin influx carriers AUX1 result in about 50% reduction in 
lateral root numbers (Hobbie and Estelle, 1995; Marchant et al., 
2002). Swarup et al. (2008) showed that lax3 mutants also have 
50% reduction in lateral root numbers and aux1lax3 double 
mutants have severe reduction in lateral root emergence and 
show almost no emerged lateral root primordia up to day 14. 
Both AUX1 and LAX3 show contrasting and non-overlapping 
expression patterns with AUX1 being expressed in the primordia 
whereas LAX3 is completely excluded from the primordia and is 
expressed in the cortical and epidermal cells facing the primordia 
(Marchant et al., 2002; Swarup et al., 2008). To explain lateral 
root emergence, Swarup et al. (2008) proposed an elegant model 
based on the facts that the LAX3 gene is auxin inducible; auxin 
maxima is localized at the tip of the developing primordia and 
several cell wall modelling enzymes (Cosgrove, 2000; Cosgrove, 
2005) are auxin inducible in a LAX3 dependent manner. They 
proposed that auxin from the developing primordia acts as a 
signal to induce LAX3 in the cortex. In a positive feedback loop, 
LAX3 induction results in build-up of auxin in the cortex cells 
that then results in the induction of cell wall remodeling enzymes 
to facilitate smooth passage of the primordia through the cortex. 
Similar mechanism then facilitates primordia emergence through 
the epidermis. Porco et al. (2016a) provided further mechanistic 
insight into the regulation of lateral root emergence. They showed 
that induction of LAX3 by auxin is mediated by LBD16 which 
acts upstream of LAX3. Additionally, Orman-Ligeza et al. (2016) 
showed that reactive oxygen species (ROS) also involved in lateral 
root emergence by cell wall remodeling of overlaying tissues.

Light has been known to regulate root system architecture, 
but the mechanism has not been well understood. Recently, 
van Gelderen et al. (2018) revealed that light regulate lateral 
root development through regulating auxin transport. They 
showed that low R:FR perception in the shoot inhibits lateral 
root emergence. This is achieved via HY5 (ELONGATED 
HYPOCOTYL5) that accumulates in the lateral root primordia 
in phytochrome dependent fashion and regulates the plasma 
membrane abundance of LAX3 and PIN3 to reduce auxin levels 
in the overlaying cortex cells to reduce lateral root outgrowth.

Adventitious Root Development
Adventitious roots are post embryonic roots and auxin has been 
known to regulate their formation (Veloccia et al., 2016; Fattorini 
et al., 2017). Recently, two independent reports suggest a possible 
role of AUX1 and LAX3 in this process. Veloccia et al. (2016) 
showed that both ethylene and auxin regulate adventitious root 
formation in Arabidopsis. Treatment of Arabidopsis seedlings with 
ethylene precursor ACC (1-aminocyclopropane-1-carboxylic 
acid) resulted in increased number of adventitious roots in 
AUX1/LAX3 dependent fashion. It appears that AUX1/LAX3 
mediated adventitious root formation is regulated by ARF7/
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ARF19-LBD16/LBD18 module as aux1, lax3, lbd16, lbd18, arf7, 
and arf19 single mutants have reduced number of adventitious 
roots whereas aux1lax3lbd16lbd18 quadruple mutants lack 
adventitious roots (Lee et al., 2019).

Root Hair Development
Auxin plays a critical role in root hair development (Knox et al., 
2003; Fischer et al., 2006; Salazar-Henao et al., 2016). Auxin 
treatment promotes root hair elongation and mutations in AUX1 
gene results in shorter root hairs that can be restored to wild type 
levels by exogenous auxin. Interestingly, AUX1 is expressed in 
non-hair epidermal cells but not in the hair cells (Jones et al., 
2009). Computer simulation showed that expression of AUX1 in 
the non-hair cells can still result in over 10-fold accumulation 
of auxin in hair cells and thus Jones et al. (2009) concluded that 
non-hair cells affect auxin abundance in hair cells. PIN2 which is 
expressed in both root hair and non-hair cells can facilitate auxin 
efflux out of the non-hair cells and into the apoplast and despite 
no AUX1 in the hair cells, these root hair cells can still maintain 
high auxin concentration.

