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Snow mold is a yield-limiting disease of wheat in the Pacific Northwest (PNW) region of 
the US, where there is prolonged snow cover. The objectives of this study were to identify 
genomic regions associated with snow mold tolerance in a diverse panel of PNW winter 
wheat lines in a genome-wide association study (GWAS) and to evaluate the usefulness of 
genomic selection (GS) for snow mold tolerance. An association mapping panel (AMP; N = 

458 lines) was planted in Mansfield and Waterville, WA in 2017 and 2018 and genotyped 
using the Illumina® 90K single nucleotide polymorphism (SNP) array. GWAS identified 
100 significant markers across 17 chromosomes, where SNPs on chromosomes 5A and 
5B coincided with major freezing tolerance and vernalization loci. Increased number of 
favorable alleles was related to improved snow mold tolerance. Independent predictions 
using the AMP as a training population (TP) to predict snow mold tolerance of breeding 
lines evaluated between 2015 and 2018 resulted in a mean accuracy of 0.36 across 
models and marker sets. Modeling nonadditive effects improved accuracy even in the 
absence of a close genetic relatedness between the TP and selection candidates. 
Selecting lines based on genomic estimated breeding values and tolerance scores 
resulted in a 24% increase in tolerance. The identified genomic regions associated with 
snow mold tolerance demonstrated the genetic complexity of this trait and the difficulty in 
selecting tolerant lines using markers. GS was validated and showed potential for use in 
PNW winter wheat for selecting on complex traits such tolerance to snow mold.

Keywords: genome-wide association study, genomic best linear unbiased prediction, genomic selection, 
reproducing kernel Hilbert space, ridge regression best linear unbiased prediction, snow mold tolerance,  
winter wheat

INTRODUCTION

Snow mold is a disease affecting wheat grown in the Pacific Northwest (PNW) region of the US, 
where plants are exposed to prolonged (>100 days) snow cover. This prolonged winter condition 
provides a favorable environment, allowing the pathogens causing the disease to grow and infect 
plants under the snow (Bruehl and Cunfer, 1971). In the state of Washington, there are four different 
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snow mold diseases, all caused by soil-borne fungi or fungal-like 
organisms: pink snow mold (Microdochium [Fusarium] nivale), 
speckled snow mold (Typhula idahoensis, T. ishikariensis, T. 
incarnata), snow scald (Myriosclerotinia borealis), and snow rot 
(Pythium iwayami and P. okanoganense) (Murray et al., 1999). 
Following snowmelt, plants with pink snow mold have a whitish 
fungal growth (that eventually turns into a salmon color; hence 
the name pink snow mold) in their leaves, whereas leaves of 
plants with speckled snow mold are covered with a whitish gray 
fungal growth (Murray et al., 1999).

Although cultural practices such as seeding date, fertilizer 
application, and residue management can be used to manage 
snow mold in wheat, breeding for disease tolerance was suggested 
as the primary method of control for snow mold (Murray et al., 
1999). There are several challenges associated with breeding 
for snow mold tolerance in winter wheat. Screening is difficult 
because snow cover is highly variable within fields with some 
areas not having enough snow cover for the disease to develop 
and other areas having drifts that cause extended snow cover 
and severe disease. The amount of snow also varies from year to 
year and, consequently, disease pressure is highly variable across 
growing seasons. Without the necessary conditions for disease 
development, it is difficult to identify tolerant lines. “Winter 
warming” has caused changes in the total PNW area covered with 
snow (Nolin and Daly, 2006), which also affects the distribution 
and severity of snow mold. Furthermore, there are a limited 
number of wheat and related species showing tolerance to the 
disease (Bruehl, 1982; Iriki et al., 2001). The use of molecular 
breeding approaches to identify tolerant lines and to better 
understand the genetic basis of the disease is therefore relevant 
for improving snow mold tolerance in current winter wheat lines.

In recent years, tools such as genome-wide association study 
(GWAS) have been used to examine the genetic architecture 
underlying important traits in wheat, such as grain yield 
(Neumann et al., 2011; Sukumaran et al., 2015; Lozada et al., 
2017), disease resistance, including spot blotch (Ayana et al., 
2018), Fusarium head blight (Arruda et al., 2016), and stripe 
rust (Naruoka et al., 2015; Liu et al., 2018), and heading date, 
plant height, and thousand grain weight (Zanke et al., 2014; 
Zanke et al., 2015; Godoy et al., 2018), among others. GWAS 
uses the concept of linkage disequilibrium, i.e., the nonrandom 
cosegregation of alleles at multiple loci, to identify significant 
marker-trait associations in natural populations (Flint-Garcia 
et al., 2003; Breseghello and Sorrells, 2006). In contrast to 
traditional biparental traditional biparental quantitative trait 
loci (QTL) mapping, GWAS has a higher mapping resolution 
due to the large number of recombination events observed in the 
diverse populations used (Zhu et al., 2008; Myles et al., 2009). 
Furthermore, GWAS allows for genetic survey of much larger 
populations and avoids the time needed for mapping population 
development (as in the case of biparental QTL analyses) 
(Neumann et al., 2011).

GWAS, nevertheless, cannot identify variants with small 
effects (Korte and Farlow, 2013), and this becomes a limitation 
as many traits are affected by multiple loci with minor effects. 
Genomic selection (GS) overcomes this limitation by using 
genome-wide marker data to predict the breeding values of 

individuals (Meuwissen et al., 2001). In contrast to association 
mapping, GS does not test for significance of markers but instead 
considers all marker information to train a model and predict 
breeding values (BV) of individuals (Jiang et al., 2015; Crossa 
et al., 2017). It assumes that the BV can be estimated purely based 
on molecular marker data (Qian et al., 2017). A model is first 
trained using a training panel (whose genotype and phenotype 
are known) and then used for prediction of BV in test population 
with marker data but no phenotypic data (Crossa et al., 2017). 
These values are ultimately used in breeding programs for the 
selection of promising genotypes (Werner et al., 2018).

