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Snow mold is a yield-limiting disease of wheat in the Pacific Northwest (PNW) region of
the US, where there is prolonged snow cover. The objectives of this study were to identify
genomic regions associated with snow mold tolerance in a diverse panel of PNW winter
wheat lines in a genome-wide association study (GWAS) and to evaluate the usefulness of
genomic selection (GS) for snow mold tolerance. An association mapping panel (AMP; N =
458 lines) was planted in Mansfield and Waterville, WA in 2017 and 2018 and genotyped
using the lllumina® 90K single nucleotide polymorphism (SNP) array. GWAS identified
100 significant markers across 17 chromosomes, where SNPs on chromosomes 5A and
5B coincided with major freezing tolerance and vernalization loci. Increased number of
favorable alleles was related to improved snow mold tolerance. Independent predictions
using the AMP as a training population (TP) to predict snow mold tolerance of breeding
lines evaluated between 2015 and 2018 resulted in a mean accuracy of 0.36 across
models and marker sets. Modeling nonadditive effects improved accuracy even in the
absence of a close genetic relatedness between the TP and selection candidates.
Selecting lines based on genomic estimated breeding values and tolerance scores
resulted in a 24% increase in tolerance. The identified genomic regions associated with
snow mold tolerance demonstrated the genetic complexity of this trait and the difficulty in
selecting tolerant lines using markers. GS was validated and showed potential for use in
PNW winter wheat for selecting on complex traits such tolerance to snow mold.

Keywords: genome-wide association study, genomic best linear unbiased prediction, genomic selection,

reproducing kernel Hilbert space, ridge regression best linear unbiased prediction, snow mold tolerance,
winter wheat

INTRODUCTION

Snow mold is a disease affecting wheat grown in the Pacific Northwest (PNW) region of the US,
where plants are exposed to prolonged (>100 days) snow cover. This prolonged winter condition
provides a favorable environment, allowing the pathogens causing the disease to grow and infect
plants under the snow (Bruehl and Cunfer, 1971). In the state of Washington, there are four different
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snow mold diseases, all caused by soil-borne fungi or fungal-like
organisms: pink snow mold (Microdochium [Fusarium) nivale),
speckled snow mold (Typhula idahoensis, T. ishikariensis, T.
incarnata), snow scald (Myriosclerotinia borealis), and snow rot
(Pythium iwayami and P. okanoganense) (Murray et al., 1999).
Following snowmelt, plants with pink snow mold have a whitish
fungal growth (that eventually turns into a salmon color; hence
the name pink snow mold) in their leaves, whereas leaves of
plants with speckled snow mold are covered with a whitish gray
fungal growth (Murray et al., 1999).

Although cultural practices such as seeding date, fertilizer
application, and residue management can be used to manage
snow mold in wheat, breeding for disease tolerance was suggested
as the primary method of control for snow mold (Murray et al.,
1999). There are several challenges associated with breeding
for snow mold tolerance in winter wheat. Screening is difficult
because snow cover is highly variable within fields with some
areas not having enough snow cover for the disease to develop
and other areas having drifts that cause extended snow cover
and severe disease. The amount of snow also varies from year to
year and, consequently, disease pressure is highly variable across
growing seasons. Without the necessary conditions for disease
development, it is difficult to identify tolerant lines. “Winter
warming” has caused changes in the total PNW area covered with
snow (Nolin and Daly, 2006), which also affects the distribution
and severity of snow mold. Furthermore, there are a limited
number of wheat and related species showing tolerance to the
disease (Bruehl, 1982; Iriki et al., 2001). The use of molecular
breeding approaches to identify tolerant lines and to better
understand the genetic basis of the disease is therefore relevant
for improving snow mold tolerance in current winter wheat lines.

In recent years, tools such as genome-wide association study
(GWAS) have been used to examine the genetic architecture
underlying important traits in wheat, such as grain yield
(Neumann et al., 2011; Sukumaran et al., 2015; Lozada et al.,
2017), disease resistance, including spot blotch (Ayana et al.,
2018), Fusarium head blight (Arruda et al., 2016), and stripe
rust (Naruoka et al., 2015; Liu et al.,, 2018), and heading date,
plant height, and thousand grain weight (Zanke et al.,, 2014;
Zanke et al., 2015; Godoy et al., 2018), among others. GWAS
uses the concept of linkage disequilibrium, i.e., the nonrandom
cosegregation of alleles at multiple loci, to identify significant
marker-trait associations in natural populations (Flint-Garcia
et al., 2003; Breseghello and Sorrells, 2006). In contrast to
traditional biparental traditional biparental quantitative trait
loci (QTL) mapping, GWAS has a higher mapping resolution
due to the large number of recombination events observed in the
diverse populations used (Zhu et al., 2008; Myles et al., 2009).
Furthermore, GWAS allows for genetic survey of much larger
populations and avoids the time needed for mapping population
development (as in the case of biparental QTL analyses)
(Neumann et al., 2011).

GWAS, nevertheless, cannot identify variants with small
effects (Korte and Farlow, 2013), and this becomes a limitation
as many traits are affected by multiple loci with minor effects.
Genomic selection (GS) overcomes this limitation by using
genome-wide marker data to predict the breeding values of

individuals (Meuwissen et al., 2001). In contrast to association
mapping, GS does not test for significance of markers but instead
considers all marker information to train a model and predict
breeding values (BV) of individuals (Jiang et al., 2015; Crossa
etal., 2017). It assumes that the BV can be estimated purely based
on molecular marker data (Qian et al., 2017). A model is first
trained using a training panel (whose genotype and phenotype
are known) and then used for prediction of BV in test population
with marker data but no phenotypic data (Crossa et al., 2017).
These values are ultimately used in breeding programs for the
selection of promising genotypes (Werner et al., 2018).

