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Addressing current global challenges such as biodiversity loss, global change, and 
increasing demands for ecosystem services requires improved ecological prediction. 
Recent increases in data availability, process understanding, and computing power are 
fostering quantitative approaches in ecology. However, flexible methodological frameworks 
are needed to utilize these developments towards improved ecological prediction. Deep 
learning is a rapidly evolving branch of machine learning, yet has received only little 
attention in ecology to date. It refers to the training of deep neural networks (DNNs), i.e. 
artificial neural networks consisting of many layers and a large number of neurons. We 
here provide a reproducible example (including code and data) of designing, training, 
and applying DNNs for ecological prediction. Using bark beetle outbreaks in conifer-
dominated forests as an example, we show that DNNs are well able to predict both short-
term infestation risk at the local scale and long-term outbreak dynamics at the landscape 
level. We furthermore highlight that DNNs have better overall performance than more 
conventional approaches to predicting bark beetle outbreak dynamics. We conclude 
that DNNs have high potential to form the backbone of a comprehensive disturbance 
forecasting system. More broadly, we argue for an increased utilization of the predictive 
power of DNNs for a wide range of ecological problems.
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INTRODUCTION

Ecology is a relatively young discipline, and many of its theoretical foundations are less than a century 
old (Real and Brown, 1991). In recent decades, ecology has matured considerably as a scientific field, 
which is inter alia reflected by a strong increase in the application of ecological knowledge, data, and 
methods (e.g., Shea and Chesson, 2002), as well as a recent push towards predictive ecology (Clark 
et al., 2001; Evans et al., 2012; Dietze et al., 2018). Ecological prediction broadly describes the process 
of putting ecological knowledge, data, and methods to use for making testable, quantitative estimates 
about future states of an ecosystem (Luo et al., 2011). The increasing focus on prediction is motivated, 
amongst other things, by the growing realization that ecology is central to addressing a number of 
the most pressing challenges faced by humanity in the 21st century, such as to mitigate the impacts of 
climate change and halt biodiversity loss (Mouquet et al., 2015). Providing essential ecosystem services 
to society while retaining the earth within its planetary boundaries (Steffen et  al., 2015) requires 
accurate and timely forecasts of ecosystem trajectories. Consequently, policy makers and ecosystem 
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managers look to scientists for providing the predictions needed to 
anticipate and manage global change (Clark et al., 2001).

Achieving precise and unbiased ecological predictions is 
more feasible today than ever before. This is the result of three 
simultaneous developments: First, the availability of ecological 
data has increased dramatically. With the advent of big data in 
ecology the field is in a rapid transition from an era characterized 
by data limitation, to one that is dominated by a wealth of data 
(Peters et al., 2014). Contributing to increasing data availability 
is the proliferation of remote sensing (Kennedy et al., 2014), 
large international research networks such as NEON and 
Fluxnet (Ershadi et al., 2014), and the use of citizen science 
(Jordan et al., 2015). Furthermore, the field has experienced a 
fundamental change in research culture in recent years, towards 
making ecological data accessible to the public (Whitlock, 2011). 
Second, recent methodological advances in the field of ecological 
modeling, data analysis, and statistics have drastically increased 
our ability to interface the growing amounts of data with our 
understanding of ecological systems. Given that we are facing 
a future characterized by no analog conditions (Williams and 
Jackson, 2007), such improvements in process understanding are 
a crucial prerequisite for successful ecological prediction (Evans, 
2012). Finally, increasing computational power in general and 
a growing availability of high performance infrastructure for 
scientific computing in particular provide the technological 
backbone supporting both previously outlined trends. All three 
of these recent developments are important factors behind the 
recent proliferation of machine learning in ecology.

Machine learning (ML) is a family of computational algorithms 
that is concerned with identifying structure in complex, often 
nonlinear data, and generating accurate predictive models based 
on such data (Olden et al., 2008). Compared to classical statistical 
approaches such as regression, machine learning focuses on 
the use of computation to determine and describe complex 
relationships, and emphasizes predictive power over estimating 
parameters and confidence intervals (Breiman, 2001; Goodfellow 
et al., 2016). Situated at the intersection of computer sciences 
and  statistics, and forming the core of artificial intelligence 
and  data science, ML is a rapidly growing field (Jordan and 
Mitchell, 2015).