Kruse et al. (2017) previously identified important QTL on 
chromosomes 5A and 6B associated with tolerance to snow 
mold in a biparental population derived from the cross between 
winter wheat varieties “Eltan” (Peterson et al., 1991) and “Finch” 
(Garland-Campbell et al., 2005). Currently, there are no known 
SNP markers associated with snow mold tolerance in PNW 
winter wheat lines identified through GWAS. The objectives of 
the current study were to i) identify genomic regions associated 
with tolerance to snow mold in a diverse panel of winter 
wheat lines adapted to the PNW and ii) evaluate the accuracy 
of GS for snow mold tolerance using breeding lines from the 
Washington State University (WSU) Winter Wheat Breeding and 
Genetics Program for independent predictions. The efficiency of 
phenotypic selection (PS), GS, and combining PS with GS was 
also evaluated for tolerance to snow mold in terms of response 
to selection.

MATERIALS AND METHODS

Plant Material
An association mapping panel (AMP) consisting of 458 
advanced soft winter wheat breeding lines adapted to the US 
Pacific Northwest (PNW) region was used for GWAS and as a 
training population (TP) for GS. This population consisted of 
club (172 lines; 37.6%) and common (286; 62.4%) wheat. The 
AMP was previously characterized for different traits including 
stripe rust resistance (Naruoka et al., 2015; Liu et al., 2018), 
eyespot resistance (Lewien et al., 2018), end-use quality traits 
(Jernigan et al., 2018), preharvest sprouting tolerance, and low 
falling number (Martinez et al., 2018). Additionally, 295 winter 
wheat breeding lines from the Washington State University 
(WSU) Winter Wheat Breeding and Genetics Program evaluated 
for snow mold tolerance between 2015 and 2018 were used as 
selection candidates (TST lines) for independent validations. 
Breeding lines range from F4:6 to F4:9 selections. Six varieties, 
“Bruehl” (Jones et al., 2001), Eltan, “Madsen” (Allan et al., 1989), 
“Masami” (Jones et al., 2006), “Stephens” (Kronstad et al., 1978), 
and “Xerpha” (Jones et al., 2010) were common to both the TP 
and TST populations.

Field Evaluation for Snow Mold Tolerance
The AMP and breeding lines were planted in Mansfield (MAN) 
and Waterville (WAT), WA for 2017-2018 (for the AMP) and 
2015-2018 seasons (for the TST lines). Tolerance to snow mold 
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was evaluated by rating the lines within a few days of snow 
melt and one month later using a 0 (completely dead, with 
abundance of snow mold) to 10 (thriving, no snow mold) scale. 
Each rating was considered a unique trait. Varieties “Eltan” 
(Peterson et al., 1991) and “Finch” (Garland-Campbell et al., 
2005) with moderate tolerance and susceptibility to snow mold, 
respectively, were included in the AMP. The TST lines were 
evaluated between 2015 and 2018, where snow mold ratings 
were taken only in WAT in 2015, and both in MAN and WAT 
for 2015-2018. In 2015, the Mansfield location had a significant 
amount of erosion caused by spring runoff, and thus snow 
mold scores were not collected at this location. Disease scoring 
commenced as soon as snow had melted from the plot location 
and it was dry enough to enter the field.

The AMP was planted in late August each year using a 
custom built deep-furrow four-row planter spaced 30 cm 
apart. Entries were planted in two of the four rows as paired 
rows, so that each plot contained two entries of the AMP, 
one in the left-side two rows and one in the right-side two 
rows. The trial was planted as an alpha-lattice design, and two 
replications were planted. In between each of the incomplete 
blocks, a plot consisting of one row of Eltan (moderately 
tolerant; Peterson et al., 1991), “Otto” (tolerant; Carter et al., 
2013), “Bruehl” (moderately tolerant; Jones et al., 2001), and 
“Puma” (susceptible, Carter et al., 2014) was planted as check 
varieties. Plots were 1.5 meter in length, each variety covered 
an area of 1 m2, planted at 100 plants per m2. PROC GLM 
in SAS v 9.4 (SAS Institute, 2016) was used to analyze the 
spatial variation among the repeating check cultivars. In both 
years and across locations, no significant differences were 
found in traits values of check cultivars spaced throughout 
the trial, indicating uniformity of snow mold infection, and 
thus no spatial adjustment was conducted on the lines within 
the AMP.

The TST lines were planted at the same time as the AMP and 
in a similar fashion, except the TST lines were planted using a 
randomized-complete block design with three replications. The 
same four row check plot was used to evaluate spatial variation 
and planted every 10th plot within the TST lines. Analysis of these 
plots within the TST lines again found no significant differences 
between checks within a given location-year, and thus no spatial 
adjustment was conducted on the TST lines.

Trait Heritability
Pearson correlations across environments were calculated using 
JMP v. 11.0.0 (JMP® SAS Institute, 2013). Broad sense heritability 
(H2) was computed by considering genotype, environment, and 
genotype by environment as random effects and estimating their 
variance components through PROC mixed in SAS v 9.4 using 

the formula H G
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2  are variances due to genotype, genotype-by- environment, 

and error, respectively; e and r are the number of environments 
and replications, respectively.

SNP Marker Genotyping, Genetic 
Diversity, and Genome-Wide Association 
Analyses
The AMP was genotyped using the Illumina 90K SNP assays 
(Wang et  al., 2014) at the USDA-ARS Northern Genotyping 
Laboratory, Fargo, ND. Allele calling and curation was done using 
GenomeStudio® v. 2011.1 (Illumina, United States). The SNP marker 
information has been deposited in the GrainGenes Database, 
reference PBJ-12-787. After filtering for SNPs with minor allele 
frequency (MAF) > 0.05 and removing markers with >20% missing 
data, 15,229 high-quality SNPs remained for GWAS, of which 
12,681 SNPs (83.3%) have been mapped across all chromosomes. 
SNP positions (in cM) were based on the consensus genetic linkage 
map for hexaploid wheat reported by Wang et al. (2014).

Genetic diversity was evaluated by calculating Rogers 
distances and population differentiation coefficients (Fst) using 
SNP marker data. Population structure within the AMP and 
breeding lines was assessed using principal components analysis 
(PCA), where the second principal component (PC2) was plotted 
against PC1. All analyses were performed in JMP Genomics v 8.1 
(JMP® SAS Institute, 2013).

