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With ongoing climate change, drought events are becoming more frequent and will 
affect biomass formation when occurring during pre-flowering stages. We explored 
growth over time under such a drought scenario, via non-invasive imaging and revealed 
the underlying key genetic factors in spring barley. By comparing with well-watered 
conditions investigated in an earlier study and including information on timing, QTL could 
be classified as constitutive, drought or recovery-adaptive. Drought-adaptive QTL were 
found in the vicinity of genes involved in dehydration tolerance such as dehydrins (Dhn4, 
Dhn7, Dhn8, and Dhn9) and aquaporins (e.g. HvPIP1;5, HvPIP2;7, and HvTIP2;1). The 
influence of phenology on biomass formation increased under drought. Accordingly, the 
main QTL during recovery was the region of HvPPD-H1. The most important constitutive 
QTL for late biomass was located in the vicinity of HvDIM, while the main locus for 
seedling biomass was the HvWAXY region. The disappearance of QTL marked the 
genetic architecture of tiller number. The most important constitutive QTL was located on 
6HS in the region of 1-FEH. Stage and tolerance specific QTL might provide opportunities 
for genetic manipulation to stabilize biomass and tiller number under drought conditions 
and thereby also grain yield.
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INTRODUCTION

Barley breeding has not substantially changed total biomass (Austin et al., 1980; Gifford et al., 1984; 
Horie et al., 2005) but rather its distribution resulting in an increased harvest index (Abeledo et al., 
2003; Reynolds et al., 1999). Consequently, one promising opportunity to increase grain yield in 
the future is to boost biomass per se (Fischer and Edmeades, 2010). Annual cereal yield increases 
in the European Union have fallen below 1% since the turn of the century (Noleppa, 2016) partly 
explained by an increasing volatility due to climate change (Brisson et al., 2010), leading to a higher 
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frequency of drought periods (Lloyd-Hughes and Saunders, 
2002; Lehner et al., 2006), affecting plant growth and causing 
yield losses world-wide (Jones and Corlett, 1992; Boyer and 
Westgate, 2004). Spring drought events reduce mainly vegetative 
biomass formation. Water deficit affects cell growth by hampering 
mitosis, cell elongation, and expansion (Farooq et al., 2009) and 
thereby reducing leaf area and tillering. Ongoing drought leads 
to a reduction in photosynthesis (Jedmowski et al., 2014). All 
these factors result in a reduced dry matter production with 
negative effects on grain yield. Though barley is well adapted to a 
wide range of climatic conditions (Ceccarelli and Grando, 1996), 
improvement of yield under drought environments has been 
challenging for plant breeders (Richards et al., 2002) as the effect 
of drought is highly depending on the time of onset, duration, 
and stress intensity. Despite that, numerous QTL studies in 
bi-parental mapping or natural collections have been conducted 
to identify genetic components of different drought stress 
tolerance in barley (e.g. Teulat et al., 2001; Forster et al., 2004; 
Guo et al., 2008; Mehravaran et al., 2014; Fan et al., 2015; Abou-
Elwafa, 2016). There is evidence that selection for individual 
traits contributing to drought tolerance can improve grain yield 
(Edmeades et al., 1999; Richards, 2006).

Nevertheless, entirely different genetic loci were detected at 
different developmental stages within the same mapping population 
(Szira et al., 2008). Consequently, studying the genetics of drought 
tolerance requires phenotyping throughout the life cycle of a 
plant, nearly impossible to realize in the field. New phenotyping 
platforms that employ non-invasive imaging techniques (Berger 
et al., 2010; Chen et al., 2014a) in controlled environments offer the 
most suitable way to perform such experiments. Several studies 
demonstrate the suitability of non-invasive phenotyping for 
abiotic stress tolerance (Rajendran et al., 2009; Chen et al., 2014b; 
Honsdorf et al., 2014; Neumann et al., 2015). Recently, the genetic 
architecture of vegetative biomass formation was revealed in 
spring barley throughout plant development under well-watered 
conditions (Neumann et al., 2017).

Growth and development are regulated by plant hormones, 
flowering time genes, plant architecture genes, and many 
transcription factors. The main plant hormones are abscisic acid 
(ABA), indole-3-acetic acid (IAA or auxin), brassinosteroids 
(BRs), cytokinin (CK), gibberellic acid (GA), ethylene, jasmonic 
acid (JA), and salicylic acid (Santher et al., 2009). Therefore, genes 
regulating hormone levels or genes being activated or turned off 
by hormones can be candidates for growth-related traits. Auxin 
response factors (ARFs) regulate gene expression and have 
distinct roles in plant development, including root growth and 
leaf expansion, and are also involved in stress adaptation (Li 
et al., 2016). Recently, twenty different ARFs were identified in 
barley (Tombuloglu, 2019). The gene HvDIM is involved in BR 
biosynthesis, and mutations resulted in deficiency or reduced 
levels of castasterone, suggested end product of brassinosteroid 
biosynthesis pathway in cereal grasses (Kim et al., 2008), which 
generally results in reduced plant stature and sturdiness. Further, 
in rice, three Short Vegetative Phase (SVP)-like MADS-box genes 
which regulate meristem identity and flowering time (Trevaskis 
et al., 2007) were demonstrated to act as negative regulators of 
BR responses (Lee et al., 2008). The GA oxidases (GAoxs) are 

essential for the biosynthesis of bioactive GAs and cluster into 
eight subfamilies, from which GA2ox, GA20ox, and GA3ox 
have been well studied while the function of GAox-A/B/C/D 
genes has to be still explored (Huang et al., 2015). GA is not 
only a key regulator of growth and development (Yamaguchi, 
2008) but also plays a role under abiotic stress by inducing 
growth restriction (Colebrook et al., 2014). CK plays a major 
role in vegetative development such as root and shoot meristem 
maintenance and root elongation and root branching (Osugi 
and Sakakibara, 2015) and contributes to drought tolerance by 
various mechanisms including water balance regulation (Pavlů 
et al., 2018). CK oxidases/dehydrogenases (CKX) inactivate the 
hormone in a single enzymatic step and are therefore controlling 
local CK levels (Schmülling et al., 2003). Potassium transporters 
are involved in the response to osmotic stress (Osakabe et al., 
2013) as potassium is an essential micronutrient for plant growth 
and involved in enzyme activation, osmoregulation and further 
stomatal movement (Han et al., 2016). Fructan exohydrolases 
(FEHs) mobilize fructans that are important storage 
carbohydrates produced from sucrose (Van Riet et al., 2006) 
and thereby involved in plant growth. They are continuously 
accumulated during stem growth (Zhang et al., 2008). Moreover, 
fructans can stabilize membranes during drying and thereby help 
to prevent leakage during drought (Livingston et al., 2009).

Flowering time genes affect plant growth directly or by 
pleiotropy. Recently, the importance of HvPPD-H1 on leaf 
growth was demonstrated, with insensitive types possessing a 
longer leaf growth duration and a higher cell number (Digel 
et al., 2016), most likely as a result of source-sink allocation. 
Moreover, flowering time gene expression is affected by abiotic 
stress, and increased for HvPpd-H1, HvPRR73 and HvPRR95 
(Habte et al., 2014).

The plant-specific DOF transcription factors (Moreno-
Risueno et al., 2007) have a suggested role in the regulation of 
important processes vital for plant development including the 
modulation of response to abiotic stress (Noguero et al., 2013), 
and shoot branching in Arabidopsis (Zou et al., 2013) as well as 
regulation of stomatal development (Negi et al., 2014). Recently, 
a rich diversity in HvDof genes was seen in a screen of 58 barley 
accessions (Rouhian et al., 2017). Further, BZIP transcription 
factors regulate many plant processes including stress signaling 
in Arabidopsis (Jakoby et al., 2002). In rice, OsABF1 was induced 
by abiotic stresses and was connected with enhanced drought 
tolerance (Hossain et al., 2010).