Deep learning is a relatively recent development in ML. Its 
main tool, the deep neural network (DNN), builds upon Artificial 
Neural Networks (ANNs) which were already conceived in the 
middle of the last century. Essentially, “deep learning” refers to a 
set of techniques that allow the training of larger (more neurons) 
and deeper (more layers) ANNs (Nielsen, 2015). These high 
capacity networks became possible due to the development of 
improved algorithms for optimizing connection weights [e.g., 
stochastic gradient descent (Rumelhart et al., 1986)] and a 
steep increase in available computing power and training data 
(Goodfellow et al., 2016). While these improvements may seem 
only gradual, current DNNs not only outperform their simpler 
ANN ancestors, but frequently also perform better than other 
ML approaches in standardized tests of prediction accuracy (e.g., 
Krizhevsky et al., 2012; Johnson et al., 2016; Szegedy et al., 2016).

In ecology, ML approaches were still rarely used a decade 
ago (Olden et al., 2008), but have seen a tremendous increase 

in popularity in recent years (Jordan and Mitchell, 2015). Yet, 
their potential is far from fully exploited, and deep learning 
applications in ecology remain scarce to date (see Supplementary 
Material S1 for a full literature review). The overall aim of this 
work is to contribute to a wider recognition of deep learning 
in ecology (see also Reichstein et al., 2019) by demonstrating 
its potential for prediction based on an example application for 
which all necessary data and code are made available for the 
community. Specifically, we here chose bark beetle outbreaks in 
conifer-dominated forests as our example.

Bark beetles are important disturbance agents in forests 
around the world (Raffa et al., 2008). As a result of climate change 
bark beetle activity is expected to increase in the future (Seidl 
et al., 2017). The profound change in the structure and function 
of forests resulting from bark beetle outbreaks can have negative 
impacts on the provisioning of ecosystems services (such as clean 
water, timber, and climate regulation) to society (Thom and Seidl, 
2016). However, given a timely knowledge of outbreak hotspots 
managers can contain beetle spread via removing susceptible 
trees and employing pheromone traps, making prediction of 
beetle risk a crucial task in forest management (Hlásny et al., 
2019). However, these management measures are frequently 
applied based on ad hoc decisions of managers in the field, 
rather than on data-driven approaches quantifying bark beetle 
infestation probability.

Here we show how to predict bark beetle outbreak dynamics 
based on widely available information sources using deep learning. 
Specifically, we use a DNN (1) to estimate bark beetle outbreak 
probabilities based on outbreak patterns from the recent past, and 
(2) to predict the temporal dynamics of bark beetle outbreak waves.

MATERIALs AND METHODs

Artificial Neural Networks and 
Deep Learning
The basic structure of an artificial neural network (ANN) and 
a deep neural network (DNN) is loosely modeled after the way 
biological nervous systems process information (Figure 1). The 
network consists of interconnected compute units (neurons) 
that are organized in layers — typically an input layer (with 
the number of neurons corresponding to the number of input 
variables), hidden layer(s), and an output layer (where each 
dependent variable corresponds to a neuron).

The most widely used DNN type is a feedforward neural network 
(often also called perceptron) (Goodfellow et al., 2016). In such 
a feedforward network, each neuron is connected to all neurons 
in adjacent layers, but neurons within a layer are not connected 
(Figure 1). The connection strength between two neurons is given 
by an adjustable connection weight w. Every neuron calculates a 
single output value by computing a weighted sum of the inputs and 
then passing the result through a non-linear function.

An extension of a feedforward network frequently used 
for pattern recognition in images or time series data is the 
convolutional neural network (CNN). In addition to fully 
connected layers a CNN includes multiple stages of so-called 
filtering and pooling layers (LeCun et al., 2015). Filters are applied 
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locally (e.g., to detect an edge within a subset of pixels), but use 
the same learned weights for all elements of the data (e.g. all the 
pixels in an entire image). Subsequent pooling layers merge the 
filter outputs into more abstract representations that are less 
sensitive to small shifts and distortions in the data. A series of 
such filtering and pooling layers is able to extract increasingly 
abstract patterns in data.