Root hair cell polarity has also been shown to be regulated by 
auxin (Grebe et al., 2002). Root hairs are formed on the basal side 
of the hair cells and auxin treatment results in more basal position 
of root hairs (Grebe et al., 2002). AUX1 has been implicated in 
regulating this root hair polarity by auxin as in aux1 mutants root 
hairs are formed not only on more apical side but they also have 
30% increased frequency of double root hairs (Grebe et al., 2002).

Recently, Dindas et al. (2018) showed that AUX1 also 
mediates proton-coupled auxin transport in root hairs. 
Membrane depolarization is one of the earliest auxin responses 
in a cell. Using an electrophysiological approach and measuring 
membrane potential using intracellular mini-electrodes, Dindas 
et al. (2018) showed that IAA alters membrane potential in a 
pH and concentration dependent manner and aux1 mutants are 
severely impaired in IAA mediated membrane depolarization. 
They also showed that IAA influx is coupled with changes 
in cytosolic calcium and calcium influx is impaired in aux1 
mutants. Interestingly, they find that auxin receptors TIR1/AFB 
are also involved in IAA mediated membrane depolarization and 
calcium influx. This suggests that early events in auxin signaling 
are non-genomic. This led Dindas et al. (2018) to propose a very 
short auxin signaling module, where a cytosolic component of 
SCFTIR/AFB binds to IAA that then regulates opening of calcium 
channels and hence an increase in intracellular Ca++ levels.

Auxin mediated root hair elongation is a key adaptive 
response to low P (Bates and Lynch, 1996; Lynch, 2011). 
Recently, Giri et al. (2018) and Bhosale et al. (2018) showed 
that root hair elongation under low P is mediated by AUX1. 
Bhosale et al. (2018) provided a mechanistic frame work for low 
P mediated root hair elongation in Arabidopsis. They showed 
that auxin homeostasis (Porco et al., 2016b) is crucial for root 
hair elongation under low P. They also showed that under low 
P, there is accumulation of auxin in the root apex through 
induction of TAA1, a key enzyme in auxin biosynthesis. AUX1 
then facilitates the movement of this auxin in a shootward 
direction into the root hair zone where it facilitates root hair 
elongation. In this study, they not only showed that both taa1 

and aux1 mutants have defects in root hair elongation under 
low P but also mapped the tissues required for root hair 
elongation under low P. They showed that expression of AUX1 
in lateral root cap and epidermal cells files is sufficient to rescue 
low P mediated root hair elongation defect in aux1 mutants. 
But what happens when auxin has reached the root hair zone? 
What are the down-stream components mediating this low P 
mediated root hair elongation response? To investigate this, 
Bhosale et al. (2018) used a global gene expression profiling 
approach and showed that auxin response factor ARF19 is 
induced under low P and genetic analysis confirmed the role of 
ARF19 in regulating root hair elongation response under low P 
as arf19 mutants were defective in root hair elongation under 
low P. Next, they asked the question, what are the targets for 
ARF19? bHLH transcription factor RSL4 is a known regulator 
of root hair elongation and the transcriptome as well as reporter 
studies suggested that RSL4 and its close homolog RSL2 both 
are induced in the root apex under low P and both rsl4 and rsl2 
mutants had defects in low P mediated root hair elongation. 
A close examination of the RSL2 and RSL4 promoters 
revealed several auxin response elements suggesting a possible 
mechanism for auxin mediated root hair elongation. Based on 
these results, Bhosale et al. (2018) proposed that low P results in 
increased auxin accumulation under low P through TAA1. This 
auxin is then moved to the root hair zone through AUX1 where 
it induces the expression of auxin inducible ARF19 that then 
induces the expression of bHLH transcription factors RSL2 and 
RSL4 that facilitate root hair elongation.