Several genes are known that influence the water balance of 
plants. Aquaporins are water channels that facilitate water uptake 
in barley roots (Knipfer et al., 2011). The subfamily of plasma 
membrane intrinsic proteins (PIPs) has a crucial role for the water 
balance of plants (Hove et al., 2015; Afzal et al., 2016). The subfamily 
of tonoplast intrinsic proteins (TIPs) in the vacuolar membrane 
takes a supposed role in vacuolation, and expression of TIP genes 
is influenced by plant hormones GA and ABA in an antagonistic 
way (Lee et al., 2015). Dehydrins are LEA group 2 proteins 
upregulated in reaction to abiotic stresses such as cold, drought or 
salt stress, acting as hydration buffers and thereby reducing water 
loss (Graether and Boddington, 2014; Banerjee and Roychoudhury, 
2016). Pectin methylesterases (PMEs) are deesterising pectin, the 
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main cell wall component and thereby are involved in cell wall 
elasticity and porosity, crucial prerequisites for cell elongation and 
water uptake (Müller et al., 2013). Accordingly, PMEIs have a role 
in osmotic stress (Hong et al., 2010; Wormit and Usadel, 2018).

In the current study, we investigated the dynamics of 
the genetic architecture of biomass under a spring drought 
event by adapting our previously developed experimental 
setup (Neumann et al., 2015). In particular, we aimed at 
elucidating constitutive biomass QTL (stable under different 
environmental conditions) and adaptive biomass QTL 
(only representative for specific environmental conditions 
such as water-deficit conditions) by comparison to well-
watered conditions investigated earlier in three consecutive 
experiments (Neumann et al., 2017).

MATERIAL AND METHODS

Spring Barley Mapping Panel and 
Experimental Set-Up
A set of 100 diverse two-rowed spring barley accessions, 
described by Neumann et al. (2017) where the 100 barley 
accessions were evaluated for growth under control conditions, 
was used in this study for the genetic investigation of biomass 
development under the influence of seasonal drought stress. 
Ninety-seven of these are the subset of a world-wide spring 
barley collection used in several other studies (e.g., Haseneyer 
et  al., 2010; Pasam et al., 2012; Alqudah et al., 2014). The 
accessions were mainly originating from Europe and were 
selected based on a low variation in flowering time under field 
conditions (Pasam et al., 2012). For more details and the list of 
genotypes see Neumann et al. (2017).

The plants were grown in a greenhouse at IPK Gatersleben 
(51°49′23″ N, 11°17′13″ E, 112 m a.s.l.), equipped with the 
imaging-based high-throughput phenotyping system LemnaTec-
Scanalyzer 3D system (LemnaTec GmbH, Aachen, Germany). 
Three consecutive independent experiments were performed 
from March 2013 to September 2013 (Supplementary Table S1) 
each with five replicates per genotype. Every experiment lasted 
for 58 days. Initially, two seeds per pot were sown and 7–9 days 
after sowing (DAS), depending on the experiment, plants were 
thinned-out to retain only one seedling per pot. Automated 
watering, imaging, and randomization were performed daily. 
The pots were daily watered to reach a fraction of (plant) 
available water (fAW) of 89% from DAS 1 to DAS 26 and from 
DAS 46 to DAS 58. Drought stress was imposed from DAS 27 
until DAS 45 by watering to a target weight corresponding to 
10% fAW (Supplementary Material, Supplementary Figure 
S1). Re-watering was performed with an absolute volume of 300 
ml on DAS 45, and from DAS 46 on all plants received watering 
to 89% fAW. Note that images were taken before watering as 
plants first move through the imaging chambers. Therefore, the 
stress period lasted from DAS 27 to 45. Greenhouse conditions 
were set to 15 h light, 18/16°C day/night as in Neumann et al. 
(2017). Details of pot size, soil, and FC determination were as 
described by Neumann et al. (2015).

Trait Evaluation From Images and  
Manual Evaluation
For details on image capturing see Supplementary Material. The 
image analysis was done employing the barley analysis pipeline in 
IAP (Klukas et al., 2014). A pixel volume termed digital biomass 
(DB, with voxel as a unit) was calculated as in Neumann et al. (2017). 
Biomass growth patterns in stress conditions could be bifurcated 
into two parts describing the stress period and the recovery phase 
(Chen et al., 2014b, see Supplementary Material). In the morning 
of DAS 59, above-ground biomass was harvested and measured as 
fresh weight (FW). Tillers (TN) were manually counted at DAS 27, 
45, and 58, marking the start and end of the stress treatment as well 
as the end of the experiment. The images of all plants were visually 
inspected if plants reached the growth stage of tipping BBCH 49 
(Witzenberger et al., 1989) within the imaging period. In contrast 
to the experiments for well-watered conditions, only in experiment 
2 the majority of plants (432) reached BBCH 49. In experiments 
1 and 3, only 224 and 255 out of 500 plants reached BBCH 49, 
respectively. Therefore, we could not further analyze this parameter.

Phenotypic Analysis
Statistical analysis was performed in R software (R 2010). As 
plants were fully randomized each night, we considered the 
experimental design as a completely randomized design for 
statistical analysis. An outlier test was performed on the raw 
data from each of the three experiments. The outlier test was 
performed according to Tukey’s method (Anscombe and Tukey, 
1963). Best linear unbiased estimates (BLUEs) were calculated 
for each day, within each experiment with the model Y = μ + 
G + e where Y is the vector of observed phenotypic value, µ is 
intercept, G is effect of genotype, e is residual for each plant, 
while µ and G were treated as fixed effects.

BLUEs from all 3 experiments were combined and used to 
detect outliers again and estimate BLUEs across experiments 
with the model Y = µ+ G+ E + e, where Y is the vector of BLUEs 
from a single experiment, µ is the intercept, G is the effect of 
genotype, E is the effect of experiments, e is the residual. While µ 
and G were treated as fixed effects, the other effects were treated 
as random. The BLUES across experiments were used to calculate 
the trait correlation. Moreover, we performed a one-step model 
to estimate the phenotypic variance components based on the 
raw data by fitting the model Y = G + E + GxE+ e, where G is 
the effect of genotype, E is the effect of experiments, GxE is the 
genotype by experiment interaction, and e is the residual, while 
assuming that all effects were random effects.

Broad-sense heritability was calculated as

H V

V V
O

V
OR

G

G
GE e

2 =
+ +

,

where VG, VGE, and Ve are the variance components of the 
genotype, genotype x experiment and the residual, respectively. 
O is the number of experiments for the respective DAS, and R the 
number of biological replicates.
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Genome-Wide Association Scans and 
Identification of Candidate Genes
The association mapping panel was genotyped using the 9k 
iSelect SNP array (Illumina, CA, United States). SNPs were 
filtered for missing data (5%) and minor allele frequency (MAF <  
0.05), resulting in 4,866 polymorphic SNPs (DOI: 10.5447/
IPK/2019/14) further used for genetic analysis with 4,122 
SNPs having mapping information as described in Neumann 
et al. (2017). The decay of linkage disequilibrium (LD) and the 
structure of the association mapping panel were estimated by 
Neumann et al. (2017). The average LD decay amounted to 
8 cM in the collection and a kinship using modified Rogers’ 
Distance (Reif et al., 2005) was sufficient to correct for 
population structure and included in the model for genome-
wide association scans (GWAS). GWAS were performed using 
BLUEs from single experiments using the software ASReml-R 
3.0 (Butler et al., 2009). The following mixed-linear model was 
applied as in Neumann et al. (2017):

Y E S G e= + + + +µ ,  

where μ is the overall mean, and E is the effect of the experiments, 
S is the effect of SNP, and G is the random effect of the genotype, 
while e is the residual error. This model considers a covariance 
structure of 2K σ G

2  , where K refers to the kinship matrix (Jiang 
et al., 2015) and σ G

2  is the genetic variance. A false discovery rate 
(FDR) with a significance level of 0.1 was applied for each trait 
and separately for all days (Benjamini and Hochberg, 1995). The 
proportion of explained genetic variance (GV) of the detected 
QTL was estimated as the adjusted r2 values standardized with 
the heritability.