Kruse et al. (2017) previously identified important QTL on
chromosomes 5A and 6B associated with tolerance to snow
mold in a biparental population derived from the cross between
winter wheat varieties “Eltan” (Peterson et al., 1991) and “Finch”
(Garland-Campbell et al., 2005). Currently, there are no known
SNP markers associated with snow mold tolerance in PNW
winter wheat lines identified through GWAS. The objectives of
the current study were to i) identify genomic regions associated
with tolerance to snow mold in a diverse panel of winter
wheat lines adapted to the PNW and ii) evaluate the accuracy
of GS for snow mold tolerance using breeding lines from the
Washington State University (WSU) Winter Wheat Breeding and
Genetics Program for independent predictions. The efficiency of
phenotypic selection (PS), GS, and combining PS with GS was
also evaluated for tolerance to snow mold in terms of response
to selection.

MATERIALS AND METHODS

Plant Material

An association mapping panel (AMP) consisting of 458
advanced soft winter wheat breeding lines adapted to the US
Pacific Northwest (PNW) region was used for GWAS and as a
training population (TP) for GS. This population consisted of
club (172 lines; 37.6%) and common (286; 62.4%) wheat. The
AMP was previously characterized for different traits including
stripe rust resistance (Naruoka et al, 2015; Liu et al., 2018),
eyespot resistance (Lewien et al., 2018), end-use quality traits
(Jernigan et al., 2018), preharvest sprouting tolerance, and low
falling number (Martinez et al., 2018). Additionally, 295 winter
wheat breeding lines from the Washington State University
(WSU) Winter Wheat Breeding and Genetics Program evaluated
for snow mold tolerance between 2015 and 2018 were used as
selection candidates (TST lines) for independent validations.
Breeding lines range from F,¢ to F,, selections. Six varieties,
“Bruehl” (Jones et al., 2001), Eltan, “Madsen” (Allan et al., 1989),
“Masami” (Jones et al., 2006), “Stephens” (Kronstad et al., 1978),
and “Xerpha” (Jones et al., 2010) were common to both the TP
and TST populations.

Field Evaluation for Snow Mold Tolerance

The AMP and breeding lines were planted in Mansfield (MAN)
and Waterville (WAT), WA for 2017-2018 (for the AMP) and
2015-2018 seasons (for the TST lines). Tolerance to snow mold
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was evaluated by rating the lines within a few days of snow
melt and one month later using a 0 (completely dead, with
abundance of snow mold) to 10 (thriving, no snow mold) scale.
Each rating was considered a unique trait. Varieties “Eltan”
(Peterson et al., 1991) and “Finch” (Garland-Campbell et al.,
2005) with moderate tolerance and susceptibility to snow mold,
respectively, were included in the AMP. The TST lines were
evaluated between 2015 and 2018, where snow mold ratings
were taken only in WAT in 2015, and both in MAN and WAT
for 2015-2018. In 2015, the Mansfield location had a significant
amount of erosion caused by spring runoff, and thus snow
mold scores were not collected at this location. Disease scoring
commenced as soon as snow had melted from the plot location
and it was dry enough to enter the field.

The AMP was planted in late August each year using a
custom built deep-furrow four-row planter spaced 30 cm
apart. Entries were planted in two of the four rows as paired
rows, so that each plot contained two entries of the AMP,
one in the left-side two rows and one in the right-side two
rows. The trial was planted as an alpha-lattice design, and two
replications were planted. In between each of the incomplete
blocks, a plot consisting of one row of Eltan (moderately
tolerant; Peterson et al., 1991), “Otto” (tolerant; Carter et al.,
2013), “Bruehl” (moderately tolerant; Jones et al., 2001), and
“Puma” (susceptible, Carter et al., 2014) was planted as check
varieties. Plots were 1.5 meter in length, each variety covered
an area of 1 m? planted at 100 plants per m?. PROC GLM
in SAS v 9.4 (SAS Institute, 2016) was used to analyze the
spatial variation among the repeating check cultivars. In both
years and across locations, no significant differences were
found in traits values of check cultivars spaced throughout
the trial, indicating uniformity of snow mold infection, and
thus no spatial adjustment was conducted on the lines within
the AMP.

The TST lines were planted at the same time as the AMP and
in a similar fashion, except the TST lines were planted using a
randomized-complete block design with three replications. The
same four row check plot was used to evaluate spatial variation
and planted every 10" plot within the TST lines. Analysis of these
plots within the TST lines again found no significant differences
between checks within a given location-year, and thus no spatial
adjustment was conducted on the TST lines.

Trait Heritability
Pearson correlations across environments were calculated using
JMP v. 11.0.0 (JMP® SAS Institute, 2013). Broad sense heritability
(H?) was computed by considering genotype, environment, and
genotype by environment as random effects and estimating their
variance components through PROC mixed in SAS v 9.4 using
o
oL+ Oty + 0%

2 _ 2
the formula H™ = , where o , o2, ,and
2 e er
o are variances due to genotype, genotype-by- environment,
and error, respectively; e and r are the number of environments
and replications, respectively.

SNP Marker Genotyping, Genetic
Diversity, and Genome-Wide Association
Analyses

The AMP was genotyped using the Illumina 90K SNP assays
(Wang et al, 2014) at the USDA-ARS Northern Genotyping
Laboratory, Fargo, ND. Allele calling and curation was done using
GenomeStudio®v. 2011.1 (Illumina, United States). The SNP marker
information has been deposited in the GrainGenes Database,
reference PBJ-12-787. After filtering for SNPs with minor allele
frequency (MAF) > 0.05 and removing markers with >20% missing
data, 15,229 high-quality SNPs remained for GWAS, of which
12,681 SNPs (83.3%) have been mapped across all chromosomes.
SNP positions (in cM) were based on the consensus genetic linkage
map for hexaploid wheat reported by Wang et al. (2014).

Genetic diversity was evaluated by calculating Rogers
distances and population differentiation coefficients (F,) using
SNP marker data. Population structure within the AMP and
breeding lines was assessed using principal components analysis
(PCA), where the second principal component (PC2) was plotted
against PC1. All analyses were performed in JMP Genomics v 8.1
(JMP® SAS Institute, 2013).