Association mapping was conducted using the Fixed and 
Random Model Circulating Probability Unification (FarmCPU) 
package (Liu et al., 2016) implemented in R, where PCs calculated 
using GAPIT (Lipka et al., 2012) were fitted in the model as fixed 
effect. Four different GWAS models were tested based on the 
presence of different number of PCs- PC0, PC1, PC2, and PC3, 
corresponding to the inclusion of 0, 1, 2, and 3 PCs, respectively. 
Significant associations were based on a Benjamini-Hochberg 
false discovery rate (FDR; Benjamini and Hochberg, 1995) of 0.05. 
Phenotypic variation explained by each SNP was calculated by 
fitting genotype and trait data on a stepwise regression model and 
calculating the difference between the effects when all significant 
markers are present and when an SNP is removed from the model 
in JMP v. 11.0.0. A significant SNP was considered stable when it 
was identified in at least two environments and/or GWAS models. 
Best linear unbiased prediction (BLUP) values for each of the lines 
were calculated by combining individual locations across years 
using restricted maximum estimate likelihood (REML) method 
in JMP v. 11.0.0, where genotype, environment, and genotype by 
environment interactions were considered random effects. These 
resulted in a total of seven BLUP datasets used for association 
mapping. GWAS models were compared by examining the 
deviations observed in quantile-quantile (QQ) plots; the model 
with the least number of deviations observed was regarded as the 
most reliable in identifying marker-trait associations.

To test the effect of pyramiding favorable alleles on snow 
mold tolerance, BLUP scores were plotted against increasing 
numbers of favorable alleles for the 10 most significant SNPs 
identified through GWAS. Correlation coefficient between 
BLUP and the number of favorable alleles was calculated in JMP 
v. 11.0.0 Association of snow mold tolerance with haplotypes of 
significant SNPs was determined using the PROC HAPLOTYPE 
procedure in SAS v 9.4, whereas linkage disequilibrium (LD) 
between marker pairs was evaluated using JMP Genomics 
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v.8.1. Significant marker pairs in the same chromosome were 
considered in LD at P < 0.05.

Genomic Selection
Accuracy of GS for tolerance to snow mold was evaluated by 
performing independent predictions using the AMP as TP, 
and WSU winter wheat breeding lines evaluated between 2015 
and 2018 as test populations (TST2015, TST2016, TST2017, and 
TST2018). The AMP and the breeding lines were genotyped 
using genotyping by sequencing (GBS) following a PstI-MspI 
restriction enzyme double digest (Poland et al., 2012). After 
filtering for markers with MAF > 0.05 and quality control, 
16,233 SNP markers common to both TP and validation sets 
remained for analyses. To test the effect of marker number on 
the accuracy of GS, two other marker sets (MS) in addition 
to the whole genotype marker data (MS1) were used for 
predictions: a set consisting of significant markers (P < 0.05) 
identified through GWAS (MS2) using only the training set 
(AMP) to prevent “inside trading” effects, observed previously 
to cause overestimated accuracies (Arruda et al., 2016); and a 
set of LD-tag selected SNPs (MS3), derived from a grouping 
algorithm developed by Carlson et al. (2004) implemented in 
JMP Genomics v. 8.1.

GS was conducted using three different models: Ridge 
regression best linear unbiased prediction (RRBLUP) through 
the package “rrBLUP” (Endelman, 2011), Genomic best linear 
unbiased predictions (GBLUP), and Reproducing Kernel 
Hilbert Spaces (RKHS), through the Bayesian generalized linear 
regression (BGLR) package (Pérez and de los Campos, 2014). 
GBLUP and RKHS models were fitted using 12,000 iterations and 
2,000 burn-ins. All GS models were implemented in R statistical 
software (R Development Core Team, 2018).

The basic model for RRBLUP is y = WGu + ε, where u 
represents the vector of marker effects, G is genotype matrix 
under an additive model, and W is a design matrix relating 
lines to phenotypes (observations) (Endelman, 2011). RRBLUP 
shrinks marker effects toward zero and assumes that markers 
have equal variances (Heffner et al., 2011). GBLUP, on the other 
hand, uses a genomic relationship matrix derived from markers 
to calculate an individual’s genetic merit (Clark and van der 
Werf, 2013). The model for GBLUP is in the form y = Xb + Zg 
+ e, where y is a vector of phenotypes, X is a design matrix of 
fixed effects, b is a vector of fixed effects, Z is design matrix of 
genetic values, g is a vector of additive genetic effects, and e is a 
vector of random effects (Clark and van der Werf, 2013).

RRBLUP and GBLUP are mathematically equivalent (Habier 
et al., 2007) but are still considered to be different approaches for 
estimating GEBV. RRBLUP estimates marker effects using linear 
and penalized parameters, whereas GBLUP does not depend on 
marker effect estimation for calculating breeding values (Tan 
et al., 2017). Bayesian RKHS models can be represented as y = 
1µ + u + ε with p(µ, u, ε)} N (u|0,Kσ2

u)N(ε|0,Iσ2
ε), where µ is the 

intercept, u is vector of random effects, ε is a vector of residuals, 
σ2

ε is residual variance, and K is a Kernel matrix calculated as the 
squared-Euclidian distance between genotypes (Pérez and de los 
Campos, 2014).

Comparison Between Genomic Estimated 
Breeding Values and Tolerance Scores
To examine the relationship of breeding values with snow mold 
tolerance scores for lines advanced in the following year, GEBV 
of lines from a single year was compared to their mean tolerance 
scores observed in the succeeding year (i.e., 2015 GEBV compared 
to 2016 snow mold tolerance (SMT) scores; 2016 GEBV to 2017 
SMT; and 2017 GEBV to 2018 SMT). A ridge regression model 
(RRBLUP) through the “iPat” package (Chen and Zhang, 2018) was 
trained using whole genotype data (16,233 SNPs), and the AMP as 
the TP where BLUP for all environments and BLUP for Mansfield 
(MAN) and Waterville (WAT) site-years were used to calculate 
GEBV of each line belonging to the TST set of the previous year. 
Lines were ranked according to their GEBV and mean SMT scores. 
Scores of the top 50% selected based on BV and actual tolerance 
ratings were considered in comparing three different selection 
strategies-phenotypic selection (PS; lines selected based on SMT 
scores alone), GS (lines selected based on GEBV alone), and a 
combination of phenotypic and genomic selection (PS+GS; lines 
selected based on GEBV and SMT). Response to selection (R) was 
calculated using the formula R = H2S (Falconer and Mackay, 1996), 
where H2 is the heritability value for snow mold for the year when 
GS model was trained; and S is the selection differential, calculated 
as S = µpop (with selection) - µpop (without selection).