We explored all loci for potential candidate genes using the 
recently annotated barley genome assembly (Mascher et  al., 
2017) using the gene sets from 2012 for genetic positions 
and 2016 for physical map positions (Colmsee et al., 2015). 
Designation of the HvARF genes was performed according to 
Tombuloglu (2019).

RESULTS

High Heritability of Biomass Related Traits 
Under Drought Stress
The two-rowed spring barley panel was evaluated for tiller 
number and biomass over time in three experiments, which 
showed only minor seasonal differences (Supplementary 
Table S2 and Supplementary Figures S2 and S3). The high 
correlation between fresh weight and digital biomass justifies 
the use of digital biomass as a biomass proxy (Supplementary 
Figure S4). In addition, three stress-related traits were 
computed applying a biomass growth model: time A (TA) 
reflecting the time point when biomass development stopped, 
biomass at time A (DBA), and the re-growth rate (k) after 
re-watering started. Substantial variation for each trait was 
found in the collection (Supplementary Table S3).

Heritability of biomass over time was high (0.79 at DAS 12; 
0.92 at DAS 58), although heritability decreased to 0.59 at DAS 
45 beyond TA (Supplementary Figure S5). Also, all further 
traits showed a high heritability, reflecting the precision of the 
phenotypic data.

Genotype-By-Time Interactions of 
Biomass Formation Are Modified by 
Drought Stress
Correlation of biomass among different time points starting 
from DAS 12 until 58 varied (Figure 1). Early seedling and 
late vegetative biomass turned out to be unrelated. A moderate 
correlation (R ~ 0.4–0.5) of biomass during progressing 
drought (DAS 27 to 37) to the final biomass (DAS 58) was 
observed. After the onset of wilting (time A), correlations to 
time points in other growth phases (early, recovery) declined. 
This pattern indicates a change in the genetic architecture of 
biomass formation during early and late drought phase and the 
recovery phase.

Phenotypic Associations Between 
Biomass and Further Traits
Biomass and tiller number were correlated at all three investigated 
time points (Supplementary Table S4). Early tiller number 
possessed the highest correlation to biomass (R = 0.67), while late 
tiller number was less correlated (R = 0.42). Time A reflects the 
time point where growth has stopped; afterwards, (digital) biomass 
is decreasing due to a loss of turgidity, causing the wilting of leaves 
(Neumann et al., 2015). A highly negative correlation of time A with 
the biomass at the onset of the drought was observed; plants with 
higher initial biomass wilted earlier (Supplementary Table S4). The 
re-growth rate k was positively correlated with biomass and tiller 
number, indicating genotypes with higher biomass also have a higher 
capability to re-grow after a stress period. Further, we were interested 
at what fAW plants reached Time A, especially if there is a common 
water status where plant growth is arrested (transpiration > water 
extraction from the soil). Therefore, we calculated fAW at time A 
(fAW_TA) for each individual plant (see Supplementary Material). 
The parameter exhibited a high heritability of 0.68 suitable for GWAS. 
On average, genotypes stopped their growth at fAW_TA = 21%, but 
there was substantial variation in the panel (see Supplementary 
Table S2). Moreover, differences in fAW_TA were not related to a 
“biomass effect”, as no significant correlation to biomass at the onset 
of drought stress or biomass at time A was observed. Plants that are 
able to maintain growth even at lower fAW_TA maintained higher 
biomass in the last days of stress, resulting in a negative correlation 
of fAW_TA (not shown) and biomass (R ~ −0.5) and reached Time 
A later (R = −0.52).

Genetic Architecture of Biomass Under 
the Influence of Drought Stress
GWAS were performed for each time point. In total, 26 SNPs 
showed at least one significant association with digital biomass in 
the course of the experiment (Supplementary Table S5). These 
SNPs represent 12 different QTL and can be grouped according to 
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their time of appearance. Six QTL were detected exclusively during 
the drought stress phase, five only during the recovery phase, while 
one QTL was associated with biomass in both phases. Before the 
onset of drought stress, no QTL was passing the FDR. Very similar 
GWAS results were obtained for digital biomass on DAS 58 and 
fresh weight on DAS 59 (Supplementary Figure S6). Only one 
significant SNP detected for fresh weight (6H, 24.5 cM) was not 
passing the FDR for digital biomass at any day despite –log(p) > 3 
(Supplementary Table S5).

The occurrence of QTL in the drought stress phase depended 
on the time of wilting (TA). Of the seven QTL, two were detected 
in the early drought phase before time A was reached (1H at 119.0 
cM and 7H at 140.9 cM). The remaining five QTL were detected 
only after time A was passed (Figure 2A). The seven QTL together 
explained between 22.0 and 42.2% of the genetic variance during 
the time course of drought stress (Figure 2B). Individual QTL 
explained a maximum between 6.5 and 18.5% of genetic variance. 
The QTL on 7HL at 140.9 cM explained the highest amount of the 
genetic variance during the drought phase.

In the recovery phase six different QTL were detected 
(Figure 3A). One of them was also present during the early 

drought stress phase (7H at 140.9 cM). One QTL was located 
in the region of the major flowering time locus HvPPD-H1 
(2H, 18.9–27.7 cM). Collectively, the six QTL explained 
between 43.0 and 59.9% of the genetic variance (Figure 3B). 
Individual QTL contribution was higher in the recovery phase 
compared to the drought phase: QTL explained between 13.5 
and 28.8% of genetic variance with the HvPPD-H1 locus 
being the most important QTL, followed by the QTL on 7H 
at 140.9 cM.

Genetic Architecture of Novel Traits 
Obtained From Growth Curve Modelling
Four QTL were detected for Time A (Supplementary Figure S7, 
Supplementary Table S5): on 2H (135.8 cM), 6H (55 cM) and 
on 7H (14.0 and 140.9 cM). Here, the 7HL locus at 140.9 cM 
is represented by a different SNP (SCRI_RS_230261) compared 
to biomass (SCRI_RS_167617). The combined four QTL explain 
40.2% of the genetic variance. Individually, the QTL on 7HS at 
14 cM explained 22%, followed by those on 2HL (10.5%), 7HL 
(9.3%) and 6H (0.8%).

FIGURE 1 | Heat map of Kendall correlation coefficient for image-based estimated biomass based on BLUEs across three experiments, shown from 12 to 58 days 
after sowing (DAS).
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For biomass at time A (DBA), no SNP passed the FDR, although 
eight SNPs showed –log(p) values ≥ 3, including SCRI_RS_167617 
on 7HL at 140.9 cM (Supplementary Figure S7).

The trait fAW_TA was significantly associated with three 
SNPs (Supplementary Figure S8, Supplementary Table S5) 
corresponding to one QTL on 3H (45.8–46.0 cM). The QTL 
explained 24.4% of the genetic variance.

For the re-growth rate k no SNP was passing the FDR, but 
15 SNPs showed –log(p) > 3, including SCRI_RS_167617 on 

7HL (140.9 cM) and two SNPs in the region of HvPPD-H1 
(Supplementary Figure S9, Supplementary Table S5).

Genetic Architecture of Tiller Number 
Under the Influence of Drought Stress
Tiller number was counted at the start and at the end of drought 
stress as well as at the end of the experiments (DAS 27, 45 and 58, 
respectively). For each time point significant QTL were detected 
(Supplementary Figure S10, Supplementary Table S5).

FIGURE 2 | Time dynamics of QTL significantly associated (FDR < 0.1) with digital biomass (DB) during the drought stress phase in days after sowing (DAS).  
The drought stress phase from DAS 27 to DAS 45 is indicated by the two dashed vertical. (A) value –log(p) over time for each QTL (SNP with the  
highest significance) in different colors. Arbitrary threshold of significance at –log(p) = 3 is indicated by a dashed horizontal. (B) Proportion of genetic variance explained by 
each QTL, represented in different colors and combined (all 12 QTL detected during the whole time-course of the experiment – drought and recovery period).
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In total, four QTL were significant for tiller number at DAS 
27: 5H (43.7–45.7 cM), 5H at 120.1 cM, 6H at 30.1–30.2 cM and 
the biomass QTL on 7H at 140.9 cM. Together these four QTL 
explained 25.9% of the genetic variance, while the individual 
contribution ranged between 0.4% (5H 43.7–45.7 cM) and 20% 
(7H 140.9 cM).