Association mapping was conducted using the Fixed and
Random Model Circulating Probability Unification (FarmCPU)
package (Liu et al., 2016) implemented in R, where PCs calculated
using GAPIT (Lipka et al., 2012) were fitted in the model as fixed
effect. Four different GWAS models were tested based on the
presence of different number of PCs- PCO, PC1, PC2, and PC3,
corresponding to the inclusion of 0, 1, 2, and 3 PCs, respectively.
Significant associations were based on a Benjamini-Hochberg
false discovery rate (FDR; Benjamini and Hochberg, 1995) of 0.05.
Phenotypic variation explained by each SNP was calculated by
fitting genotype and trait data on a stepwise regression model and
calculating the difference between the effects when all significant
markers are present and when an SNP is removed from the model
in JMP v. 11.0.0. A significant SNP was considered stable when it
was identified in at least two environments and/or GWAS models.
Best linear unbiased prediction (BLUP) values for each of the lines
were calculated by combining individual locations across years
using restricted maximum estimate likelihood (REML) method
in JMP v. 11.0.0, where genotype, environment, and genotype by
environment interactions were considered random effects. These
resulted in a total of seven BLUP datasets used for association
mapping. GWAS models were compared by examining the
deviations observed in quantile-quantile (QQ) plots; the model
with the least number of deviations observed was regarded as the
most reliable in identifying marker-trait associations.

To test the effect of pyramiding favorable alleles on snow
mold tolerance, BLUP scores were plotted against increasing
numbers of favorable alleles for the 10 most significant SNPs
identified through GWAS. Correlation coefficient between
BLUP and the number of favorable alleles was calculated in JMP
v. 11.0.0 Association of snow mold tolerance with haplotypes of
significant SNPs was determined using the PROC HAPLOTYPE
procedure in SAS v 9.4, whereas linkage disequilibrium (LD)
between marker pairs was evaluated using JMP Genomics
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v.8.1. Significant marker pairs in the same chromosome were
considered in LD at P < 0.05.

Genomic Selection

Accuracy of GS for tolerance to snow mold was evaluated by
performing independent predictions using the AMP as TP,
and WSU winter wheat breeding lines evaluated between 2015
and 2018 as test populations (TST2015, TST2016, TST2017, and
TST2018). The AMP and the breeding lines were genotyped
using genotyping by sequencing (GBS) following a PstI-Mspl
restriction enzyme double digest (Poland et al., 2012). After
filtering for markers with MAF > 0.05 and quality control,
16,233 SNP markers common to both TP and validation sets
remained for analyses. To test the effect of marker number on
the accuracy of GS, two other marker sets (MS) in addition
to the whole genotype marker data (MS1) were used for
predictions: a set consisting of significant markers (P < 0.05)
identified through GWAS (MS2) using only the training set
(AMP) to prevent “inside trading” effects, observed previously
to cause overestimated accuracies (Arruda et al.,, 2016); and a
set of LD-tag selected SNPs (MS3), derived from a grouping
algorithm developed by Carlson et al. (2004) implemented in
JMP Genomics v. 8.1.

GS was conducted using three different models: Ridge
regression best linear unbiased prediction (RRBLUP) through
the package “rrBLUP” (Endelman, 2011), Genomic best linear
unbiased predictions (GBLUP), and Reproducing Kernel
Hilbert Spaces (RKHS), through the Bayesian generalized linear
regression (BGLR) package (Pérez and de los Campos, 2014).
GBLUP and RKHS models were fitted using 12,000 iterations and
2,000 burn-ins. All GS models were implemented in R statistical
software (R Development Core Team, 2018).

The basic model for RRBLUP is y = WGu + ¢, where u
represents the vector of marker effects, G is genotype matrix
under an additive model, and W is a design matrix relating
lines to phenotypes (observations) (Endelman, 2011). RRBLUP
shrinks marker effects toward zero and assumes that markers
have equal variances (Heffner et al., 2011). GBLUP, on the other
hand, uses a genomic relationship matrix derived from markers
to calculate an individual’s genetic merit (Clark and van der
Werf, 2013). The model for GBLUP is in the form y = Xb + Zg
+ e, where y is a vector of phenotypes, X is a design matrix of
fixed effects, b is a vector of fixed effects, Z is design matrix of
genetic values, g is a vector of additive genetic effects, and e is a
vector of random effects (Clark and van der Werf, 2013).

RRBLUP and GBLUP are mathematically equivalent (Habier
etal., 2007) but are still considered to be different approaches for
estimating GEBV. RRBLUP estimates marker effects using linear
and penalized parameters, whereas GBLUP does not depend on
marker effect estimation for calculating breeding values (Tan
et al., 2017). Bayesian RKHS models can be represented as y =
1p + u + € with p(y, u, €)} N (u]|0,Ko?,)N(g|0,I0%,), where p is the
intercept, u is vector of random effects, ¢ is a vector of residuals,
02, is residual variance, and K is a Kernel matrix calculated as the
squared-Euclidian distance between genotypes (Pérez and de los
Campos, 2014).

Comparison Between Genomic Estimated
Breeding Values and Tolerance Scores

To examine the relationship of breeding values with snow mold
tolerance scores for lines advanced in the following year, GEBV
of lines from a single year was compared to their mean tolerance
scores observed in the succeeding year (i.e., 2015 GEBV compared
to 2016 snow mold tolerance (SMT) scores; 2016 GEBV to 2017
SMT; and 2017 GEBV to 2018 SMT). A ridge regression model
(RRBLUP) through the “iPat” package (Chen and Zhang, 2018) was
trained using whole genotype data (16,233 SNPs), and the AMP as
the TP where BLUP for all environments and BLUP for Mansfield
(MAN) and Waterville (WAT) site-years were used to calculate
GEBYV of each line belonging to the TST set of the previous year.
Lines were ranked according to their GEBV and mean SMT scores.
Scores of the top 50% selected based on BV and actual tolerance
ratings were considered in comparing three different selection
strategies-phenotypic selection (PS; lines selected based on SMT
scores alone), GS (lines selected based on GEBV alone), and a
combination of phenotypic and genomic selection (PS+GS; lines
selected based on GEBV and SMT). Response to selection (R) was
calculated using the formula R = H2S (Falconer and Mackay, 1996),
where H? is the heritability value for snow mold for the year when
GS model was trained; and S is the selection differential, calculated

as S = ppop (with selection) ~ ppop (without selection)*

RESULTS

Snow Mold Tolerance Across
Environments

Heritability (H?) values for snow mold tolerance varied across
years and populations, ranging between 0.53 (2016) and 0.76

TABLE 1 | Heritability and mean snow mold tolerance scores for Pacific Northwest (PNW) winter wheat association mapping panel (AMP) and breeding lines

evaluated between 2015 and 2018.