Leaf Morphogenesis
PIN based auxin efflux has been previously shown to define 
regions of fast and slow growing areas in leaf margins regulated 
by CUC (CUP-SHAPED COTYLEDON) transcription factors, 
that are known to regulate organ boundaries in plants (Nikovics 
et al., 2006). Recently, Kasprzewska et al. (2015) have shown that 
auxin influx is also required for leaf serration in Arabidopsis. 
AUX1, LAX1, and LAX2 are all expressed in the leaves and 
show non-overlapping and dynamic expression patterns. AUX1 
expression is more confined to the leaf margins. In contrast, 
LAX2 expression is excluded from the margins and is localized 
more towards the center of the leaf primordia and gradually gets 
confined to the leaf vasculature. LAX1 expression appears to be 
most dynamic and is mainly seen in the leaf tip and the flanks 
in the young leaf primordia. Later, new LAX1 expression sites 
are seen at the leaf margins proximal to the original sites which 
Kasprzewska et al. (2015) argued could be “presumptive sites of 
serration”. Despite non-overlapping expression patterns, single 
or double AUX1/LAX mutants don’t show any leaf serration 
defects. However, aux1/lax quadruple mutants and aux1lax1lax2 
triple mutants have reduced leaf serrations. Kasprzewska et al. 
(2015) argued that this cannot be explained by simple genetic 
redundancy and so they used a modelling approach and proposed 
a “margin-patterning” model in which AUX1/LAX1/LAX2 auxin 
import module regulates extent of leaf serration.

More recently, Moreno-Piovano et al. (2017) also showed the 
involvement of LAX2 in leaf venation patterning and normal 
xylem development. They showed that lax2 mutants have 
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increased xylem length and number of xylem cell rows which 
can be restored by expression of LAX2 suggesting that auxin 
homeostasis regulates leaf venation patterning.

Female Gametophyte Development
Female gametophyte (megagametophyte) development begins 
with mega spore mother cell undergoing meiotic division 
and giving rise to four haploid cells. One of the haploid cell 
becomes a functional megaspore and undergoes three rounds 
of mitosis to produce seven-celled eight-nucleate highly 
polarized megagametophyte comprised of two synergid cells, 
one egg cell, one central cell and three antipodal cells. Auxin 
efflux carrier PIN1 was previously shown to play a role in 
regulating female gametophyte development (Ceccato et al., 
2013). Recently, Panoli et al. (2015) showed that auxin influx 
and local auxin biosynthesis are also crucial in this process. 
They revealed that while AUX1 is primarily localized in the 
synergids and egg cell membranes, LAX1 is seen localized in 
the sporophytic tissues of nucellus surrounding the micropylar 
pole of embryo sac. Single, double and triple and quadruple 
mutants’ analysis of AUX1/LAX family members revealed that 
aux1lax1lax2 triple mutant and aux1lax1lax2lax3 quadruple 
mutant had multiple gametophyte defects with about 29% 
ovules showing aberrant embryo sacs. Panoli et al. (2015) 
further provided evidence that besides the auxin import, 
local auxin biosynthesis through YUCCA/TAA pathway also 
mediate mitotic cell division and cell specification during 
female gametophyte development.

Embryo Development
Genetic and pharmacological studies show that auxin is crucial 
for embryo development (Hardtke and Berleth, 1998; Bhatia 
et al., 2016). For example, mutations in one of the key auxin 
signaling genes MONOPTEROS/AUXIN RESPONSE FACTOR5 
result in severe embryonic defects (Hardtke and Berleth, 1998; 
Bhatia et al., 2016). In addition, previous studies have shown the 
importance of auxin transport in embryo development as AUX1/
LAX quadruple mutant are reported to have disorganized radicle 
apex and an increase in the root-cap cell numbers and/or cell size 
(Ugartechea-Chirino et al., 2010).