RESULTS

Snow Mold Tolerance Across 
Environments
Heritability (H2) values for snow mold tolerance varied across 
years and populations, ranging between 0.53 (2016) and 0.76 

TABLE 1 | Heritability and mean snow mold tolerance scores for Pacific Northwest (PNW) winter wheat association mapping panel (AMP) and breeding lines 
evaluated between 2015 and 2018.

Population No. of environments No. of individuals H2a Mean ratingb Standard deviation Range

AMP 4 458 0.69 2.64 1.76 0-8
TST2015 2 77 0.76 4.81 2.56 0-8
TST2016 3 110 0.53 4.86 1.44 0-8
TST2017 3 68 0.56 4.39 1.61 0-8
TST2018 3 40 0.75 2.41 1.70 0-7

aBroad-sense heritability; bSnow mold scores were taken by rating lines within a few days of snow melt and one month later using a 0 (completely dead, with abundance of snow 
mold) to 10 (thriving, no snow mold) scale.
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(2015) (Table 1). H2 for tolerance to snow mold was 0.69 for the 
AMP. All environments for the AMP were significantly correlated, 
except for WAT17_1 and WAT18_1 (Figure 1). PCA  showed 
clustering based on growing season (Supplementary Figures 1A, B), 
where PC1 caused 40.0 and 34.3% of variation for the AMP and 
the breeding lines, respectively. Disease pressure was greatest in 
2017 (mean = 4.3) and 2018 (mean rating = 2.3) for the breeding 
lines. These ratings were slightly greater than the 2017 and 2018 
mean snow mold scores for the AMP (3.8 and 1.5, respectively), 
indicating more general tolerance in the breeding lines than in 
the AMP. Mean scores for 2018 were significantly smaller (P < 
0.0001) compared with the other years for both the AMP and the 
breeding lines, indicating that this year had the most favorable 
conditions for snow mold development. The tolerant variety Eltan 
had a mean disease rating of 3.6, whereas the susceptible variety 
“Finch” had a mean tolerance score of 2.6 across years.

Population Structure and Linkage 
Disequilibrium
Previous PCA using Illumina 90K SNP marker data for the 
AMP showed distinct population stratification based on 

head-types (lax vs. club) (Jernigan et al., 2018). The reported 
Fst value of 0.31 (Jernigan et al., 2018) supported the genetic 
differentiation between the market subclasses of wheat in the 
AMP. In the present study, PCA using 16,233 GBS markers 
confirmed this genetic structure for the AMP, although some 
overlaps within clusters of common and club wheat were still 
observed (Figure 2A). Genetic (Rogers) distance between the 
common and the club wheat for the AMP was 0.04, indicating 
a close relationship between the subclasses, and thus overlaps 
were expected. PC1 explained 11.6% of the phenotypic 
variation, whereas the PC2 explained 7.3% of the variation. 
Rogers distances of the breeding lines with the AMP ranged 
between 0.30 (TST2017 and TST2018) and 0.31 (TST2015 
and TST2016), whereas Fst coefficients were 0.23 (TST2016, 
TST2017, TST2018) and 0.24 (TST2015). PCA using GBS 
markers within the breeding lines described 10.9% and 8.1% 
of the variation caused by PC1 and PC2, respectively. Lines 
common to both the TP and TST sets formed a second cluster 
in the PC plot (Figure 2B). Prior analyses revealed a rapid LD 
decay over distance for this panel (estimated to be at ~5 cM; 
Jernigan et al., 2018).

FIGURE 1 | Phenotypic correlations for snow mold tolerance scores in Mansfield (MAN) and Waterville (WAT), WA in 2017 and 2018 for the association mapping 
panel (AMP). 1 and 2 indicate snow mold tolerance scores within a few days of snow melt and a month after snow melt, respectively. ***- significant at P < 0.0001; 
**- significant at P < 0.001; *-significant at P < 0.05; NS, Not significant.
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Significant Marker-Trait 
Associations Identified
Based on GWAS, 100 significant markers (FDR = 0.05) were 
identified and distributed on 17 of 21 chromosomes (excluding 
1D, 2D, 4D, and 6D), with percent of trait variation explained 
(PVE) ranging from 0.01 to 11.6% (Supplementary Table 1). 
Figure 3 shows some of these significant SNPs for snow mold 

tolerance identified using BLUPs for all environments with the 
first three principal components included in the model (PC3) 
or without PC included in the GWAS model (PC0). Significant 
SNPs with unknown chromosomal positions totaled to 10, with 
PVE ranging between 0.07 and 5.70%. There were less deviations 
observed in the QQ plots when PCs were fitted as fixed effect 
in the GWAS models. Using only the first PC (PC1) for GWAS 

FIGURE 2 | PCA plots of the first two principal components (PC) for the (A) US Pacific Northwest association mapping panel and (B) breeding lines using 16,233 
GBS-derived SNP markers.

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org


Snow Mold Tolerance in WheatLozada et al.

7 October 2019 | Volume 10 | Article 1337Frontiers in Plant Science | www.frontiersin.org

had the least deviations in the QQ plots in identifying significant 
associations in three (MAN, MAN17, and WAT18) out of seven 
environments used for GWAS.

Chromosome 5A had the greatest number of significant 
marker-trait associations (14), followed by 1B (9), 3B (9), and 
1A (8) (Supplementary Table 1). The significant SNPs in 5A 
explained 0.10–11.6% of phenotypic variation, with additive 
effect ranging between −0.18 and 0.23, whereas the 1B SNPs were 
responsible for 0.01–8.4% of variation for snow mold tolerance 
(additive effect = −0.28–0.26). There were 114 intrachromosomal 
marker pairs in significant LD (P < 0.05) across all chromosomes 
and GWAS models. On chromosome 5A alone, there were 44 
marker pairs (mean distance = 3.2 cM) in significant LD with an 
average r2 of 0.12. Large haplotype blocks of significant markers 
in LD were observed on chromosomes 1A, 3A, 3B, 5A, and 5B. 
Significant SNPs on chromosomes 5A, 5D, and 7A were all in 
LD with at least one marker in the same chromosome. A total 
of 31 SNPs distributed on 15 chromosomes were considered 
stable (i.e., identified in at least two environments and/or GWAS 
model). Out of this number, five loci, IWB36501 (3B), IWB3779 
(3B), IWB65663 (5A), IWB14635 (5B), and IWB59690 (5B), were 
identified across all GWAS models used and responsible for 0.02–
8.4% of phenotypic variation (Table 2). An unmapped locus, 
IWB66039 (R2 = 1.5-2.03%) was detected in two environments. 
GWAS using the GBS-derived SNPs also identified significant 
associations with tolerance to snow mold in similar chromosomes 
(data not shown).