Population No. of environments No. of individuals H? Mean rating® Standard deviation Range
AMP 4 458 0.69 2.64 1.76 0-8
TST2015 2 7 0.76 4.81 2.56 0-8
TST2016 3 110 0.53 4.86 1.44 0-8
TST2017 3 68 0.56 4.39 1.61 0-8
TST2018 3 40 0.75 2.41 1.70 0-7

aBroad-sense heritability; 'Snow mold scores were taken by rating lines within a few days of snow melt and one month later using a O (completely dead, with abundance of snow

mold) to 10 (thriving, no snow mold) scale.
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FIGURE 1 | Phenotypic correlations for snow mold tolerance scores in Mansfield (MAN) and Waterville (WAT), WA in 2017 and 2018 for the association mapping
panel (AMP). 1 and 2 indicate snow mold tolerance scores within a few days of snow melt and a month after snow melt, respectively. ***- significant at P < 0.0001;

(2015) (Table 1). H? for tolerance to snow mold was 0.69 for the
AMP. All environments for the AMP were significantly correlated,
except for WAT17_1 and WAT18_1 (Figure 1). PCA showed
clustering based on growing season (Supplementary Figures 1A, B),
where PC1 caused 40.0 and 34.3% of variation for the AMP and
the breeding lines, respectively. Disease pressure was greatest in
2017 (mean = 4.3) and 2018 (mean rating = 2.3) for the breeding
lines. These ratings were slightly greater than the 2017 and 2018
mean snow mold scores for the AMP (3.8 and 1.5, respectively),
indicating more general tolerance in the breeding lines than in
the AMP. Mean scores for 2018 were significantly smaller (P <
0.0001) compared with the other years for both the AMP and the
breeding lines, indicating that this year had the most favorable
conditions for snow mold development. The tolerant variety Eltan
had a mean disease rating of 3.6, whereas the susceptible variety
“Finch” had a mean tolerance score of 2.6 across years.

Population Structure and Linkage
Disequilibrium

Previous PCA using Illumina 90K SNP marker data for the
AMP showed distinct population stratification based on

head-types (lax vs. club) (Jernigan et al., 2018). The reported
F,, value of 0.31 (Jernigan et al., 2018) supported the genetic
differentiation between the market subclasses of wheat in the
AMP. In the present study, PCA using 16,233 GBS markers
confirmed this genetic structure for the AMP, although some
overlaps within clusters of common and club wheat were still
observed (Figure 2A). Genetic (Rogers) distance between the
common and the club wheat for the AMP was 0.04, indicating
a close relationship between the subclasses, and thus overlaps
were expected. PC1 explained 11.6% of the phenotypic
variation, whereas the PC2 explained 7.3% of the variation.
Rogers distances of the breeding lines with the AMP ranged
between 0.30 (TST2017 and TST2018) and 0.31 (TST2015
and TST2016), whereas F,, coefficients were 0.23 (TST2016,
TST2017, TST2018) and 0.24 (TST2015). PCA using GBS
markers within the breeding lines described 10.9% and 8.1%
of the variation caused by PC1 and PC2, respectively. Lines
common to both the TP and TST sets formed a second cluster
in the PC plot (Figure 2B). Prior analyses revealed a rapid LD
decay over distance for this panel (estimated to be at ~5 cM;
Jernigan et al., 2018).
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Based on GWAS, 100 significant markers (FDR = 0.05) were
identified and distributed on 17 of 21 chromosomes (excluding
1D, 2D, 4D, and 6D), with percent of trait variation explained
(PVE) ranging from 0.01 to 11.6% (Supplementary Table 1).
Figure 3 shows some of these significant SNPs for snow mold

tolerance identified using BLUPs for all environments with the
first three principal components included in the model (PC3)
or without PC included in the GWAS model (PCO). Significant
SNPs with unknown chromosomal positions totaled to 10, with
PVE ranging between 0.07 and 5.70%. There were less deviations
observed in the QQ plots when PCs were fitted as fixed effect
in the GWAS models. Using only the first PC (PC1) for GWAS
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had the least deviations in the QQ plots in identifying significant
associations in three (MAN, MAN17, and WAT18) out of seven
environments used for GWAS.

Chromosome 5A had the greatest number of significant
marker-trait associations (14), followed by 1B (9), 3B (9), and
1A (8) (Supplementary Table 1). The significant SNPs in 5A
explained 0.10-11.6% of phenotypic variation, with additive
effect ranging between —0.18 and 0.23, whereas the 1B SNPs were
responsible for 0.01-8.4% of variation for snow mold tolerance
(additive effect = —0.28-0.26). There were 114 intrachromosomal
marker pairs in significant LD (P < 0.05) across all chromosomes
and GWAS models. On chromosome 5A alone, there were 44
marker pairs (mean distance = 3.2 ¢cM) in significant LD with an
average r? of 0.12. Large haplotype blocks of significant markers
in LD were observed on chromosomes 1A, 3A, 3B, 5A, and 5B.
Significant SNPs on chromosomes 5A, 5D, and 7A were all in
LD with at least one marker in the same chromosome. A total
of 31 SNPs distributed on 15 chromosomes were considered
stable (i.e., identified in at least two environments and/or GWAS
model). Out of this number, five loci, IWB36501 (3B), IWB3779
(3B), IWB65663 (5A), IWB14635 (5B), and IWB59690 (5B), were
identified across all GWAS models used and responsible for 0.02-
8.4% of phenotypic variation (Table 2). An unmapped locus,
IWB66039 (R?= 1.5-2.03%) was detected in two environments.
GWAS using the GBS-derived SNPs also identified significant
associations with tolerance to snow mold in similar chromosomes
(data not shown).