For tiller number at DAS 45 three QTL were detected: 5H 
(43.7–45.7 cM), 6H at 30.1–30.2 cM, and 6H at 55 cM, the first 
two QTL identified already for tiller number at DAS 27. In 

combination, these three QTL explained 14.6% of the genetic 
variance. The most prominent QTL was the locus on 6H at 
~30 cM, which explained 18.6%, while the remaining two QTL 
explained only up to 0.64%.

For tiller number at DAS 58, three QTL were detected: 2H (74.1 
cM), 5H (42.9–45.7 cM), and 6H at 30.1–30.2 cM. Together these 
explained 24.4% of the genetic variance. The most important QTL 
was on 6H at 30 cM, explaining 20.2% of genetic variance, while 
the QTL on 5H and 2H explained 4.5 and 2.2%, respectively.

FIGURE 3 | Time dynamics of association of QTL significantly associated (FDR < 0.1) with digital biomass (DB) during the recovery phase in days after sowing (DAS). The 
drought stress phase from DAS 27 to DAS 45 is indicated by the two dashed vertical lines. (A) Significance value –log(p) over time for each QTL (SNP with the highest 
significance) in different colors. Arbitrary threshold of significance at –log(p)=3 is indicated by a dashed horizontal line. (B) Proportion of genetic variance explained by each 
QTL, represented in different colors and combined (all 12 QTL detected during the whole time-course of the experiment – drought and recovery period).
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DISCUSSION

The Influence of Drought on  
Growth Patterns
The described experiments are complementary to the study 
of Neumann et al. (2017) where the same barley lines were 
evaluated under well-watered conditions (control treatment). 
The controlled conditions applied in the present study helped 
to eliminate small environmental effects that negatively impact 
heritabilities in drought stress experiments heritabilities (Rosielle 
and Hamblin, 1981; Fukai and Cooper, 1995; Kumar et al., 2007).

Comparing biomass under drought stressand control 
conditions, the ranking of genotypes changed during drought 
but quickly re-established once plants were re-watered 
(Supplementary Figure S11). At the start of stress treatment, 
plants had already more biomass and tillers compared to control 
treatment (Supplementary Figures S12 and S13). The differences 
can be attributed to different seasonal scheduling of experiments 
(Supplementary Table S6 compared with Supplementary Table 
S1). Therefore, future experimental series should be planned very 
carefully. Biomass was reduced in drought by 32% compared to 
control at the end of the experiment (Supplementary Figure 
S14). Directly upon re-watering, the reduction amounted to 
even 51% for biomass and 40% for tiller number. However, the 
re-tillering ability of barley (Jamieson et al., 1995) lead to an even 
slightly higher (although not significant) tiller number at the end 
of recovery phase compared to control treatment. Although the 
absolute number of tillers can be increased after drought (Blum 
et al., 1990), drought stress during the booting stage leads to a 
reduction in the number of productive tillers and a concomitant 
decrease in grain number and seed set (Lawlor et al., 1981; Rajala 
et al., 2010; Mathew et al., 2019).

Akin biomass, tipping time was affected by seasonal differences 
(see Supplementary Material). Vegetative drought stress can 
delay flowering as reported for wheat (Sanad et al., 2019) and 
rice (Kondhia et al., 2015; Haque et al., 2016). Early biomass was 
negatively correlated with tipping, but with progressing growth 
and development, the signs changed (Supplementary Figures 
S15 and S16), only disrupted by the wilting of plants. Biomass 
in the recovery period was then even stronger correlated with 
tipping compared to the control treatment. Accordingly, the QTL 
in the HvPPD-H1 region was the most important in the recovery 
phase whereas it was not significant under control conditions. 
Plant recovery is so far a mainly unexplored trait. However, a 
recent study in wheat showed that the ability to recover might be 
useful for selecting drought tolerant genotypes as visually scored 
plant recovery was correlated with grain yield under a vegetative 
drought set up in 16 diverse genotypes (Sanad et al., 2019).

Genetic Architecture of Biomass Under 
the Influence of Drought Stress
By comparing the QTL identified in both treatments, it is 
possible to determine constitutive and adaptive QTL based on 
the definition given by Collins et al. (2008) who referred to a 
constitutive QTL when it is present in all environments whereas 
adaptive QTL are only present in a subset of environment(s). By 

this definition, we considered a QTL as constitutive when it was 
i) significantly associated with biomass in both treatments or ii) 
significantly associated in one treatment and having, –log(p)-
values >3 in the complementary treatment (although missing the 
FDR threshold). Accordingly, we considered a QTL as adaptive 
if it was only in one treatment significantly associated and in the 
complementary had –log(p)-values <3.

The comparison of the results from this study with previously 
published QTL data benefitted in two ways: Firstly, our barley 
panel is part of larger collection consisting of 224 genotypes, 
which had been employed in a series of QTL studies, enabling 
a direct comparison of QTL (Pasam et al., 2012; Alqudah et al., 
2014; Alqudah et al., 2016; Alqudah et al., 2018; Abdel-Ghani 
et al., 2019; Zhongtao et al., 2019). Secondly, comparison to 
other GWAS studies in barley benefitted from the widespread 
deployment of the 9K iSelect array (Table 1).

Constitutive Biomass QTL
Across both studies, 17 biomass QTL were detected, eight of them 
are classified as constitutive. The first on 7HS at 14.0 cM located 
in the vicinity of HvWAXY is the only seedling biomass QTL. It 
had very similar –log(p)-values in both studies (Figure 4A) but 
did not pass the FDR in the current study. In the full barley panel, 
a QTL for root thickness at seedling stage was associated with 
the same SNP (SCRI_RS_240014) and QTL for tiller number, 
leaf blade area and tipping time were mapped to the same region 
(Table 1). A high level of vegetative biomass at early growth 
stages may translate to biomass at maturity in conditions with 
little or no rainfall after plant establishment. Accordingly, in a 
different barley panel, a QTL for final straw yield in Jordanian 
field conditions was detected here.

The most prominent QTL during the recovery phase was the 
HvPPD-H1 locus. The QTL was not passing the FDR in control 
but already showed –log(p)-values >3 (Figure 4B). However, the 
role of this QTL has increased under the influence of drought, 
which is in line with increased expression levels of this gene 
under drought stress (Habte et al., 2014). The region was further 
detected as a hotspot for seedling growth in the full barley panel 
under normal and osmotic stress conditions, and co-locates with 
many agronomic traits (Table 1).

The QTL on 3HL at 98.7 cM (Figure 4C) passed the FDR 
in both studies and explained a very similar proportion of 
the genetic variance. In the full barley panel, the same SNP 
(SCRI_RS_142438) was associated with the root to shoot ratio 
under osmotic stress. Further, QTL for biomass, the drought 
susceptibility index (DSI) and osmotic adjustment in DS in 
a winter barley panel were located in close distance (Table 
1). The QTL is located in the vicinity of flowering time gene 
HvCMF1 (Cockram et al., 2012) and of AK366153, a supposed 
homolog of LpABCG5 from Lolium perenne L. (Supplementary 
Table S7). This member of the ATP-binding cassette protein 
subfamily G was identified as a candidate behind a QTL for 
plant architecture (Shinozuka et al., 2011). In accordance with 
these two candidate genes, this genomic region is associated 
with many agronomic important traits such as heading, grain 
yield, or plant height (Table 1).
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TABLE 1 | Summary GWAS results from non-invasive phenotyping of growth under drought stress. All genomic regions significantly associated with one or more traits 
are presented along with the highest –log(p)-value of each trait (number of significant SNPS in brackets) along with other traits reported to be associated with these 
regions from the literature where iSelect marker platform was deployed. 