Effect of Combining Favorable Alleles on 
Snow Mold Tolerance
To evaluate the cumulative effects of combining favorable alleles 
on snow mold tolerance in the AMP, BLUP values across all 
environments were regressed against the number of favorable 
alleles (ranged between 1 and 9) for 10 of the most significant 
SNPs associated with disease. These 10 SNPs (P value = 8.62E-11 

to 2.73E-08) were distributed across eight chromosomes and 
responsible for 0.03–8.4% of phenotypic variation. Significant 
(P  < 0.0001) differences among the groups having different 
numbers of favorable alleles were observed. Overall, a greater 
number of alleles with positive effects resulted in improved 
tolerance to snow mold (Figure 4; Supplementary Table 2). 
Mean comparisons among different groups having only allele 
differences at a single locus showed the same level of tolerance 
(e.g., mean tolerance of lines with eight favorable alleles vs. 
tolerance of lines having nine). Four lines, namely, “J90055-4”, 
“J90057-1”, “J970057-5”, and “WA8092”, contained nine favorable 
alleles (mean BLUP of 0.90), whereas 13 lines carried only a single 
favorable allele (mean BLUP of -0.49). The tolerant variety Eltan 
(BLUP = 0.76) had eight favorable alleles, whereas the susceptible 
variety Finch (BLUP = -0.01) had four. BLUP scores across all 
environments followed a normal distribution (Figure 4, inset).

Independent Validations Using Winter 
Wheat Breeding Lines
Mean accuracy across all GS models, marker sets (MS), and TST 
populations was 0.36 (Table 3; Supplementary Table 3). There 
were no significant differences in predicting the breeding lines 
across years, and mean accuracy ranged between 0.29 (TST2018) 
and 0.41 (TST2015). Likewise, using different MS yielded similar 
mean accuracies: 0.39 for whole genotype data (MS1) and LD-tag 
SNPs (MS3) and 0.29 for significant SNPs (MS2). Mean accuracy 
for RKHS (0.84) was highest among the prediction models, 
whereas GBLUP and RRBLUP resulted to similar accuracies 
(0.11). Using BLUP for all environments for the TP to predict 
tolerance in individual locations for the TST lines did not show 
advantage over using only single environments for predictions. 
No significant differences were observed for predictions within 
the same environments, compared to across locations for 
different years.

FIGURE 3 | Manhattan plot showing genome-wide SNPs associated with tolerance to snow mold in Pacific Northwest winter wheat lines, BLUP for all 
environments; (A) no PC (PC0) and (B) using the first three PCs (PC3) in the GWAS model. Horizonal lines represent threshold for significance under a False 
Discovery Rate (FDR) of 0.05.
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TABLE 2 | Single nucleotide polymorphism (SNP) markers associated with tolerance to snow mold across different models and/or environments in an association 
mapping panel of Pacific Northwest winter wheat lines.

SNP ID SNP Name Chromosome Allele Position 
(cM)

Minor allele 
frequency

Modela Environment P-value Allele effect R2 b

IWB36501 Jagger_c2707_152 3B A/Gc 65.71 0.10 PC0 MAN18 1.046E-08 0.25 0.07
PC1 MAN18 2.587E-08 0.24 0.06
PC2 MAN18 1.622E-07 0.20 0.03
PC3 MAN18 2.715E-06 0.18 0.08

IWB3779 BobWhite_
c5276_631

3B A/G 122.52 0.45 PC0 WAT17 4.216E-10 0.25 0.05

PC1 WAT17 2.305E-10 0.26 0.05
PC2 WAT17 1.377E-07 0.21 0.04
PC3 WAT17 6.211E-07 0.21 0.00

IWB65663 TA003225_1427 5A T/C 45.08 0.07 PC0 WAT 6.822E-06 0.16 0.05
PC1 ALL 1.428E-06 0.16 0.04
PC3 WAT18 5.246E-06 0.23 0.05

IWB14635 CAP8_c2687_128 5B A/G 104.23 0.10 PC0 ALL 1.664E-06 0.16 0.04
PC1 ALL 2.436E-06 0.17 0.04
PC2 ALL 3.471E-06 0.15 0.00
PC3 WAT 5.428E-07 0.18 0.00

IWB59690 RAC875_
c62460_650

5B A/C 188.58 0.14 PC0 MAN17 6.499E-06 0.22 0.06

PC1 MAN17 1.574E-07 0.25 0.05
PC2 MAN 4.308E-06 0.12 0.01
PC3 MAN17 1.843E-08 0.30 0.05
PC3 MAN 7.98E-10 0.16 0.01

aNumber indicates the number of PC included in the GWAS model; bPhenotypic variation explained by the SNP; cUnderlined allele is the minor allele; bold allele is 
the tolerant allele.

FIGURE 4 | Effect of pyramiding favorable alleles for the 10 most significant SNP markers associated with tolerance to snow mold for the association mapping 
panel (AMP). Distribution of snow mold tolerance BLUP scores across all environments, AMP (inset).
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TABLE 3 | Accuracy of genomic selection for tolerance to snow mold across different models and marker sets (MS) using a Pacific Northwest association mapping 
panel (N = 458) as training set. 