In the training phase of a DNN the connection weights (w in 
Figure 1) between neurons are iteratively updated by a training 
algorithm to minimize the prediction error over the training 
data set (see Supplementary Material S2 for more details). 
In order to gauge the accuracy of predictions for new input 
data (i.e., data not used during training), the available data is 
frequently split into a training data set (used for training), and 
a test data set. The details of the network architecture, such as 
the size of the network, the selection of specific layer types, 
and parameters of the training process strongly determine the 
prediction accuracy of the network and are usually problem 
specific. More information on deep learning is available in e.g., 
Angermueller et al. ( 2016), LeCun et al. (2015) and Nielsen 
(2015). Moreover, the Supplementary Material S2 provides a 
guide for designing and training of DNNs, as well as practical 
considerations for DNN applications.

A Deep Neural Network to Predict Bark 
Beetle Outbreaks
The following section presents an application of deep learning 
in the context of forest ecology, specifically predicting attacks by 
bark beetles. The example demonstrates the steps required for 
using DNNs, i.e. data preparation, network design and training, 
and finally making predictions using the trained DNN. All code 
and data required for reproducing the example presented here are 
available online https://github.com/werner-rammer/BBPredNet.

We used a 23-year time series of bark beetle (Ips typographus L.) 
infestation at the Bavarian Forest National Park (Germany), 
determined from annual aerial surveys at 30 m horizontal 

resolution over an area of 13,319 ha. The complete data set is 
available online (Seidl et al., 2015). More information on the 
dataset as well as statistical analyses of the data are provided by 
Seidl et al. (2016).

Our goal was to predict the risk of beetle attack for each  
30 m cell and year, based on climatic information and the local 
outbreak pattern in the preceding two years. We used a DNN 
to predict the probability of bark beetle attack based on the 
following variables: the potential host cells in the vicinity of the 
target cell (i.e., grid cells in the local neighborhood (19 × 19 cells) 
that contain mature trees of the host tree species, Norway spruce 
(Picea abies (L.) Karst.), representing host connectivity in the 
vicinity of a target cell), the observed cells attacked in the last 
two years in the vicinity of a cell (representing local bark beetle 
pressure), average climatic conditions (i.e., the long-term mean 
annual temperature for the target cell, representing the variable 
climatic viability for bark beetle development at the landscape 
scale), and a qualitative classification of the outbreak stage at 
the regional scale (representing the surrounding forest area 
of Austria, Czech Republic, and Bavaria) in the previous two 
years (three classes, “background”, “culmination”, “gradation”, 
determined by using the 33rd and 66th percentile of the annual 
timber disturbed as cutoffs), representing a broad classification of 
population dynamic as frequently used by forest managers). We 
thus used both time-invariant and temporally variable predictors 
in our modeling, and deliberately restricted the predictors to 
information that was previously published (Seidl et al., 2016) and 
is readily available at large spatial scales for forest managers and 
national park services.

The full data set comprised of 1.87 million data points for 
training the DNN. Each training example xi consisted of the cells 
in a moving window around the focal cell (window size of 19 × 
19), describing the local host tree distribution and the outbreak 
activity in the preceding two years, as well as the two auxiliary 
variables mean annual temperature and outbreak stage. Each xi 
thus contained 19 x 19 = 361 + 2 = 363 input variables. The size 
of 19 × 19 cells represents a rectangular area with a distance from 
the target cell of between 270 and 382 m in each direction, which 
corresponds to the dispersal distance of >95% of the bark beetles 
(Kautz et al., 2011). The response variable yi was the state of the 
focal cell (disturbed/undisturbed) in the current year.

Experiments
Experiment 1: Predicting Disturbance Probability 
for Individual Years
In this experiment we were interested in the capability of the 
DNN to predict infestation probabilities for individual years. 
This setup resembles an application scenario where one tries to 
predict future disturbance from the observed disturbance pattern 
of the recent past. In order to include a wide range of conditions 
in the test dataset, we randomly selected one year from each of 
the three outbreak stages (background: 1993, culmination: 1997, 
and gradation: 2005) as test set, while all the other years were 
used for training the DNN. The training set for this experiment 
consisted of 1.58 million data points, and the test set of 292,559 
cases (15.7% of all data points).

FIgURE 1 | Stylized structure of a deep feedforward neural network. Each of 
the k layers consists of a variable number of fully connected neurons (circles). 
Thenetwork has as many neurons in the input layer as input variables (n), 
and – for classification – as many output neurons as there are classes in the 
data (m). A neuron is connected to all neurons in the two adjacent layers via 
a weighted connection (w).
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Experiment 2: Predicting Disturbance Dynamics 
Over Time
The goal of the second experiment was to test the ability of the 
DNN to model the temporal disturbance dynamics observed 
for the Bavarian Forest National Park. We randomly selected 
373,817 data points (20%) from the full dataset and set them 
aside as test set. The remaining 80% were used for training the 
DNN. This experiment does not reflect forward prediction, but 
rather aims at scrutinizing the ability of the DNN to capture the 
pulse dynamics of bark beetle outbreaks.