Map position 
(cM)

Trait Highest –log(p) References of reported QTL in the QTL region 

1H 119.0 DB 27–45 (1) 4.65 development1; malting quality – malt extract2; biomass yield (control) and osmotic 
adjustment3; root traits21

2H 18.9–27.7 DB 46–58 (11) 5.43 development1; tiller number4; grain yield5; flowering6; shoot elongation phase7; malting 
quality – malt extract2; heading date8; heading time9,10; biomass yield (DSI)3; seedling 
root and shoot traits20,21; leaf length and growth rate in control and salt stress22

2H 40.8 DB 27–45 (1) 4.49 development1; seedling shoot and root traits under osmotic stress20

2H 50.4 DB 27–45 (1) 4.66 tiller number (53.2 cM)4; malting quality, protein content2; biomass, osmolality and SPAD 
(stress)3; leaf blade area11; seedling root traits21

2H 74.1 TN58 (1) 4.07 development1; leaf blade area11; grain and spike number12; root Cl– content13; malting 
quality2; TKW,protein content9; seedling root traits20

2H 135.8 TA (1) 4.79 leaf blade area11; biomass DSI (133.3 cM) and osmotic adjustment (135.8 cM)3; seedling 
root traits20,21; leaf length salt stress22

3H 45.8–46 DB 27–45 (3) 5.00 development1; leaf blade area (49.3cM)11; height (51.8 cM)15; biomass and SPAD 
(control) (51.2 cM) 3; seedling root traits21fAW_TA (3) 4.66

3H 88 DB 27–45 (1) 4.28 tiller number4; leaf blade area11; shoot elongation, flowering7; malting quality2; biomass 
(control), osmolality (stress)3; leaf number22

3H 98.7 DB 46–58 (1) 4.72 development1; leaf blade area (96.5 cM)11; spike density14; grain yield5; shoot elongation 
phase, flowering7; malting quality, protein content2; heading10; biomass in control, DSI 
(100.3 – 106 cM) 3 and osmolality in stress3; root to shoot ratio20; growth rate in salt 
stress (104 cM)22

4H 91.0 DB 27–45* (1) 3.70 biomass, DSI3; seedling root traits20

5H 41.3–45.7 TN 27 (20) 3.44 development1; height and tiller number4; leaf blade area11; shoot elongation7; malting 
quality, protein content, malt extract2; heading8; protein content15; height9; biomass 
(control & stress), osmolality and SPAD (stress)3; seedling root traits20

TN45 (22) 5.80
TN58 (25) 5.62

5H 99.9 DB 46–58 (1) 3.69 development1; height4; shoot elongation7; kernel plumpness (95 cM)15; flowering10; 
osmolality (stress) (95 cM)3; shoot weight19

5H 120.1 TN27 (1) 3.47 tiller number (122.4 cM)4; leaf blade area (118.8 cM)11; malting quality, kernel 
plumpness2; flowering10

5H 139.1 DBA* (1) 3.90 osmotic adjustment (137.9 cM), biomass control and drought stress, DSI3; seedling root 
traits in osmotic stress20 

5H 157.6 DB 46–58 (1) 3.81 malting quality, malt extract2; amylose content in grains (155.6 cM)16; shoot weight 
(154.2 cM)21

5H 169.4 DB 46–58 (1) 4.33 development1; shoot elongation7; malting quality, α-amylase2; biomass-DSI (167.9 cM)3; 
rhizosheat weight19; seedling root and shoot traits20; leaf length in salt stress22

6H 24.5 FW 59 (1) 3.69 tiller number4, biomass3

6H 30.1–30.2 TN27 (2) 3.59 leaf blade area11; β-glucan content in grains16

TN45 (3) 5.80
TN58 (3) 5.62

6H 55.0 TA (2) 4.15 height and tiller number4; leaf blade area11; TKW and spike number12; root Na+/K+ 
content13; malting quality, protein content2; height and TKW9; lodging17; shoot weight19; 
seedling root traits20,21; growth rate22

TN45 (2) 3.53

6H 105.1 DBA* (1) 3.19 biomass and DSI3

7H 14.0 TA (1) 4.30 straw yield18; development1; tiller number4; leaf blade area11; seedling root traits20; leaf 
number in salt stress22

7H 47.7–48.3 DB 27–45 (2) 5.04 leaf blade area11; tiller number13; malting quality, malt extract2; biomass (control, stress), 
DSI3; seedling root and shoot traits20

7H 140.9 DB 27–45 (1) 5.32 leaf blade area11, shoot weight19

DB 46–58 (1) 4.67
TA (1) 4.21

TN27 (1) 3.62

SNPs are described by their genetic position and associated traits. Identified QTL regions are compared to agronomic and growth/drought related traits from other mapping studies 
in barley that used the same barley collection and/or SNPs from iSelect or barley oligo pool array (BOPA), DB, digital biomass; FW, fresh weight; TN, tiller number (at a specific 
number of DAS); TA, Time A (stop of growth); DBA, DB at TA; fAW_TA, fraction of (plant) available water at TA.
*Not passing the FDR level. 1Alqudah et al. (2014), 2Mohammadi et al. (2015), 3Wehner et al. (2015), 4Alqudah et al. (2016): Note, only QTL for TN in two-rowed panel are included 
in the comparison. 5Ingvordsen et al. (2015), 6Maurer et al. (2015), 7Maurer et al. (2016), 8Muñoz-Amatriaín et al. (2014), 9Pasam et al. (2012), 10Sannemann et al. (2015), 11Alqudah 
et al. (2018), 12Gawenda et al. (2015), 13Long et al. (2013), 14Houston et al. (2013), 15Pauli et al. (2014), 16Shu and Rasmussen, (2014), 17Tondelli et al. (2013), 18Al-Abdallat et al. 
(2017), 19George et al. (2014), 20Abdel-Ghani et al. (2019), 21Zhongtao et al. (2019), 22Ward et al. (2019)
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FIGURE 4 | (A–H) Constitutive biomass QTL with their –log(p)-values over time in days after sowing (DAS) in drought stress (unfilled) and well-watered (black) 
conditions. Presented is only the most significant SNP of each QTL (in case it consists of several SNPs). As the FDR is calculated for each day and in each 
treatment separately, the general significance level of –log(p)-value = 3 is indicated by a dashed horizontal line. The drought stress phase from DAS 27 to DAS 45 is 
indicated by the two dashed vertical. 
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The constitutive QTL on 4HL at 91.0 cM was the only QTL 
found during the middle of the growth observation period under 
control conditions but did not pass the FDR under drought stress 
(Figure 4D). At close distance (90.9 cM) a QTL was detected 
for biomass and the DSI in winter barley, while in the full barley 
panel, root length QTL were located at 91.1 and 91.7 cM under 
control and osmotic stress conditions, respectively (Table 1). 
We detected three growth-related candidate genes in this region 
(Supplementary Table S7). The MADS-box transcription factor 
BM1 is located in the physical map interval of the QTL. Bm1 is 
one of the SVP genes and is mainly expressed in vegetative tissues 
such as nodes and internodes (Schmitz et al., 2000) and has a 
suggested role in vegetative growth (Carmona et al., 1998). Digel 
et al. (2016) observed a complete downregulation of Bm1 upon 
floral transition. The expression pattern of BM1 observed by 
Trevaskis et al. (2007) fits with the timing of our QTL. A second 
growth-related candidate gene is one ARF that is in close physical 
distance. Further, MLOC_17989.1 annotated to transport 
potassium is located at 91.4 cM and shows a high similarity 
to HvHAK1 on 2H (58.7 cM). A drought-related candidate 
represents HvTIP1;1 at 91.7 cM (Supplementary Table S7).

The QTL on 5HL at 157.6 cM was significant for biomass 
during the recovery phase of the drought treatment but did not 
pass the FDR under control conditions although timing and –
log(p)-values were very similar (Figure 4E). In 3.5 cM distance, 
a QTL for seedling shoot weight was identified in the full barley 
panel (Zhongtao et al., 2019). HvCesA2 resides at 158.3 cM, 
encoding a cellulose synthase expressed in seedling leaves and 
required for cell wall synthesis (Burton et al., 2004). Further, a 
potential homolog of the rice OsFEN-1b gene is located at 157.8 
cM. It is encoding for a Flap endonuclease-1 (Supplementary 
Table S7) with a putative role in cell proliferation in the shoot 
apical meristem and young leaves Kimura et al. (2003).