Effect of Combining Favorable Alleles on
Snow Mold Tolerance

To evaluate the cumulative effects of combining favorable alleles
on snow mold tolerance in the AMP, BLUP values across all
environments were regressed against the number of favorable
alleles (ranged between 1 and 9) for 10 of the most significant
SNPs associated with disease. These 10 SNPs (P value = 8.62E-11

to 2.73E-08) were distributed across eight chromosomes and
responsible for 0.03-8.4% of phenotypic variation. Significant
(P < 0.0001) differences among the groups having different
numbers of favorable alleles were observed. Overall, a greater
number of alleles with positive effects resulted in improved
tolerance to snow mold (Figure 4; Supplementary Table 2).
Mean comparisons among different groups having only allele
differences at a single locus showed the same level of tolerance
(e.g., mean tolerance of lines with eight favorable alleles vs.
tolerance of lines having nine). Four lines, namely, “J90055-4",
“190057-1”, “T1970057-5", and “WA8092”, contained nine favorable
alleles (mean BLUP 0f 0.90), whereas 13 lines carried only a single
favorable allele (mean BLUP of -0.49). The tolerant variety Eltan
(BLUP =0.76) had eight favorable alleles, whereas the susceptible
variety Finch (BLUP = -0.01) had four. BLUP scores across all
environments followed a normal distribution (Figure 4, inset).

Independent Validations Using Winter
Wheat Breeding Lines

Mean accuracy across all GS models, marker sets (MS), and TST
populations was 0.36 (Table 3; Supplementary Table 3). There
were no significant differences in predicting the breeding lines
across years, and mean accuracy ranged between 0.29 (TST2018)
and 0.41 (TST2015). Likewise, using different MS yielded similar
mean accuracies: 0.39 for whole genotype data (MS1) and LD-tag
SNPs (MS3) and 0.29 for significant SNPs (MS2). Mean accuracy
for RKHS (0.84) was highest among the prediction models,
whereas GBLUP and RRBLUP resulted to similar accuracies
(0.11). Using BLUP for all environments for the TP to predict
tolerance in individual locations for the TST lines did not show
advantage over using only single environments for predictions.
No significant differences were observed for predictions within
the same environments, compared to across locations for
different years.
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TABLE 2 | Single nucleotide polymorphism (SNP) markers associated with tolerance to snow mold across different models and/or environments in an association
mapping panel of Pacific Northwest winter wheat lines.

SNP ID SNP Name Chromosome Allele Position  Minor allele Model? Environment P-value Allele effect R2®
(cM) frequency
IWB36501  Jagger_c2707_152 3B A/Ge 65.71 0.10 PCO MAN18 1.046E-08 0.25 0.07
PC1 MAN18 2.587E-08 0.24 0.06
pPC2 MAN18 1.622E-07 0.20 0.03
PC3 MAN18 2.715E-06 0.18 0.08
IWB3779 BobWhite_ 3B AG 122.52 0.45 PCO WAT17 4.216E-10 0.25 0.05
c5276_631
PC1 WAT17 2.305E-10 0.26 0.05
PC2 WAT17 1.377E-07 0.21 0.04
PC3 WAT17 6.211E-07 0.21 0.00
IWB65663 TA003225_1427 5A T/C 45.08 0.07 PCO WAT 6.822E-06 0.16 0.05
PCA1 ALL 1.428E-06 0.16 0.04
PC3 WAT18 5.246E-06 0.23 0.05
IWB14635 CAP8_c2687_128 5B AG 104.23 0.10 PCO ALL 1.664E-06 0.16 0.04
PC1 ALL 2.436E-06 017 0.04
PC2 ALL 3.471E-06 0.15 0.00
PC3 WAT 5.428E-07 0.18 0.00
IWB59690 RAC875_ 5B A/C 188.58 0.14 PCO MAN17 6.499E-06 0.22 0.06
€62460_650
PC1 MAN17 1.574E-07 0.25 0.05
PC2 MAN 4.308E-06 0.12 0.01
PC3 MAN17 1.843E-08 0.30 0.05
PC3 MAN 7.98E-10 0.16 0.01

aNumber indicates the number of PC included in the GWAS model; ®Phenotypic variation explained by the SNP; cUnderlined allele is the minor allele; bold allele is
the tolerant allele.
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FIGURE 4 | Effect of pyramiding favorable alleles for the 10 most significant SNP markers associated with tolerance to snow mold for the association mapping
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TABLE 3 | Accuracy of genomic selection for tolerance to snow mold across different models and marker sets (MS) using a Pacific Northwest association mapping
panel (N = 458) as training set.

Population Genetic GBLUP RRBLUP RKHS
distance?
MS1b MS2 MS3 MS1 MS2 MS3 MS1 MS2 MS3
TST2015 0.31 0.21(0.006) 0.22 (0.007) 0.19(0.02) 0.22(0.004) 0.22(0.005) 0.18(0.02) 0.87 (0.002) 0.87 (0.001) 0.75 (0.001)
TST2016 0.31 0.07 (0.08) 0.10 (0.11) 0.09 (0.08) 0.2 (0.11) 0.16 (0.10) 0.13 (0.04) 0.83(0.03) 0.83 (0.03) 0.69 (0.04)
TST2017 0.30 0.21 (0.08) 0.18(0.07)  0.004 (0.06) 0.19(0.07)  0.18(0.06) 0.006 (0.07)  0.90 (0.02) 0.90 (0.02) 0.81(0.09)
TST2018 0.30 0.08 (0.04) 0.04 (0.07)  -0.09 (0.07) 0.006 (0.07) 0.03(0.08) -0.17(0.06)  0.92 (0.03) 0.92 (0.03) 0.84 (0.04)

Standard deviations are in parentheses. 2Rogers distance with the panel; ®MS1- whole genotype data; MS2- significant (P < 0.05) SNPs identified from GWAS; MS3- LD-tag derived
SNP markers.
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FIGURE 5 | Correlation between breeding values of lines evaluated in a year and the mean snow mold tolerance (SMT) score observed for the following
year. Datasets used to train the GS model are BLUP values for Mansfield and Waterville site-years (ALL), BLUP for Mansfield (MAN), and BLUP for Waterville
(WAT) environments.