More recently, Robert et al. (2015) showed that auxin influx 
carriers AUX1, LAX1, and LAX2 are required for embryonic root 
and shoot pole formation. Of the four AUX1/LAX genes, AUX1, 
LAX1, and LAX2 are expressed in the embryo. They showed 
that AUX1 is specifically expressed in the 32-cell embryo stage 
and later in the provascular cells. LAX2 is also expressed in the 
perivascular cells from 32-cell embryo stage onward and is also 
expressed in the hypophysis and the uppermost suspensor cell. In 
contrast, LAX1 is expressed very early on from the one-cell stage 
in the apical cell and from 32-cell stage, its expression is more 
pronounced in the upper tier cells and by heart stage embryo, 
LAX1 expression is confined to the cotyledon tips. No LAX3 
expression is reported in the embryo.

To get a better understanding of the role of auxin influx 
carriers in embryo development, Robert et al. (2015) specifically 
used AUX1/LAX double and triple mutant combinations as 
previous studies had reported no embryo related defects in aux1, 

lax1, and lax2 single mutants (Bainbridge et al., 2008). They 
uncovered patterning defects in the upper pole in the aux1lax1 
double mutants at a low frequency and this was considerably 
more pronounced both in the severity and the frequency in 
the aux1lax1lax2 triple mutants. The embryo defects were 
manifested later in the seedlings as about one quarter of the 
seedlings showing mono cotyledon and/or stubby roots. These 
defects resembled monopteros (mp) and bodenlos (bdl) mutants 
(Berleth and Jürgens, 1993; Hardtke and Berleth, 1998; Hamann 
et al., 1999). Furthermore, they observed that expression of AUX1 
and LAX2 but not LAX1 was reduced or absent in the strong MP 
allele mpB4149. This led Robert et al. (2015) to conclude that 
MP/BDL signaling module regulates AUX1/LAX mediated auxin 
import into the cell.

More recently, Liu et al. (2017) showed that ROPGEF1 
regulates AUX1 polar localization in the embryo and the roots. 
ROPGEFs are guanine nucleotide exchange factors that are 
known to activate Rho GTPases of plants. AUX1 is localized 
to the apical face of the cell in the embryo central vascular 
cells and the protophloem cells. Liu et al. (2017) showed that 
in ropgef1 mutant apical AUX1 localization has shifted from 
apical to basal position in the embryo and also in the root 
protophloem cells. They also showed that ropgef1 mutants 
also have altered accumulation of PIN2 and PIN7 and cannot 
establish asymmetric auxin gradient in gravistimulated roots 
and have embryo defects as well as cotyledon vein breaks and 
altered root gravitropic response.

AUX1/LAX GENE FAMILY AND THEIR 
ROLES ACROSS PLANT SPECIES

With advances in genome sequencing, AUX1/LAX homologs 
have been identified in several plant species (Figure 2) including 
rice, maize, wheat, barley, Setaria, Medicago, and Brachypodium. 
(Hochholdinger et al., 2000; Zhao et al., 2015;Huang et al., 2017; 
van der Schuren et al., 2018). They all show high similarity to 
AtAUX1 at protein level (71–90%). In this section, we will briefly 
review our current understanding of the role of AUX1/LAX gene 
family across plant species. For sake of brevity, we will only focus 
on model plants where there are supporting functional and/or 
genetic evidence for the role of AUX1/LAX genes in regulating 
plant development (Figure 3).

Inflorescence Architecture in Setaria  
and Maize
Recently, Huang et al. (2017) demonstrated that AUX1 homologs 
in Setaria viridis (SvAUX1) and maize (ZmAUX1) are involved in 
inflorescence development and root gravitropism. Inflorescence 
architecture is an important agronomic trait as it influences grain 
yield. Using a forward genetic approach, Huang et al. (2017) 
showed that in S. viridis, mutations in SvAUX1, result in major 
defects in inflorescence branch development leading to sparse 
panicle (spp) phenotypes. These mutants (spp1-1 and spp1-3) also 
show decreased plant height, reduced inflorescence branching 
and spikelet numbers and increased panicle length compared to 
the control plants.