Another constitutive QTL on 5HL at 169.4 cM was significant 
for biomass during the recovery phase but did not pass the 
FDR in the control treatment (Figure 4F). At the seedling 
stage, the region was associated with growth under non-stress 
and osmotic stress conditions in the full barley panel. In the 
same region, a constitutive QTL for biomass and for DSI and 
a QTL for rhizosheat were detected in other collections (Table 
1). Interestingly, this genomic region harbors a key enzyme in 
the biosynthesis pathway of gibberellin, HvGA20ox1. In wheat, 
TaGA20ox1 is expressed mainly in the nodes and ears of the 
elongating stem and in developing and germinating embryos 
(Appleford et al., 2006). The rice homolog OsGA20ox1 has a 
role in seedling vigor and plant stature (Abe et al., 2012) as well 
as biomass (Oikawa et al., 2004). Drought-related candidates 
represent HvPIP2;8 and the heat shock transcription factor 
HvHsfA1a (Supplementary Table S7). It is mainly known as a 
key factor of heat stress sensing in Arabidopsis (Liu et al., 2013); 
a role under drought in barley is so far unknown. However, 
in tomato, overexpression of HsfA1a was enhancing drought 
tolerance (Wang et al., 2015).

A constitutive biomass QTL is located on the short arm of 
6HS at 24.5 cM (Figure 4G), although it failed the FDR threshold 
in drought treatment. At a very similar position (24.8 cM) a QTL 
for biomass in winter barley was identified (Table 1). Nearby, we 

detected a constitutive QTL for tiller number (30.1–30.2 cM), 
and it remains open if these are independent QTL or represent 
the same locus, especially as the SNP at 24.5 cM is not located on 
the physical map. There is no LD between SNPs of the two loci, 
indicating independence of the QTL. However, in the full barley 
panel, QTL for tiller number were identified at 24.5 cM and 28.5 
cM along with a QTL for the leaf blade area at 28.5 cM (Table 1). 
Interestingly, 1-FEH encoding a β-fructan 1-exohydrolase is 
located at 28.6 cM (Nagaraj et al., 2004). A further gene at 32.0 
cM shows high similarity to 1-FEH (Supplementary Table S7). 
In wheat, three homologs of the 1-FEH gene were mapped to 
6A, 6B, and 6D (Zhang et al., 2008). 1-FEh w3 (6B) conferring a 
higher TKW under drought conditions shows highest sequence 
similarity with barley 1-FEH (Zhang et al., 2015), while 1-FEh 
w2 (6D) is involved in translocation of sugar from stem to grains 
(Yáñez et al., 2017).

The constitutive biomass QTL on 7HL at 140.9 cM (SCRI_
RS_167617) was in both studies passing the FDR (Figure 4H). In 
control conditions the QTL started to be significant at DAS 33. 
By contrast,it started to disappear with progressing drought until 
plants were re-watered. Only the QTL at HvPPD-H1 explained 
a higher proportion of the genetic variance in the recovery 
phase. Therefore, the 7HL locus represents the most stable and 
important biomass QTL in our barley panel. The same SNP 
was associated with seedling shoot weight in a different spring 
barley population (George et al., 2014). In the full barley panel, 
the region was revealed as a hotspot for sshoot and root traits at 
seedling stage (Abdel-Ghani et al., 2019), indicating the relevance 
of this locus also at earlier developmental stages. Very close to 
the QTL resides HvDIM and further genes involved in growth 
(Supplementary Table S7).

While most constitutive biomass QTL were co-locating 
with QTL for biomass in winter barley (Wehner et al., 2015), 
the QTL on 7HS and 7HL seem to be of importance only 
in spring barley. More research is needed to understand 
the role and timing of biomass QTL in the different genetic 
backgrounds (six-rowed barley, winter types) and field studies 
have to be carried out to verify their relevance and their 
relation to grain yield.

Adaptive Biomass QTL
In total we classified nine biomass QTL across both studies as 
adaptive, seven of them were passing the FDR only in the current 
study for growth in drought conditions, while the remaining two 
QTL were detected only in the control treatment.

Adaptive Biomass QTL for Biomass Prior 
to Drought or During Early Drought Phase
Two adaptive seedling biomass QTL, located at 3HL at 105.9 
cM and 4H at 43.6 cM were detected only under well-watered 
conditions (Supplementary Figures S17A, B). The discrepancy 
in QTL detection for early biomass in both studies reflects the 
different seasonal scheduling, and a slightly shorter observation 
period in the drought study. In control, significant QTL for 
early biomass were detected between DAS 10 and 12, but in 
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the current study, side view images needed for estimation of 
biomass were available only from DAS 12 onwards. In the 
full barley panel, both QTL regions were associated with root 
traits at seedling stage (Abdel-Ghani et al., 2019; Zhongtao 
et al., 2019), underlining their relevance for seedling growth. A 
strong candidate gene for the QTL on 3HL is HvGA20ox3, while 
for 4H the candidate might be a WRKY transcription factor 
(Supplementary Table S7). In Arabidopsis some of the WRKYs 
were shown to promote brassinosteroid regulated plant growth 
(Chen and Yin, 2017).

One adaptive QTL located on 1HL at 119 cM was significant 
at the beginning of drought treatment (Supplementary Figure 
S17C). However, we obtained –log(p) > 3 already before the 
onset of drought. Agronomic and drought-related QTL were 
mapped to the same region in the full barley panel or different 
collections (Table 1). HvARF20, and a gene with high similarity 
with TaGA2ox8 reside very close to this QTL (Supplementary 
Table S7).

Another adaptive QTL on 3HL at 88 cM showed high –
log(p)-values already prior drought but only turned significant 
at DAS 43 (Supplementary Figure S17D). It co-locates with 
a QTL for tiller number and leaf blade area in the full barley 
panel and with a QTL for biomass, DSI, and osmolality in 
winter barley (Table 1). Therefore, the region may be indeed 
related to both growth and drought tolerance. Four potential 
candidate genes were detected (Supplementary Table S7): 
pmei3, HvDof9, and ABF1 encoding for a bZIP transcription 
factor (Sarkar and Lahiri, 2013). In rice, OsABF1 was induced 
by abiotic stresses and connected with enhanced drought 
tolerance (Hossain et al., 2010). Additionally, a barley homolog 
to WUSCHEL-RELATED HOMEOBOX5 (WOX5) is located 
in 2.5 cM distance, involved in stem cell maintenance in the 
root apical meristem (Sarkar et al., 2007). It was shown that 
enhanced levels of cytokinin downregulate key root tip genes, 
including WOX5 and promote cell division in the root apical 
meristem (Zhang et al., 2013).

Drought and Recovery-Adaptive  
Biomass QTL
In total, five biomass QTL are classified as drought or 
recovery-adaptive.

Two drought-adaptive QTL on 2H (40.8 cM and 50.4 cM, 
Figures 5A, B), co-locate with QTL for biomass and agronomic 
traits (Table 1) and the genomic positions of the flowering 
time genes HvCO18 and HvFT4, respectively. However, the two 
genomic regions harbor also genes related to drought tolerance 
(Supplementary Table S7). Within the vicinity of the QTL at 
40.8 cM HvHAK2, a potassium transporter of the KUP6 family 
and a second potassium transporter that shows 65% sequence 
similarity with HvHAK2 are located. For the QTL at 50.4 cM, a 
candidate could be MLOC_58500.1 with homology to the wheat 
heat transcription factor TabZIP28 that is upregulated by heat 
and drought (Geng et al., 2016).