TABLE 4 | Response to selection (R) for phenotypic, genomic, and phenotypic + genomic selection strategies for tolerance to snow mold.

Dataset? Selection 2015-2016 Selection Response 2016-2017  Selection Response 2017-2018 Selection Response

method differential® to differential to differential to
selection selection selection

ALL Phenotypic 5.38 0.66 0.50 5.25 0.67 0.36 3.87 0.83 0.56
selection (PS)
Genomic 4.77 0.05 0.04 4.51 -0.07 -0.04 3.06 0.02 0.01
selection (GS)
PS+GS 5.35 0.63 0.48 5.0 0.42 0.22 3.92 0.88 0.60
Population 4.72 4.58 3.04
mean®
Heritability, H2? 0.76 0.53 0.56

MAN PS 5.38 0.66 0.50 5.25 0.67 0.36 3.87 0.83 0.46
GS 4.94 0.21 0.16 4.59 0.01 0.01 3.08 0.04 0.02
PS+GS 5.65 0.93 0.71 5.13 0.55 0.29 3.75 0.71 0.40
Population mean 4.72 4.58 3.04
H? 0.76 0.53 0.56

WAT PS 5.38 0.66 0.50 5.25 0.67 0.36 3.87 0.83 0.56
GS 4.99 0.27 0.21 4.57 -0.01 -0.005 3.01 -0.03 -0.02
PS+GS 5.38 0.66 0.50 5.07 0.49 0.26 3.81 0.77 0.43
Population mean 4.72 4.58 3.04
H? 0.76 0.53 0.56

aPhenotypic dataset used to train the association mapping panel for calculation of breeding values; equal to BLUP for Mansfield and Waterville (ALL); and BLUP for Mansfield (MAN),
and Waterville (WAT) site-years; *Calculated as Selection differential, S = Upep with selection) ~ Mpop without seiectiony’ “Mea@n of the population without selection; °Broad-sense heritability for snow
mold for the year when the GS model was trained.
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Correlation Between Genomic Estimated
Breeding Values and Snow Mold Scores
and Response to Selection

Correlation between GEBV calculated on a given year and
snow mold ratings in the following year was low to moderate,
ranging between 0.12 (2016-2017; BLUP for WAT) and 0.43
(2015-2016; BLUP for MAN) (Figure 5). Significant differences
(P < 0.05) among mean correlations for each pair of years was
observed, where 2015-2016 had the greatest correlations (mean
of 0.40). In general, response to selection (R) was highest for
PS across datasets, except for when PS+GS was used to select
lines in 2016-2017 and 2017-2018 using BLUP values for all
environments and BLUP for MAN as TP data, respectively
(Table 4). Combining phenotyping with GS in these scenarios
resulted in a 7 and 40% advantage in terms of R, compared to
using PS alone. Among selection strategies, GS had the lowest
values for response, with negative R in three datasets: BLUP for
all environments (—0.04); BLUP for WAT site-years (—0.005) for
2015-2016; and BLUP for WAT site-years (—0.02) for 2017-2018.
Applying a GS strategy, on average, resulted to a 0.05 increase
in snow mold tolerance scores, whereas using PS+GS led to an
increase of 0.59, on average, across datasets. Varieties Bruehl and
Eltan consistently showed high BV and snow mold scores across
different years.

DISCUSSION

The current study identified genomic regions associated with
tolerance to snow mold in a diverse population of PNW winter
wheat lines through a GWAS approach. Additionally, GS was
implemented through independent validations using this diverse
panel to predict snow mold tolerance of WSU winter wheat
breeding lines. Accuracies across different prediction models and
marker sets were evaluated. Lastly, response to selection among
different selection strategies was compared.

Genomic Regions Associated With Snow
Mold Tolerance Coincided With Major
Freezing Tolerance and Vernalization Loci
In agreement with the first objective of this study, we detected
SNP markers associated with snow mold tolerance in PNW
winter wheat. A total of 14 significant snow mold tolerance
markers identified in this study were on chromosome 5A.
This region represents a large haplotype block covering an
~88 c¢M distance. Analyses further revealed significant (P
< 0.0001) associations of these haplotypes in 5A with snow
mold tolerance, although no stable, large effect (R? > 10%) loci
were identified in GWAS. Significant SNPs on chromosome
5A co-localized with QTLSelt.wpg-5A.1 (R?~ 47%) and Fr-A2
(R?= 49%) previously identified to be associated with snow
mold and freezing tolerance, respectively, in an Eltan x Finch
biparental mapping population (Kruse et al., 2017). Based on
a consensus map by Wang et al. (2014), the flanking marker
Xiwb53912 (59.28 cM) of these QTL regions is located near

IWB23857 (64.21 cM), identified to be associated with snow
mold tolerance in this study. Two other significant markers,
namely, IWB76844 and IWB25201, on 5A coincided with
the major vernalization gene Vrn-Al. Significant SNPs on
chromosome 5B formed a large haplotype block covering a
~150 cM distance, near Fr-B1 (Téth et al., 2003) and Vrn-B1,
although no significant association between these haplotypes
and snow mold tolerance was observed in the current study.