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org


Roles of AUX1/LAX in Plant DevelopmentSwarup and Bhosale

8 October 2019 | Volume 10 | Article 1306Frontiers in Plant Science | www.frontiersin.org

In maize, auxin synthesis, transport and signaling have 
been previously linked to inflorescence architecture variation, 
including branching pattern changes (Gallavotti et al., 2008; 
Skirpan et al., 2009; Phillips et al., 2011). Auxin efflux carrier 
ZmPIN1 has been also implicated in maize inflorescence 
development (Skirpan et al., 2009). Now Huang et al. (2017) 
showed that a loss-of-function allele of ZmAUX1 termed 
Zmaux1-0 has reduced inflorescence branching and fewer 
spikelets in the central spike. Interestingly, Huang et al. (2017) 
observed that these defects in inflorescence development in 
Zmaux1-0 are less severe than previously studied auxin synthesis 
mutants sparse inflorescence1 and vanishing tassel1 and auxin 
transport mutant bif2 suggesting potential redundancy among 
ZmAUX1 and its other three homologues that show overlapping 
expression in immature inflorescence.

Additionally, Huang et al. (2017) observed that spp-1, spp1-
3, and Zmaux1-0 mutants have root agravitropic defects similar 
to ataux1. But unlike ataux1, spp-1 and spp1-3 mutants have no 
lateral root defects.

Root and Shoot Development in Rice
Like Arabidopsis, OsAUX1 has been shown to regulate root 
gravitropism and lateral root development (Zhao et al., 2015) 
and low P mediated root hair elongation (Giri et al., 2018). 
Zhao et al. (2015) observed that OsAUX1 is highly expressed in 
lateral roots and lateral root primordia. Mutations in OsAUX1 
result in reduced lateral root initiation events whereas OsAUX1 
overexpression plants exhibit increased lateral root initiation 
events. Transcript levels of several auxin signaling and cell 
cycle genes are significantly downregulated in osaux1, further 

FIGURE 2 | The phylogeny of AUX1 homologs of selected plant species. This tree was generated using interactive phylogenetic module from Plaza 4.0 (Van Bel et al., 
2017). AtAUX1 was used as seed gene to retrieve homologs of selected species [Arabisdopsis thaliana (AT), Zea maize (Zm), Oryza sativa ssp. Japonica (LOC), Triticum 
aestivum (TAE), Hordeum vulgare (HVU), Brachypodium distachyon (Bradi) and Medicago truncatula (Medtr); coloured differently] and homologs with >70% protein 
identity were retained for generating the tree. Some of these homologs have been previously characterised (discussed in the main text).
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highlighting the importance of OsAUX1 in regulating lateral root 
development in rice.

OsAUX1 has also been implicated in Cadmium (Cd) stress 
response. Cd stress induces the production of reactive oxygen 
species, which trigger cell death in plants. Auxin signaling is 
known to be involved in activating Cd-induced morphogenic 
defense responses in wheat, barley and Arabidopsis (Tamas 
et al., 2015; Agami and Mohamed, 2013; Zhu et al., 2013). Yu 
et al. (2015) showed that OsAUX1/LAX genes (OsAUX1-5) are 
induced by Cd stress. Reporter analysis showed that OsAUX1 
is distinctly induced under Cd stress in primary roots, lateral 
roots and root hairs and osaux1 mutants are more sensitive to 
Cd stress. Cd contents in the osaux1 mutant were not altered, 
but reactive oxygen species-mediated damage was enhanced, 
further increasing the sensitivity of the mutant to Cd stress. 
Taken together, their results indicated that OsAUX1 plays an 
important role in mediating plant responses to Cd stress. Yu  
et al. (2015) also showed that in contrast to Arabidopsis, OsAUX1 
is specifically expressed in root hair cell files, suggesting 
functional differences between monocots and dicots in regulating  
RH development.