A very interesting drought-adaptive QTL in the centromeric 
region of 3H (Figure 5C) co-locates with the known flowering 

time gene HvGI (Dunford et al., 2005). The QTL further 
coincided with the only QTL identified for fAW at time A. 
In the full barley panel, several QTL for root system angle 
and root system depth were residing in this genomic region 
(Zhongtao et al., 2019). Moreover, in winter barley, a biomass 
QTL under WW conditions and a QTL for leaf color under 
drought stress were detected in this region (Wehner et al., 
2015). HvGI is reported to have pleiotropic effects on other 
traits like plant height, grain yield, harvest index (Wang et al., 
2010) and in terms of physical map position it is indeed the 
closest candidate gene (Supplementary Table S7). However, 
the centromeric region also harbors other potential candidate 
genes. At 44.1 cM the barley homolog of rice CYP90D2/D2is 
located. It encodes a cytochrome P450, that was reported to 
be completely deleted in the BR mutant csdd1 (Li et al., 2013). 
Further, HvCKX1 is located at 45.8 cM (Mameaux et al., 2012). 
In tobacco and Arabidopsis, downregulation of cytokinin 
through overexpression of CKX1 led to increased drought 
tolerance (Lubovská et al., 2014; Prerostova et al., 2018). 
RNAi silencing of HvCKX1 led to a higher yield caused by an 
increased number of spikes and seeds (Zalewski et al., 2014). 
Another very interesting drought-candidate is HvABCG31/
Eibi1 (46.3 cM) responsible for cuticle formation (Chen et al., 
2011; Nevo, 2014). Variation in the promoter sequence of 
this gene was responsible for the variation in trait expression 
enabling wild barley plants to be more tolerant to drought 
conditions (Ma et al., 2012) and a drought-adaptive QTL in 
its vicinity encourages to study the effects of allelic variation 
within this genefor breeding purposes.

The last drought-adaptive QTL is located on 7HS at 47.7–48.3 
cM (Figure 5D). It coincides with several QTL for seedling 
growth under control conditions and osmotic stress in the full 
barley panel and for leaf blade area (Table 1). QTL for biomass 
under stress and control conditions, and for DSI in winter 
barley (Wehner et al., 2015) are located in the same interval. 
A potential candidate could be a gene with 98% sequence 
similarity (Supplementary Table S7) to the type-B response 
regulator ARR12a of Lolium perenne (Roche et al., 2016). 
These transcription factors control cytokinin-dependent gene 
expression and are therefore critical for growth and the response 
to abiotic stress (Zubo et al., 2017). In close distance to the QTL, 
at 47.9 cM, resides an ethylene-responsive transcription factor 
(Supplementary Table S7).

The only recovery-adaptive QTL was detected on 5H at 99 
cM (Figure 5E). It overlaps with the genomic region harboring 
the flowering time gene HvPRR95 (Supplementary Table S7). 
Several agronomic QTL and QTL for seedling biomass and 
osmotic adjustment were mapped in its vicinity (Table 1). 
Another major gene in this region is Vrs2. One natural allele 
of Vrs2 has been found correlated with plant development, 
leaf number, leaf area and tiller number in the full barley 
panel (Youssef et al., 2017) comprising two- and six-rowed 
genotypes. However, nothing is known about the effects of 
natural variation within one of the row type groups. Three more 
plausible drought-related candidates are located in the vicinity 
of the QTL. The first is HvPap-1 (HvSF42) encoding for a 
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cysteine protease (CP) active during flag leaf senescence (Díaz-
Mendoza et al., 2014). Its expression was upregulated after two 
weeks of drought, and interestingly, HvPap-1 knock-down lines 
showed an increase in cuticle thickness, stomata per area, ABA 

concentration and quantum efficiency of PSII under drought 
(Gomez-Sanchez et al., 2019). Accordingly, overexpression 
of the homologous wheat gene TaCP in Arabidopsis led to 
an increased survival after osmotic stress (Zang et al., 2010). 

FIGURE 5 | (A–E) Drought-adaptive biomass QTL with their –log(p)-values over time in days after sowing (DAS) in drought stress (unfilled) and well-watered 
(black) conditions. Presented is only the most significant SNP of each QTL (in case it consists of several SNPs). As the FDR is calculated for each day and in each 
treatment separately, the general significance level of –log(p)-value = 3 is indicated by a dashed horizontal line. The drought stress phase from DAS 27 to DAS 45 is 
indicated by the two dashed vertical lines.
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The second drought-related candidate represents the heat 
stress transcription factor HvHsfB2c, playing a role in drought 
tolerance by possible control of expression of several subclasses 
of heat shock proteins (Reddy et al., 2014). A third drought-
related candidate is the aquaporin HvPIP2;7.

QTL for Drought Tolerance Related Traits 
Obtained From Biomass Growth Curves
The genetic architecture of traits obtained from growth curve 
models has been studied here for the first time.

The stop of growth (and the onset of wilting) is reflected 
by the modeled parameter time A, which proofed to be 
very sensitive in case growth conditions are not sufficiently 
controlled (Neumann et al., 2015). After adjustment of 
greenhouse conditions, time A showed a high heritability, and 
four QTL could be detected. The dependence of time A on initial 
biomass in this diverse collection resulted in two out of four 
QTL for time A co-locating with QTL for biomass (Figure 6). 
The advantage of early flowering and thereby low biomass as a 
drought escape mechanism in severe drought conditions is well 
known (Shakhatreh et al., 2001; Paul et al., 2016; Shavrukov 
et al., 2017). Nevertheless, two QTL for time A were not 
associated with biomass in our study. The first positioned on 
2HL (135.8 cM) is the second most important QTL for time A 
in respect to the explained genetic variance. It coincided with a 
QTL for tiller number at DAS 58 in control conditions and for 
root traits and leaf blade area in the full barley panel (Table 1). 
Further, QTL for osmotic adjustment and for the DSI in winter 
barley (Wehner et al., 2015) earmark this region as interesting 
to search for candidate genes for growth and for the delay of 
wilting (Supplementary Table S7). In this context, we identified 
HvGA3ox1 along with two copies of HvDof3, MLOC_73626.1 
annotated as bZIP transcription factor, and HvEFP1, a member 
of the cysteine-rich EPIDERMAL PATTERNING FACTOR 
(EPF) family of secreted signaling peptides that is involved 
in stomatal development (Hughes et al., 2017). Barley plants 
overexpressing HvEFP1 showed a slower water loss during a 
drought period in a comparable growth stage as in our study 
and had higher water use efficiency and seed yield (Hughes 
et al., 2017). A QTL for delayed onset of wilting in its vicinity 
should emphasize evaluation of barley germplasm collections 
for natural variation of HvEFP1.

The second QTL for time A is located on 6H at 55 cM and 
co-located with a QTL for tiller number at DAS 45 in both 
treatments, although coming from different SNPs. In the full 
barley panel, root QTL were located at the same position but 
also associated with different SNPs (Abdel-Ghani et al., 2019; 
Zhongtao et al., 2019). The centromeric region is reported to 
be associated with many QTL for agronomic traits and harbors 
several possible candidates, including three flowering time genes 
(Table 1). Further, HvARF05 and HvARF14 could be candidates 
for this locus. In winter barley, Wehner et al. (2015) observed with 
a QTL for osmotic adjustment under drought, which co-localizes 
with the QTL for time A. A candidate gene related to dehydration 
tolerance could be HvDhn8 (Supplementary Table S7), mainly 

induced by drought stress (Tommasini et al., 2008). Dehydration 
tolerance could also refer to HvTIP2;1 and HvPIP1;5.

For biomass at wilting time (DBA) no QTL passed the FDR. 
However, two out of six potential QTL (–log(p) values ≥ 3) were 
unique for this trait across both treatments: on 5HL at 139.1 
cM and 6HL at 105.1 cM. Interestingly, a stress-specific QTL at 
the seedling stage was identified in the full barley panel at the 
same position of the QTL on 5HL, congruent with QTL for 
biomass and osmotic adjustment under drought stress in winter 
barley (Table 1). Two potential candidates were identified in a 
distance of 1 cM: the heat shock transcription factor HvHsfA2e 
and Dhn9 (Supplementary Table S7). Also, the DBA-QTL on 
6HL co-locates with QTL for biomass and DSI in winter barley 
(Table  1). Drought-related candidates in that area represent 
Dhn4 and Dhn7 (Supplementary Table S7).