Our results and those of a previous study (Kruse et al.,
2017) showed that loci affecting both snow mold and freezing
tolerance are in similar genomic regions, indicating potential
pleiotropic effects or tight linkage. Tolerance to cold might
result from a more effective fungal resistance mechanism due
to pleiotropy, as reduced cold damage may result in heathier
plants that can resist fungal infections (Kruse etal.,2017). Lines
from the AMP observed to have high tolerance to snow mold
also possessed cold tolerance alleles on three C-repeat binding
factor (CBF) loci (S Carle, unpublished data), suggesting that
selecting lines that can survive cold temperatures could also
result in selection for lines with snow mold tolerance. Major
low-temperature tolerance QTL were previously identified
in chromosome 5A (Baga et al., 2007; Case et al., 2014) and
5B (Zhao et al., 2013) near known freezing tolerance and
vernalization genes, showing the relevance of these loci in
winter survival, as well as tolerance to fungal diseases related
with low temperature conditions.

Snow mold tolerance markers other than those related
with major cold tolerance and vernalization genes were
identified on chromosomes 4B and 6B, similar to results
previously reported via biparental mapping in winter wheat
(Kruse et al., 2017). SNP IWB12434 (4B; 74.62 cM) co-located
with IWA3240 (65.28 cM) and ITWA908 (79.01 cM), markers
flanking the freezing tolerance QTL, QFfin.wpg-4B, whereas
significant SNPs in 6B, namely, IWB33837 (73.41 ¢cM) and
IWB33838 (116.24 cM) were mapped near the QSfin.wpg-6B
locus (flanked by IWB7981; 93.50 cM) associated with snow
mold tolerance (Kruse et al., 2017). Overall, our results
demonstrated the potential of GWAS as a complementary
mapping tool in dissecting genomic regions for tolerance to
snow mold. SNP markers on chromosomes other than 4B,
5A, and 6B identified here have not been reported elsewhere,
and hence represent novel SNP markers affecting snow mold
tolerance in PNW winter wheat.

Combining Favorable Alleles From
Significant Loci Is Related to Improved
Snow Mold Tolerance

Regression analyses showed the direct relationship between
increasing number of favorable alleles and increased
snow mold tolerance demonstrating an additive response.
Previously, pyramiding favorable alleles was observed to
increase resistance for stripe rust (Naruoka et al., 2015) and
eyespot disease (Lewien et al., 2018) for the same population
of US PNW winter wheat lines. Lines differing at a single
locus (e.g., lines with eight favorable alleles vs. lines having
nine) had similar levels of tolerance, suggesting that additive
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effects for these alleles might not be enough for significant
differences to occur. Moreover, it was observed that some
lines having negative BLUP scores for tolerance have as many
as seven or eight favorable alleles, further demonstrating the
genetic complexity of snow mold tolerance. Likewise, Emebiri
et al. (2017) observed that some wheat lines having alleles
for Sunn pest (Eurygaster integriceps Puton) resistance were
phenotypically susceptible to the disease, indicating weak
genotype-phenotype associations. The absence of strong
associations between alleles and phenotypes could be a
consequence of different evolutionary processes and the large
number of generations in plant breeding (Ellis et al., 2007). It
also could be the effect of multiple pathways within the plant
contributing to tolerance to snow mold (like the demonstrated
association with cold tolerance). The lack of stable, large-
effect loci could limit the efficient implementation of marker-
assisted selection (MAS) for snow mold tolerance, and,
hence, GS is seen as a good complement to GWAS. Lines
having favorable alleles for the significant loci identified here
represent novel sources of tolerance in PNW winter wheat
lines.

Relatedness Is a Key Player in Genomic
Selection for Snow Mold Tolerance

The fact that snow mold is affected by many loci with small
effects, as revealed through GWAS, makes it an ideal trait for
genomic selection. GS is an alternative solution for dissecting
genetic architecture of complex traits due to the limitation of
MAS in identifying small effect loci (Mirdita et al., 2015). In
this study, a diverse population of winter wheat lines was used
as the training panel to predict snow mold tolerance in WSU
winter wheat breeding lines evaluated between 2015 and 2018.
Accuracy values were assessed across different marker sets
(whole genotype data, significant markers, and LD-tag SNPs)
and models (RRBLUP, GBLUP, and RKHS).

High relatedness between TP and validation sets has been
associated with increased GS accuracies (Asoro et al., 2011;
Lorenz and Smith, 2015), whereas a lack thereof between
populations resulted in decreased accuracies (Charmet et al.,
2014). Limited genetic relatedness between the training and
test lines reveals that the extent of LD is shorter and unstable
across individuals in the population (Tan et al., 2017). RRBLUP
relies mainly on the strength of LD between markers and QTL,
where an increase in marker-QTL LD is expected to improve
predictions (Lorenz and Nice, 2017). In our case, as there is no
strong marker-QTL LD observed due to low relatedness between
TP and validation sets, the implementation of the RRBLUP
model for GS resulted in inter-year prediction accuracies close
to zero. RRBLUP also performed poorly compared with its
Bayesian counterparts in predicting flowering time and grain
number using unrelated double haploid populations of wheat
(Thavamanikumar et al., 2015). Similarly, the GBLUP model,
which depends mainly on the genomic relationships between
the training and selection set (Lorenz and Nice, 2017), had
low accuracies, most likely also a consequence of the genetic
relationships between the training and test populations. Low

relatedness between the TP and selection candidates further
suggests the presence of opposite linkage phases between
markers and QTL (Haile et al., 2018), which negatively affects
the accuracy of predictions.