Giri et al. (2018) showed that OsAUX1 also regulates root hair 
elongation under low P as osaux1 mutants are defective in low P 
mediated root hair elongation. Using direct auxin quantification 
by mass spectrometry as well as auxin reporter-based approaches, 
they showed that low P results in increased auxin accumulation 
in the root apex in OsAUX1 dependent fashion. Although 
mechanistic details are not yet fully understood in rice, it is 
tempting to speculate that it is similar to Arabidopsis (Bhosale 
et al., 2018) and may even be conserved in other land plants as 
well. Further, using an elegant split root experiments, by exposing 
half of the crown roots from the same plants to low P and the 

other half to high P, Giri et al. (2018) also showed that low P 
mediated root hair elongation is a local response irrespective of 
the plant P status.

More recently, Wang et al. (2019) characterized another AUX1 
homolog in rice OsAUX3. OsAUX3 is expressed in primary roots, 
lateral roots and in the root hairs. Mutations in OsAUX3 result 
in shorter primary roots, decreased lateral root density, and 
longer root hairs compared to control. In addition, it appears that 
OsAUX3 is also involved in mediating Aluminum (Al) induced 
inhibition of root growth. OsAUX3 expression is up-regulated in 
the root apex under Al stress and one of the OsAUX3 mutants 
(osaux3‐2) is insensitive to Al treatments and Al-induced ROS 
mediated damage.

Root and Flower Development in 
Brachypodium
Recently, van der Schuren et al. (2018) showed that similar to 
AtAUX1, BdAUX1 is expressed in roots displaying expression 
patterns in root protophloem, epidermis and columella. 
Additionally, authors observed that unlike AtAUX1, BdAUX1 is 
also expressed throughout the stele and in the outer cortex layers, 
encompassing the combined expression domains of AtAUX1, 
AtLAX2, and AtLAX3. Thus, possibly BdAUX1 have the combined 
functions in these tissues. Bdaux1 mutant roots are agravitropic 
and show longer root phenotypes due to increased mature cell 
lengths possibly due to higher free auxin content. Additionally, 
Bdaux1 mutants are also significantly thinner due to reduced cell 
file numbers in every tissue except xylem and phloem and due 
to smaller cell sizes radially. Bdaux1 mutants also show reduced 
root hair length and density. Unlike AtAUX1, Bdaux1 loss‐of‐
function mutants are dwarfs with aberrant flower development, 

FIGURE 3 | Arabidopsis AUX1 homoliogs play crucial roles in plant development across severals species. Arabidopsis auxin influx carrier AUX1 homologs regulate 
aspects of plant development such as root gravitropism; root architecture (e.g. root/lateral root development; root hair development); root natomy (e.g. cortical 
cell number and size); inflorescence architecture (e.g. branching; spikelet numbers; panicle lenght); nodule organogenesis and flower development in several 
plants including the one represented here: Rice, Maize, Setaria, Brachypodium, Medicago, and Casuarina. Names in parenthesis indicate the genes controlling the 
respective role.
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and consequently infertile suggesting a more crucial role for 
BdAUX1 in flower development.

Nodule Organogenesis in Medicago  
and Casuarina
Péret et al. (2007) have previously shown that nodule 
organogenesis in Casuarina glauca is facilitated by CgAUX1. 
More recently, Roy et al. (2017) showed that nodule 
organogenesis in Medicago is mediated by MtLAX2. They 
showed that MtLAX2 is auxin inducible and is expressed in 
the nodule primordia, vasculature of developing nodules and 
at the apex of matured nodules. Upon Rhizobium infection, 
mtlax2 mutants have fewer nodules and reduced DR5 activity 
at the infection sites clearly implicating the role of MtLAX2 in 
nodule development.