Similar as for DBA, also for the re-growth rate k no SNP 
passed the FDR, although 15 SNPs had –log (p) values ≥ 3. 
Nevertheless, no unique locus was detected, and so, k seems not 
to yield additional information on re-growth on the genetic level.

Genetic Architecture of Tiller Number 
Under the Influence of Drought Stress
In many cases, a higher number of tiller reflects higher biomass 
(Jaradat et al., 2005). Similar to biomass, the genetic architecture 
of tiller number changed over time according to earlier studies 
in rice (Yan et al., 1998; Abe et al., 2012; Alqudah et al., 2016) 
and wheat (Li et al., 2010). In total, we detected 14 QTL across 
both studies, six in the current study, and twelve in the control 
treatment (Neumann et al., 2017). Four QTL were found in the 
current study at DAS 27 in contrast to the previous study. The 
discrepancy may arise from the discussed differences in early 
plant development in both studies. As for biomass, we classified 
the tiller number loci into constitutive or adaptive QTL. In this 
way, four QTL were classified as constitutive (Figure 6), while ten 
QTL were classified as adaptive.

Constitutive Tiller Number QTL
The first constitutive QTL for tiller number on 2HL at 74.1 cM was 
detected as a hotspot for root and shoot traits at seedling stage in 
the full barley panel and co-located with other agronomic QTL in 
different studies (Table 1). A candidate might be MLOC_52145.1 
(Supplementary Table S7) with high similarity to maize CKX12, 
which was shown to be highly expressed in the maize shoot at the 
five-leaf stage (Gu et al., 2010). In rice, down-regulation of a CKX 
lead to an increased tiller number in transgenics in the field (Yeh 
et al., 2015). Another candidate gene (MLOC_6463.1) has high 
similarity to LABA1 in rice (Supplementary Table S7). LABA1 
is involved in the final step of bioactive CK biosynthesis. In rice, 
LABA1 is responsible for awn frequency and awn length mediated 
by CK in the awn primordia (Hua et al., 2015). A function of 
this gene for tillering in barley remains speculative, but also 
expression of MONOCULM 3 in rice was induced by cytokinin, 
a gene known to be required for axillary bud formation (Lu et al., 
2015). Moreover, HvARF15 is located at 73.1 cM. In rice, miR167 
is regulating ARFs, and miR167 overexpressing lines showed a 
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lower tiller number in the vegetative stage in connection with 
downregulation of four OsARFs (Liu et al., 2012).

Tiller number at DAS 45 and 58 in the control treatment, 
and tiller number at all three time points under drought stress 
were mapped to the centromeric region of 5H, which harbors 
the gene HvLax-a (Jost et al., 2016). Together with its paralogue 
of Hvre-t4 (Uniculm 4) (Tavakol et al., 2015) is known to control 
tillering in barley. Accordingly, QTL for tiller number were also 
mapped to the same region in the full barley panel (Table 1) and 

in a different barley collection (Mora et al., 2016). Many further 
agronomically important genes and QTL map to the centromeric 
region (Table 1).

The most important locus for tiller number in both treatments 
is located on 6HS at 30.1-30.2 cM. It explained a high proportion 
of the genetic variance in both studies and was significant at DAS 
45 and 58, while for DAS 27 it was only found significant in the 
current study. In close proximity, we also detected a constitutive 
biomass QTL at 24.5 cM. 1-FEH, a potential candidate for 

FIGURE 6 | QTL map of the seven barley chromosomes 1H to 7H for classification of biomass (BM) and tiller number (TN) QTL along with QTL for traits from 
drought-growth pattern modelling: biomass at time A (DBA), time A (TA) and fraction of available water at time A (fAW_TA). The time period of significance of each 
QTL is indicated in the QTL name: early growth phase (EP), drought phase (DP), recovery phase (RP). All potential candidate genes are given in red and italic, the 
flowering time genes are additionally highlighted in bold.
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biomass and tiller number is located at 28.6 cM, between these 
two QTL (Supplementary Table S7).

The fourth constitutive QTL for tiller number on 6H at 55 
cM was significant in both studies only at DAS 45. Accordingly, 
this QTL was earlier identified by Alqudah et al. (2016) within 
the two-rowed germplasm at the stage of awn primordium and 
tipping but not later. From a breeding perspective, stage-specific 
QTL might provide opportunities for genetic manipulation to 
maximize the number of tillers. The genomic region harbors 
flowering (HvCO5, HvPRR1, HvCry2) and growth-related genes 
(HvARF14, Supplementary Table S7).

Adaptive QTL for Tiller Number
Contrary to biomass, not a single adaptive QTL for tiller number 
was detected under drought stress. Two QTL were identified at 
DAS 27 in the current study, but being present only at the start 
of stress they can’t be regarded as drought-adaptive. The first of 
these two (5H 120.1 cM) was previously identified by Alqudah 
et al. (2016) for tiller number at the time of tipping. Within 5 cM 
distance Vrn-H1 and HvPhyc are located and may have pleiotropic 
effects on tiller number (Supplementary Table S7). However, the 
QTL region contains also HvNCED2 (119.0 cM), a gene involved 
in ABA biosynthesis (Wang et al., 2017) and ABA is involved in 
bud outgrowth (Kebrom et al., 2013). Further, MLOC_51599.3 
with high sequence similarity to the wheat deoxyhypusine 
synthase (DHS) is located at 121.5 cM. DHS is involved in the 
activation of the eukaryotic translation initiation factor eIF5A 
that is essential for cell division (Tiburcio et al., 2014).

The second QTL for tiller number at DAS 27 is identical to the 
constitutive biomass QTL on 7HL at 140.9 cM. In the six-rowed 
subpanel, a QTL for non-productive tiller number at maturity 
was detected here (Alqudah et al., 2016). The current study shows 
that this QTL is also linked to tiller number in two-rowed spring 
barley at early developmental stages.

The eight remaining adaptive QTL for tiller number were 
identified only in the control treatment at DAS 45 and/or 58. 
They are located on 2H (58 cM, 124.9 cM, 135.8 cM), 5H (30.6 
cM), 6H (24.5 cM), 7H (68 cM, 120.4 cM, 134.2 cM) (Neumann 
et al., 2017).

SUMMARY

Non-invasive phenotyping allows for resolving the timing of 
QTL appearance. It can resolve which genetic loci are responsible 
for early growth vigor, growth per se, drought tolerance, and 
recovery from stress. The genetic architecture of biomass during 
the drought period was altered strongly compared to well-
watered conditions. Drought tolerance related loci appeared 
mainly after the arrest of growth, reflected by the parameter 
time A obtained from growth modeling. During plant recovery, 
mainly a switch back to the genetic architecture observed under 
well-watered conditions was seen. After the end of drought, the 
HvPPD-H1-region revealed the highest effect, unlike in the well-
watered treatment, where the HvDIM-locus was most prominent 
during the same time. In general, co-localisation of biomass and 

flowering time genes was expected and confirmed by the detection 
of candidate genes including HvCO18, HvFT4, HvGI, HvCMF1, 
or HvPRR95. However, also genes involved in dehydration 
tolerance were often located in QTL regions. No drought-related 
QTL were detected for tiller number, where the change in genetic 
architecture was marked by the disappearance of QTL compared 
to well-watered conditions. Our comprehensive case-study in 
barley demonstrates the potential of non-invasive phenotyping 
for resolving the genetic architecture of complex traits that 
changes throughout development and under contrasting growth 
conditions. Traits are highly heritable even if drought stress 
is applied — as long as conditions are controlled and strictly 
standardized. In future studies, replicates within experiments 
can be even further decreased, allowing for an increase in the 
number of genotypes and a concomitant increase in the power of 
genome-wide association scans. The drought and growth-related 
genes identified as candidates in the present study represent 
informed targets for further validation by re-sequencing in our 
barley panel. Natural variation is already known for HvABCG31/
Eibi1, HvDof3, and HvPap-1. Drought-related QTL in the vicinity 
of these genes highlight their potential value as starting points to 
breed for enhanced drought tolerance.
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