The use of lower marker density panels presents a cost-
efficient alternative to using whole genotype data for GS.
In this study, however, implementing LD-tag SNPs and
GWAS-derived markers did not lead to a significant decrease
in prediction accuracy, where, in most scenarios, using
these subsets typically caused a reduction in accuracies.
Likewise, Juliana et al. (2018) observed loss in accuracy
when marker subsets were used for predicting yield across
unrelated CIMMYT elite yield trial nurseries. Without a close
relatedness between the training and test candidates, it has
been shown that higher marker numbers are needed for more
accurate predictions in both empirical and simulation studies
(Hickey et al., 2014; Norman et al., 2018). More markers are
also required in a breeding scenario where older lines are used
to predict newer germplasm (Rutkoski et al., 2017), as in our
case, where the AMP was used to predict snow mold tolerance
of WSU winter wheat breeding lines. In spring wheat, Muleta
et al. (2017) observed that using all available SNP markers
was necessary to reach the highest attainable accuracy for
predicting stripe rust resistance in a diversity panel. The rapid
decay of LD in the TP used (Jernigan et al., 2018) further
demonstrates that more markers are necessary for achieving
accurate predictions. A greater number of markers are needed
to train a model for GS when LD decays rapidly (Poland and
Rutkoski, 2016). Conversely, when LD decay is slow for a
population, implementing a subset of SNPs for GS was enough
to achieve similar accuracies with that of a full set of markers
(Cericola et al., 2017). Removing SNPs potentially decreased
the number of marker-QTL in LD captured, leading to lower
accuracies. Our results support the relevance of genetic
relatedness between training and validation populations
in achieving more accurate predictions, particularly for
GS models that rely on LD between QTL and markers for
predictions.

Modeling Nonadditive Effects Improved
Prediction Accuracy in the Absence of
Close Relatedness Between Training and
Validation Populations
Previous studies in wheat focused on cross-validations (Heffner
et al, 2011; Heslot et al, 2012), where a single population
is partitioned into training and testing sets. More recently,
independent validations that use different populations as training
and validation sets were implemented in wheat (Thavamanikumar
et al., 2015; Haile et al., 2018). The potential of independent
predictions for snow mold tolerance was demonstrated across
different models and marker sets used, even without a close
relationship between the training panel and validation sets.
Although there was no close relatedness between the
training and test populations based on genetic (Rogers)
distances, we observed that modeling nonadditive effects can
lead to improved predictions. RKHS model showed superiority
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compared to GBLUP and RRBLUP for all marker and datasets
used. Our results were consistent with previous reports in
wheat when RKHS model was used for predicting grain yield
(He et al., 2016; Huang et al., 2016; Song et al., 2017), and
Fusarium head blight and Septoria tritici blotch (Mirdita et
al.,, 2015). When there were no lines common to both TP
and validation sets, there was an increase in accuracy using
RKHS (data not shown), which also suggests that this model
is not affected by changes in population composition and
relatedness. Nonparametric or semiparametric approaches
such as RKHS are built to model complex and nonexplicit
interactions, thereby maximizing predictive ability (Varona
et al., 2018). In accordance with our findings, the use of GS
models that can capture nonadditive genetic effects to achieve
increased accuracies is thus recommended when evaluating
populations with low genetic relationships.

Complementing Traditional Phenotyping
With Genomic Selection Shows Potential
for Increasing Tolerance to Snow Mold in
PNW Winter Wheat

Being the baseline method, PS was expected to have the
greatest response to selection (R); nevertheless, we observed
the potential for selecting lines with improved tolerance to
snow mold by combining PS with GS, showing a maximum of
40% merit in R for the 2016 selections (0.71 for PS+GS vs. 0.50
for PS alone). Recently, Belamkar et al. (2018) observed that
using both GEBV and phenotype data in preliminary yield
trials increased opportunity to select better yielding lines
across environments and years in comparison to those selected
based on phenotype alone in a single year. Likewise, it has been
shown that merging GS data based from multienvironment
trials with PS in preliminary trials resulted to a much better
performance in predicting yield than using either method
alone (Michel et al.,, 2017). Line selection based exclusively
on GEBV for snow mold tolerance had a disadvantage, as
some lines with high GEBV on one year might not necessarily
have high tolerance scores the following year. This was
demonstrated by negative R values and the low correlations
between GEBV and tolerance scores observed in some of the
datasets evaluated. Therefore, caution is still warranted when
relying on GEBV alone for selection decisions.

Increasing prediction accuracies by using a training set
that fully captures genetic relatedness with the validation
populations, choosing the appropriate GS model, and the
number of markers for predictions in the presence/absence
of marker-QTL LD, would make selections via GEBV more
reliable. Regardless, it is still possible to increase tolerance
by selecting superior lines based on breeding values alone
despite having low to moderate correlations between GEBV
and disease scores across years. In maize, the feasibility of a
breeding program based on GS that resulted in greater genetic
gain per year has been previously demonstrated under low
to moderate prediction accuracies (Heffner et al., 2010). This
further shows that prediction accuracies obtained are not a

true measure of the success of implementing GS strategies in
breeding programs (Belamkar et al., 2018) but more so how
effectively GEBV can be used for selection decisions (Juliana
et al., 2018). Overall, breeders should consider using both
GEBV and phenotypic information when evaluating important
disease-related traits, in choosing which lines to advance or in
selecting parental lines for the breeding program.

CONCLUSIONS

A genome-wide association study identified SNP markers
associated with tolerance to snow mold in a diverse population
of PNW winter wheat. Significant SNPs co-localized with QTL
for freezing tolerance and vernalization genes demonstrate
possible pleiotropic effects for low temperature and snow mold
tolerance. A direct relationship between the number of positive
alleles for significant loci and snow mold tolerance was observed.
Implementing GS using independent sets of samples as validation
populations showed the potential for improving tolerance to
snow mold. Combining GS with phenotypic selection showed
the possibility of increasing genetic gains by selecting lines with
improved tolerance based on breeding values and actual snow mold
ratings. Relatedness between the training and validation panels
is important for achieving accurate predictions, and modeling
nonadditive effects improved accuracies in the absence of close
genetic relationships between populations. Altogether, results from
GWAS and GS demonstrated the complex genetic architecture of
tolerance to the disease. To the best of our knowledge, this is the
first major study on the genetic dissection of snow mold tolerance
using GWAS and GS approaches in PNW winter wheat lines.
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