In addition, Péret et al. (2007) also showed the importance 
of MtLAX2 in root development. Mutation in MtLAX2 results 
in defects in root gravitropism, fewer lateral roots and shorter 
root hairs suggesting this to be a functional analog of AtAUX1 
(Roy et al., 2017). Interestingly, MtLAX2 cannot rescue root 
gravitropic defects of Arabidopsis aux1 mutant when expressed 
under AtAUX1 promoter. This led Roy et al. (2017) to conclude 
that these genes may have diverged to an extent that they encode 
biochemically distinct proteins. It is possible that MtLAX2 also 
cannot get correctly localized in AUX1 expression domain as 
has been the case for AtLAX2 and AtLAX3 (Péret et al., 2012). 
Modeling studies on auxin transport.

MODELING STUDIES ON AUXIN 
TRANSPORT

Computer simulations and modelling approaches in the past 
decade have proven very useful in getting better understanding 
of the role of auxin transport in regulating auxin mediated 
developmental processes in Arabidopsis and how auxin fluxes 
are established and maintained (Swarup et al., 2005; Kramer and 
Bennett, 2006; Grieneisen et al., 2007; Laskowski et al., 2008; 
Jones et al., 2009; Prusinkiewicz et al., 2009; Mironova et al., 2010; 
Szymanowska-Pułka and Nakielski, 2010; Vernoux et al., 2011; 
Bridge et al., 2012; Steinacher et al., 2012; Novoselova et al., 
2013). Increased understanding of the auxin transport proteins 
and their sub-cellular localization have helped refine previous 
auxin-transport models and improved our understanding of how 
changes at cellular level regulate organ-scale auxin patterns. For 
example, Band et al. (2014) showed the importance of AUX1/
LAX proteins in pattern formation at the root tip by taking into 
consideration the localization of auxin transport proteins as well 
as cell geometries and further validated their model predictions 
using DII VENUS auxin sensor (Brunoud et al., 2012). Authors 
found that, while polar localized auxin efflux carriers provide 
polarity of the auxin movement, nonpolar AUX1/LAX influx 
carriers are crucial in determining which tissues have high auxin 
levels. They concluded that both auxin influx and efflux carriers 
are required to create a pattern of auxin distribution in the root tip.

More recently, Moore et al. (2017) developed a mechanistic 
model that also reinforced that auxin pattern formation 

requires co-ordination between influx and efflux carriers. 
Their model predicts that the localization of influx carriers 
can either get more polar when auxin efflux carrier levels 
are changed or modulate efflux carrier level and polarity to 
maintain the auxin patterns.

CONCLUSION AND PERSPECTIVES

In the past two decades, there has been a significant increase in 
our understanding of molecular basis of auxin transport and 
roles of auxin transporters in plant development. Particularity, 
there has been a better understanding of auxin influx carriers and 
how they play crucial roles in almost all aspects of plant growth 
and development. More advanced computer models and high-
resolution imaging and segmentation approaches have proved 
crucial in providing better understanding of auxin influx carriers 
in pattern formation especially how changes at the cellular scale 
affect organ-scale auxin patterns.

Root development is very plastic and respond to their 
environment. Recently it has been shown that chromium inhibits 
primary root growth by regulating cell cycle genes. Chromium 
toxicity can cause major damage to crop yield. Genetic and 
physiological studies show a role for AUX1 in chromium mediated 
inhibition of root growth (Wakeel et al., 2018). Similarly, as stated 
above, AUX1 has also been implicated in Al and Cd mediated 
inhibition of root growth. Similarly, low P mediated root hair 
elongation response is mediated via AUX1 but early events are 
not well understood as to how low P status is sensed by the plants. 
Further understanding of the early events will be crucial for our 
understanding of the root growth and development in changing 
environment and may help develop predictive models for future 
crop improvement programmes.

Alternative splicing is another key area that has not been 
explored much in the plants but may be crucial for better 
understanding of the role of alternatively spliced transcripts 
in regulating and shaping plant development. It appears that 
alternative splicing in plants is more common than previously 
appreciated (Li et al., 2016; Swarup et al., 2016). With the 
advancement in sequencing technology, longer reads and single 
cell transcriptome, it is possible now to get a much better view of 
the cellular transcriptome and what if any is the role of alternative 
spliced transcripts in regulating auxin transport. 
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