Model Design and Evaluation
Predicting bark beetle disturbance from infestation maps (see 
Figure 2 for examples) can be viewed as a specific case of an image 
classification problem, where the network is asked to classify the 
focal cell of an example image either as disturbed or undisturbed. 
Neural Networks using convolutional layers (CNNs) are 
frequently applied for image classification (e.g., Krizhevsky et al., 
2012; Szegedy et al., 2016), and were thus selected as the network 
type here. We used the dataset of Experiment 1 (setting aside 
individual years) for evaluating different network architectures. 

The hyper-parameters evaluated iteratively were network capacity 
(number of layers and neurons per layer), applied regularization 
techniques, as well as the used loss function and optimizer. The 
training of the individual candidate networks was stopped when 
the accuracy of the network on the test dataset did not increase 
further. The thus determined network architecture was also 
used for Experiment 2 (Abadi et al., 2016). All experiments and 
predictions were conducted using the TensorFlow framework 
and run on a desktop PC with an Intel QuadCore CPU (Intel 
i5-6600) and equipped with an NVidia GTX 1070 GPU.

We evaluated the network performance by calculating a 
number of different performance measures based on comparing 
predictions to test set data. The accuracy (defined as the ratio of 
correct classifications relative to the total number of examples) 
has only limited value as an evaluation metric here, as the 
class distribution is very unbalanced (only 3.48% of the data 
points are classified as disturbed). We therefore also calculated 
precision, recall, and the F1 Score, as well as Conditional Kappa 
and the True Skill Statistic (Allouche et al., 2006; Powers, 2011) 
(Table 1). Conditional Kappa and True Skill Statistic range from 
−1 to +1, where +1 indicates perfect agreement with test data, 
and values >0 indicate a performance than is better than random 

FIgURE 2 | Selected examples for 19 × 19 cell matrices (grain: 30 m) from the test dataset for which the state of the focal cell was predicted correctly (top left and 
bottom right quartet) and incorrectly (top right and bottom left quartet).
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draws. The output of the network was a continuous disturbance 
probability, which was converted to a binary classification by 
selecting the threshold probability that yielded the highest 
F1 score for the training dataset. For Experiment 2 we also 
calculated Gleichlaeufigkeit (Buras and Wilmking, 2015), which 
is a measure for the similarity of two time series based on the sign 
of the difference between two consecutive years. Subsequently, 
we compared the Gleichlaeufigkeit of the DNN with the value 
achieved by a statistical model presented for the same system 
(Seidl et al., 2016).

To better contextualize the performance of the DNN, 
we repeated Experiments 1 and 2 using other widely used 
classification algorithms, i.e., distributed random forest, gradient 
boosting machine, and generalized linear model. We used the 
H2O platform (H2O.ai, 2017), which provides a set of fast and 
scalable learning algorithms and is integrated within the R 
software and environment.

REsULTs

A DNN for Predicting Bark Beetle Outbreaks
We used a convolutional neural network with five convolution 
layers, followed by five fully connected layers and a final softmax 
layer (Nielsen, 2015) for classification (for details and terminology 
see Supplementary Material S2). We used categorical cross 
entropy as cost function, and weight decay (Nielsen, 2015), 
dropout (Srivastava et al., 2014), and batch normalization (Ioffe 
and Szegedy, 2015) to improve generalization. Figure S2 in the 
Supplementary Material shows the schematic structure of the 

DNN architecture. The presented network efficiently combines 
image-like pixel data with additional variables that are both 
numerical (climate variables) and categorical (outbreak stages). 
We trained the final architecture for 60 epochs, which took 
approximately one hour on the hardware used, and selected 
the epoch with the highest test set accuracy for prediction. 
The GitHub repository (https://github.com/werner-rammer/
BBPredNet) contains the full source code for reproducing this 
example, and includes further details on data preprocessing and 
the final network architecture.