Population Genetic 
distancea

GBLUP RRBLUP RKHS

MS1b MS2 MS3 MS1 MS2 MS3 MS1 MS2 MS3

TST2015 0.31 0.21 (0.006) 0.22 (0.007) 0.19 (0.02) 0.22 (0.004) 0.22 (0.005) 0.18 (0.02) 0.87 (0.002) 0.87 (0.001) 0.75 (0.001)
TST2016 0.31 0.07 (0.08) 0.10 (0.11) 0.09 (0.08) 0.2 (0.11) 0.16 (0.10) 0.13 (0.04) 0.83 (0.03) 0.83 (0.03) 0.69 (0.04)
TST2017 0.30 0.21 (0.08) 0.18 (0.07) 0.004 (0.06) 0.19 (0.07) 0.18 (0.06) 0.006 (0.07) 0.90 (0.02) 0.90 (0.02) 0.81 (0.03)
TST2018 0.30 0.08 (0.04) 0.04 (0.07) -0.09 (0.07) 0.006 (0.07) 0.03 (0.08) -0.17 (0.06) 0.92 (0.03) 0.92 (0.03) 0.84 (0.04)

Standard deviations are in parentheses. aRogers distance with the panel; bMS1- whole genotype data; MS2- significant (P < 0.05) SNPs identified from GWAS; MS3- LD-tag derived 
SNP markers.

FIGURE 5 | Correlation between breeding values of lines evaluated in a year and the mean snow mold tolerance (SMT) score observed for the following 
year. Datasets used to train the GS model are BLUP values for Mansfield and Waterville site-years (ALL), BLUP for Mansfield (MAN), and BLUP for Waterville 
(WAT) environments.

TABLE 4 | Response to selection (R) for phenotypic, genomic, and phenotypic + genomic selection strategies for tolerance to snow mold.

Dataseta Selection 
method

2015-2016 Selection 
differentialb

Response 
to 

selection

2016-2017 Selection 
differential

Response 
to 

selection

2017-2018 Selection 
differential

Response 
to 

selection

ALL Phenotypic 
selection (PS)

5.38 0.66 0.50 5.25 0.67 0.36 3.87 0.83 0.56

Genomic 
selection (GS)

4.77 0.05 0.04 4.51 -0.07 -0.04 3.06 0.02 0.01

PS+GS 5.35 0.63 0.48 5.0 0.42 0.22 3.92 0.88 0.60
Population 
meanc 

4.72 4.58 3.04

Heritability, H2d 0.76 0.53 0.56
MAN PS 5.38 0.66 0.50 5.25 0.67 0.36 3.87 0.83 0.46

GS 4.94 0.21 0.16 4.59 0.01 0.01 3.08 0.04 0.02
PS+GS 5.65 0.93 0.71 5.13 0.55 0.29 3.75 0.71 0.40
Population mean 4.72 4.58 3.04
H2 0.76 0.53 0.56

WAT PS 5.38 0.66 0.50 5.25 0.67 0.36 3.87 0.83 0.56
GS 4.99 0.27 0.21 4.57 -0.01 -0.005 3.01 -0.03 -0.02
PS+GS 5.38 0.66 0.50 5.07 0.49 0.26 3.81 0.77 0.43
Population mean 4.72 4.58 3.04
H2 0.76 0.53 0.56

aPhenotypic dataset used to train the association mapping panel for calculation of breeding values; equal to BLUP for Mansfield and Waterville (ALL); and BLUP for Mansfield (MAN), 
and Waterville (WAT) site-years; bCalculated as Selection differential, S = µpop (with selection) - µpop (without selection); cMean of the population without selection; dBroad-sense heritability for snow 
mold for the year when the GS model was trained.
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Correlation Between Genomic Estimated 
Breeding Values and Snow Mold Scores 
and Response to Selection
Correlation between GEBV calculated on a given year and 
snow mold ratings in the following year was low to moderate, 
ranging between 0.12 (2016–2017; BLUP for WAT) and 0.43 
(2015–2016; BLUP for MAN) (Figure 5). Significant differences 
(P < 0.05) among mean correlations for each pair of years was 
observed, where 2015–2016 had the greatest correlations (mean 
of 0.40). In general, response to selection (R) was highest for 
PS across datasets, except for when PS+GS was used to select 
lines in 2016–2017 and 2017–2018 using BLUP values for all 
environments and BLUP for MAN as TP data, respectively 
(Table 4). Combining  phenotyping with GS in these scenarios 
resulted in a 7 and 40% advantage in terms of R, compared to 
using PS alone. Among selection strategies, GS had the lowest 
values for response, with negative R in three datasets: BLUP for 
all environments (−0.04); BLUP for WAT site-years (−0.005) for 
2015–2016; and BLUP for WAT site-years (−0.02) for 2017–2018. 
Applying a GS strategy, on average, resulted to a 0.05 increase 
in snow mold tolerance scores, whereas using PS+GS led to an 
increase of 0.59, on average, across datasets. Varieties Bruehl and 
Eltan consistently showed high BV and snow mold scores across 
different years.

DISCUSSION

The current study identified genomic regions associated with 
tolerance to snow mold in a diverse population of PNW winter 
wheat lines through a GWAS approach. Additionally, GS was 
implemented through independent validations using this diverse 
panel to predict snow mold tolerance of WSU winter wheat 
breeding lines. Accuracies across different prediction models and 
marker sets were evaluated. Lastly, response to selection among 
different selection strategies was compared.

Genomic Regions Associated With Snow 
Mold Tolerance Coincided With Major 
Freezing Tolerance and Vernalization Loci
In agreement with the first objective of this study, we detected 
SNP markers associated with snow mold tolerance in PNW 
winter wheat. A total of 14 significant snow mold tolerance 
markers identified in this study were on chromosome 5A. 
This region represents a large haplotype block covering an 
~88 cM distance. Analyses further revealed significant (P 
< 0.0001) associations of these haplotypes in 5A with snow 
mold tolerance, although no stable, large effect (R2 > 10%) loci 
were identified in GWAS. Significant SNPs on chromosome 
5A co-localized with QTLSelt.wpg-5A.I (R2 = 47%) and Fr-A2 
(R2 = 49%) previously identified to be associated with snow 
mold and freezing tolerance, respectively, in an Eltan x Finch 
biparental mapping population (Kruse et al., 2017). Based on 
a consensus map by Wang et al. (2014), the flanking marker 
Xiwb53912 (59.28 cM) of these QTL regions is located near 

IWB23857 (64.21 cM), identified to be associated with snow 
mold tolerance in this study. Two other significant markers, 
namely, IWB76844 and IWB25201, on 5A coincided with 
the major vernalization gene Vrn-A1. Significant SNPs on 
chromosome 5B formed a large haplotype block covering a 
~150 cM distance, near Fr-B1 (Tóth et al., 2003) and Vrn-B1, 
although no significant association between these haplotypes 
and snow mold tolerance was observed in the current study.