Predictions
Experiment 1: Predicting Disturbance Probability 
for Individual Years
The trained DNN was well able to predict the general disturbance 
level and spatial pattern observed in the years 1993, 1997, and 
2005, i.e. in background, culmination, and gradation stage of the 
outbreak, respectively (Figure 3). The achieved accuracy was 
0.966, with a precision of 0.652 and a recall of 0.392 (Table 2). 
The achieved conditional kappa and true skill statistic, which 
are less sensitive to the uneven class distribution inherent to 
disturbance data, were 0.637 and 0.626, respectively. Figure 2 
shows selected examples for both successful and unsuccessful 
classifications taken from within the landscape, illustrating the 
cell-level stochasticity of bark beetle activity.

Experiment 2: Predicting Disturbance Dynamics 
Over Time
The achieved accuracy was generally lower in Experiment 2 
compared to Experiment 1 (Table 2). Figure 4 shows a comparison 
of predicted and observed area disturbed over time. While the 
general pattern of two distinct outbreak waves within the 23-year 
study period was reproduced well by the DNN, the network had 
difficulties predicting the initial year of outbreak (early 1990s) and 
consistently underestimated the area disturbed during the gradation 
phase of the second outbreak wave (2003–2007). To provide 
additional context for the assessment of model performance, 
Figure S3 in the Supplementary Material shows a similar time 
series comparison for the statistical model developed by Seidl et al. 
(2016). The Gleichlaeufigkeit of the DNN was with 0.750, which 
was slightly higher than that of the statistical model (0.727).

Comparison With Other Machine Learning 
Algorithms
The DNN (Table 2) performed better than the other tested 
alternative algorithms in five of the six cases; only the random 
forest algorithm outperformed the DNN for Experiment 2 
(see Supplementary Table S1 in the Supplementary Material 
for performance metrics). Generally, the ensemble methods 
(gradient boosting machine and distributed random forest) were 
highly proficient in extracting meaningful information from 
the data. Compared to the ensemble models, the generalized 
linear model, applying a single linear model (albeit with many 
predictors) had considerably lower predictive power.

TABLE 1 | Measures for evaluating the performance of the DNN. N = number of 
examples, tp, tn, fp; fn, values of the confusion matrix; tp, true positive, tn, true 
negative, fp, false positive, fn, false negative.
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N
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DIsCUssION

Deep learning is a new and powerful machine learning 
approach to model complex data. It is an approach under 
active development by a growing research community and is 

increasingly applied in a wide variety of fields (LeCun et al., 
2015; Angermueller et al., 2016). Yet, it remains rarely used in 
ecology to date, as underscored by our review of the literature 
(see Supplementary Material S1). Specifically, we did not find 
a single study employing deep learning published in ecological 
flagship journals such as Ecology, Journal of Ecology, Ecology 
Letters, BioScience, Ecological Applications, Journal of Applied 
Ecology, Diversity and Distributions, or Global Ecology and 
Biogeography. However, deep learning has the potential to 
become a powerful tool for ecologists (Reichstein et al., 2019), 
especially as the field moves towards a more quantitative and 
predictive approach (Clark et al., 2001; Evans et al., 2012).

Deep learning approaches are good at generalizing beyond 
test data (Goodfellow et al., 2016), an ability that is of high 
importance in the context of prediction for applied ecological 

FIgURE 3 | Observed (left) and predicted (right) bark beetle disturbance in the Bavarian Forest National Park for the years 1993 (background stage), 1997 
(gradation stage), and 2005 (culmination stage).

TABLE 2 | Performance measures for the two experiments. See Table 1 for details.

Parameter Experiment 1 (n = 292,559) Experiment 2 (n = 373,817)

Accuracy 0.966 0.959
Precision 0.652 0.413
Recall 0.392 0.411
F1 Score 0.490 0.412
Conditional Kappa 0.637 0.392
True Skill Statistic 0.626 0.392
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problems. A particular strength is the ability to achieve a high 
level of abstraction in raw data: Zhang et al. (2016), for instance, 
in a recent review in the context of remote sensing, concluded 
that DNNs are especially successful in high-level tasks such as 
object recognition, which are very difficult or even impossible 
to achieve with classic remote sensing approaches. Furthermore, 
deep learning may also contribute to more traditional 
approaches of ecological modelling for prediction, i.e. simulation 
modeling. For instance, DNNs could be used as powerful multi-
dimensional “interpolators” to systematically analyze the growing 
number of simulation model ensembles (e.g., Warszawski et al., 
2014), or build highly efficient meta-models of complex and 
computationally expensive existing simulation models (Marçais 
and de Dreuzy, 2017; Rammer and Seidl, 2019). Another 
promising approach is the hybridization of deep learning with 
process based models (Reichstein et al., 2019), e.g., by integrating 
deep learning-based sub models into a process based modeling 
framework, in order to advance ecological understanding.