Our results and those of a previous study (Kruse et al., 
2017) showed that loci affecting both snow mold and freezing 
tolerance are in similar genomic regions, indicating potential 
pleiotropic effects or tight linkage. Tolerance to cold might 
result from a more effective fungal resistance mechanism due 
to pleiotropy, as reduced cold damage may result in heathier 
plants that can resist fungal infections (Kruse et al., 2017). Lines 
from the AMP observed to have high tolerance to snow mold 
also possessed cold tolerance alleles on three C-repeat binding 
factor (CBF) loci (S Carle, unpublished data), suggesting that 
selecting lines that can survive cold temperatures could also 
result in selection for lines with snow mold tolerance. Major 
low-temperature tolerance QTL were previously identified 
in chromosome 5A (Båga et al., 2007; Case et al., 2014) and 
5B (Zhao et al., 2013) near known freezing tolerance and 
vernalization genes, showing the relevance of these loci in 
winter survival, as well as tolerance to fungal diseases related 
with low temperature conditions.

Snow mold tolerance markers other than those related 
with major cold tolerance and vernalization genes were 
identified on chromosomes 4B and 6B, similar to results 
previously reported via biparental mapping in winter wheat 
(Kruse et al., 2017). SNP IWB12434 (4B; 74.62 cM) co-located 
with IWA3240 (65.28 cM) and IWA908 (79.01 cM), markers 
flanking the freezing tolerance QTL, QFfin.wpg-4B, whereas 
significant SNPs in 6B, namely, IWB33837 (73.41 cM) and 
IWB33838 (116.24 cM) were mapped near the QSfin.wpg-6B 
locus (flanked by IWB7981; 93.50 cM) associated with snow 
mold tolerance (Kruse et al., 2017). Overall, our results 
demonstrated the potential of GWAS as a complementary 
mapping tool in dissecting genomic regions for tolerance to 
snow mold. SNP markers on chromosomes other than 4B, 
5A, and 6B identified here have not been reported elsewhere, 
and hence represent novel SNP markers affecting snow mold 
tolerance in PNW winter wheat.

Combining Favorable Alleles From 
Significant Loci Is Related to Improved 
Snow Mold Tolerance
Regression analyses showed the direct relationship between 
increasing number of favorable alleles and increased 
snow mold tolerance demonstrating an additive response. 
Previously, pyramiding favorable alleles was observed to 
increase resistance for stripe rust (Naruoka et al., 2015) and 
eyespot disease (Lewien et al., 2018) for the same population 
of US PNW winter wheat lines. Lines differing at a single 
locus (e.g., lines with eight favorable alleles vs. lines having 
nine) had similar levels of tolerance, suggesting that additive 
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effects for these alleles might not be enough for significant 
differences to occur. Moreover, it was observed that some 
lines having negative BLUP scores for tolerance have as many 
as seven or eight favorable alleles, further demonstrating the 
genetic complexity of snow mold tolerance. Likewise, Emebiri 
et al. (2017) observed that some wheat lines having alleles 
for Sunn pest (Eurygaster integriceps Puton) resistance were 
phenotypically susceptible to the disease, indicating weak 
genotype-phenotype associations. The absence of strong 
associations between alleles and phenotypes could be a 
consequence of different evolutionary processes and the large 
number of generations in plant breeding (Ellis et al., 2007). It 
also could be the effect of multiple pathways within the plant 
contributing to tolerance to snow mold (like the demonstrated 
association with cold tolerance). The lack of stable, large-
effect loci could limit the efficient implementation of marker-
assisted selection (MAS) for snow mold tolerance, and, 
hence, GS is seen as a good complement to GWAS. Lines 
having favorable alleles for the significant loci identified here 
represent novel sources of tolerance in PNW winter wheat 
lines.

Relatedness Is a Key Player in Genomic 
Selection for Snow Mold Tolerance
The fact that snow mold is affected by many loci with small 
effects, as revealed through GWAS, makes it an ideal trait for 
genomic selection. GS is an alternative solution for dissecting 
genetic architecture of complex traits due to the limitation of 
MAS in identifying small effect loci (Mirdita et al., 2015). In 
this study, a diverse population of winter wheat lines was used 
as the training panel to predict snow mold tolerance in WSU 
winter wheat breeding lines evaluated between 2015 and 2018. 
Accuracy values were assessed across different marker sets 
(whole genotype data, significant markers, and LD-tag SNPs) 
and models (RRBLUP, GBLUP, and RKHS).

High relatedness between TP and validation sets has been 
associated with increased GS accuracies (Asoro et al., 2011; 
Lorenz and Smith, 2015), whereas a lack thereof between 
populations resulted in decreased accuracies (Charmet et al., 
2014). Limited genetic relatedness between the training and 
test lines reveals that the extent of LD is shorter and unstable 
across individuals in the population (Tan et al., 2017). RRBLUP 
relies mainly on the strength of LD between markers and QTL, 
where an increase in marker-QTL LD is expected to improve 
predictions (Lorenz and Nice, 2017). In our case, as there is no 
strong marker-QTL LD observed due to low relatedness between 
TP and validation sets, the implementation of the RRBLUP 
model for GS resulted in inter-year prediction accuracies close 
to zero. RRBLUP also performed poorly compared with its 
Bayesian counterparts in predicting flowering time and grain 
number using unrelated double haploid populations of wheat 
(Thavamanikumar et al., 2015). Similarly, the GBLUP model, 
which depends mainly on the genomic relationships between 
the training and selection set (Lorenz and Nice, 2017), had 
low accuracies, most likely also a consequence of the genetic 
relationships between the training and test populations. Low 

relatedness between the TP and selection candidates further 
suggests the presence of opposite linkage phases between 
markers and QTL (Haile et al., 2018), which negatively affects 
the accuracy of predictions.

The use of lower marker density panels presents a cost-
efficient alternative to using whole genotype data for GS. 
In this study, however, implementing LD-tag SNPs and 
GWAS-derived markers did not lead to a significant decrease 
in prediction accuracy, where, in most scenarios, using 
these subsets typically caused a reduction in accuracies. 
Likewise, Juliana et al. (2018) observed loss in accuracy 
when marker subsets were used for predicting yield across 
unrelated CIMMYT elite yield trial nurseries. Without a close 
relatedness between the training and test candidates, it has 
been shown that higher marker numbers are needed for more 
accurate predictions in both empirical and simulation studies 
(Hickey et al., 2014; Norman et al., 2018). More markers are 
also required in a breeding scenario where older lines are used 
to predict newer germplasm (Rutkoski et al., 2017), as in our 
case, where the AMP was used to predict snow mold tolerance 
of WSU winter wheat breeding lines. In spring wheat, Muleta 
et al. (2017) observed that using all available SNP markers 
was necessary to reach the highest attainable accuracy for 
predicting stripe rust resistance in a diversity panel. The rapid 
decay of LD in the TP used (Jernigan et al., 2018) further 
demonstrates that more markers are necessary for achieving 
accurate predictions. A greater number of markers are needed 
to train a model for GS when LD decays rapidly (Poland and 
Rutkoski, 2016). Conversely, when LD decay is slow for a 
population, implementing a subset of SNPs for GS was enough 
to achieve similar accuracies with that of a full set of markers 
(Cericola et al., 2017). Removing SNPs potentially decreased 
the number of marker-QTL in LD captured, leading to lower 
accuracies. Our results support the relevance of genetic 
relatedness between training and validation populations 
in achieving more accurate predictions, particularly  for 
GS models that rely on LD between QTL and markers for 
predictions.

Modeling Nonadditive Effects Improved 
Prediction Accuracy in the Absence of 
Close Relatedness Between Training and 
Validation Populations
Previous studies in wheat focused on cross-validations (Heffner 
et al., 2011; Heslot et al., 2012), where a single population 
is partitioned into training and testing sets. More recently, 
independent validations that use different populations as training 
and validation sets were implemented in wheat (Thavamanikumar 
et al., 2015; Haile et al., 2018). The potential of independent 
predictions for snow mold tolerance was demonstrated across 
different models and marker sets used, even without a close 
relationship between the training panel and validation sets.

Although there was no close relatedness between the 
training and test populations based on genetic (Rogers) 
distances, we observed that modeling nonadditive effects can 
lead to improved predictions. RKHS model showed superiority 
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compared to GBLUP and RRBLUP for all marker and datasets 
used. Our results were consistent with previous reports in 
wheat when RKHS model was used for predicting grain yield 
(He et al., 2016; Huang et al., 2016; Song et al., 2017), and 
Fusarium head blight and Septoria tritici blotch (Mirdita et 
al., 2015). When there were no lines common to both TP 
and validation sets, there was an increase in accuracy using 
RKHS (data not shown), which also suggests that this model 
is not affected by changes in population composition and 
relatedness. Nonparametric or semiparametric approaches 
such as RKHS are built to model complex and nonexplicit 
interactions, thereby maximizing predictive ability (Varona 
et al., 2018). In accordance with our findings, the use of GS 
models that can capture nonadditive genetic effects to achieve 
increased accuracies is thus recommended when evaluating 
populations with low genetic relationships.

Complementing Traditional Phenotyping 
With Genomic Selection Shows Potential 
for Increasing Tolerance to Snow Mold in 
PNW Winter Wheat
Being the baseline method, PS was expected to have the 
greatest response to selection (R); nevertheless, we observed 
the potential for selecting lines with improved tolerance to 
snow mold by combining PS with GS, showing a maximum of 
40% merit in R for the 2016 selections (0.71 for PS+GS vs. 0.50 
for PS alone). Recently, Belamkar et al. (2018) observed that 
using both GEBV and phenotype data in preliminary yield 
trials increased opportunity to select better yielding lines 
across environments and years in comparison to those selected 
based on phenotype alone in a single year. Likewise, it has been 
shown that merging GS data based from multienvironment 
trials with PS in preliminary trials resulted to a much better 
performance in predicting yield than using either method 
alone (Michel et  al., 2017). Line selection based exclusively 
on GEBV for snow mold tolerance had a disadvantage, as 
some lines with high GEBV on one year might not necessarily 
have high tolerance scores the following year. This was 
demonstrated by negative R values and the low correlations 
between GEBV and tolerance scores observed in some of the 
datasets evaluated. Therefore, caution is still warranted when 
relying on GEBV alone for selection decisions.

Increasing prediction accuracies by using a training set 
that fully captures genetic relatedness with the validation 
populations, choosing the appropriate GS model, and the 
number of markers for predictions in the presence/absence 
of marker-QTL LD, would make selections via GEBV more 
reliable. Regardless, it is still possible to increase tolerance 
by selecting superior lines based on breeding values alone 
despite having low to moderate correlations between GEBV 
and disease scores across years. In maize, the feasibility of a 
breeding program based on GS that resulted in greater genetic 
gain per year has been previously demonstrated under low 
to moderate prediction accuracies (Heffner et al., 2010). This 
further shows that prediction accuracies obtained are not a 

true measure of the success of implementing GS strategies in 
breeding programs (Belamkar et al., 2018) but more so how 
effectively GEBV can be used for selection decisions (Juliana 
et  al., 2018). Overall, breeders should consider using both 
GEBV and phenotypic information when evaluating important 
disease-related traits, in choosing which lines to advance or in 
selecting parental lines for the breeding program.

CONCLUSIONS

A genome-wide association study identified SNP markers 
associated with tolerance to snow mold in a diverse population 
of PNW winter wheat. Significant SNPs co-localized with QTL 
for freezing tolerance and vernalization genes demonstrate 
possible pleiotropic effects for low temperature and snow mold 
tolerance. A direct relationship between the number of positive 
alleles for significant loci and snow mold tolerance was observed. 
Implementing GS using independent sets of samples as validation 
populations showed the potential for improving tolerance to 
snow mold. Combining GS with phenotypic selection showed 
the possibility of increasing genetic gains by selecting lines with 
improved tolerance based on breeding values and actual snow mold 
ratings. Relatedness between the training and validation panels 
is important for achieving accurate predictions, and modeling 
nonadditive effects improved accuracies in the absence of close 
genetic relationships between populations. Altogether, results from 
GWAS and GS demonstrated the complex genetic architecture of 
tolerance to the disease. To the best of our knowledge, this is the 
first major study on the genetic dissection of snow mold tolerance 
using GWAS and GS approaches in PNW winter wheat lines.
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