A frequently stated reservation about applying ML in general 
and DNNs in particular relates to their black box character — the 
trained model and its weights cannot be interpreted in an intuitive 
way. Consequently, more traditional data models will remain an 
important means of inference, particularly for improving our 
understanding of relationships between drivers and responses in 
nature. It has to be noted, however, that such classical approaches 
make a priori assumptions on the underlying data model, which 
does not necessarily reflect the true relationships between driver 
variables and the response variable (Breiman, 2001). While 
conventional data models lead to more interpretable results and 
offer a more stringent framework for hypothesis testing, they are 
often characterized by a less accurate representation of reality. 
ML deduces relationships without making a priori assumptions 
about them, and is often better able to accurately describe the 
relationship between drivers and responses (Goodfellow et al., 
2016). DNNs work particularly well with ecological data because 
of their ability to efficiently combine different types of data 

(e.g., image-like pixel data, numeric and categorical variables). 
In addition, their hierarchical multi-layer structure reflects the 
fact that ecosystems are frequently governed by a variety of 
processes along a nested hierarchy of scales (Raffa et  al., 2008; 
Allen et al., 2014). We here found that DNNs outperformed all 
other approaches to modeling bark beetle outbreak dynamics 
(with the exception of another powerful ML algorithm, namely 
random forest).

Bark beetle outbreaks have increased considerably in many 
parts of the globe, and are expected to increase further under 
climate change (Seidl et al., 2017). Consequently, bark beetle 
outbreaks are a key concern for forest managers aiming to 
continuously supply ecosystem services to society (Hlásny et al., 
2019). Precise and timely information about the probability of 
new bark beetle infestations would be a key asset for managing 
outbreaks, as it would allow a targeted application of containment 
measures such as sanitation logging and the deployment of 
pheromone traps. Here we show that DNNs have high predictive 
potential in the context of applied ecological issues such as bark 
beetle outbreaks. It has to be noted that we here deliberately 
excluded weather data from the vector of predictors, as such 
data are usually not readily available for managers. We rather 
focused on variables that are easily quantifiable in the field, 
such as infestations in the last two years, showing that already a 
small number of (spatially explicit) predictors can result in high 
predictive power when using DNNs. Future work could combine 
this approach with near-real time bark beetle risk mapping 
based on phenological models (e.g., Baier et al., 2007; Matthews 
et al., 2018) in order to account for weather-driven bark beetle 
development trajectories. Furthermore, the growing availability 
of remotely sensed information on past insect disturbances (Senf 
et al., 2017) could be integrated into future predictions of bark 
beetle dynamics. DNNs provide an ideal platform for such a 
comprehensive bark beetle forecasting system, as they are well 
suited to synthesize information from a wide variety of data 
sources (Goodfellow et al., 2016).

FIgURE 4 | Observed and predicted area disturbed by bark beetles in Experiment 2 (N = 373,817).
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Deep learning is a rapidly evolving field, and DNNs 
have high potential beyond their application in predictive 
ecology. DNNs are, for instance, promising approaches for 
unsupervised learning (Sutskever et al., 2015), i.e. finding 
previously not identified patterns in data. This is particularly 
important in the context of the advent of big data in ecology, 
as the majority of big data is unlabeled. Consequently, 
unsupervised learning approaches in which DNNs are used 
to find patterns in data are expected to gain importance in 
the future (LeCun et al., 2015). More generally, it has been 
suggested that ML approaches can be applied in all stages of 
the scientific process, from observation to hypothesis creation 
and testing, to model building and prediction (Mjolsness et al., 
2001). A deeper integration of ML in ecology could thus result 
in advances that go considerably beyond improved predictions 
(Peters et al., 2014). An increasing adoption of ML – and 
especially deep learning – can be found throughout science, 
technology and commerce, fueling the rapid development of 

methods, software, and even specialized hardware (Jordan and 
Mitchell, 2015). Given the substantial capacity of deep learning 
for ecological prediction, we maintain that adding deep 
learning to our arsenal of ecological methods could provide a 
substantial boost for quantitative ecology.
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