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The constant interactions between plants and pathogens in the environment and the 
resulting outcomes are of significant importance for agriculture and agricultural scientists. 
Disease resistance genes in plant cultivars can break down in the field due to the evolution 
of pathogens under high selection pressure. Thus, the protection of crop plants against 
pathogens is a continuous arms race. Like any other type of crop plant, legumes are 
susceptible to many pathogens. The dawn of the genomic era, in which high-throughput 
and cost-effective genomic tools have become available, has revolutionized our 
understanding of the complex interactions between legumes and pathogens. Genomic 
tools have enabled a global view of transcriptome changes during these interactions, 
from which several key players in both the resistant and susceptible interactions have 
been identified. This review summarizes some of the large-scale genomic studies that 
have clarified the host transcriptional changes during interactions between legumes and 
their plant pathogens while highlighting some of the molecular breeding tools that are 
available to introgress the traits into breeding programs. These studies provide valuable 
insights into the molecular basis of different levels of host defenses in resistant and 
susceptible interactions.

Keywords: genomics, legumes, plant–pathogen interactions, transcriptome analysis, GWAS, QTLs, markers, 
CRISPR/Cas9

INTRODUCTION

Legumes belong to the third-largest angiosperm family, Fabaceae or Leguminosae. This family 
comprises around 750 genera and 20,000 species, including grain, forage, and economically important 
legumes (Polhill et al., 1981). Legumes contribute 33% of human dietary protein (Vance et al., 2000). 
Although legumes are cultivated over 12 to 15% of the Earth’s arable land and account for 27% of 
the world’s primary crop production (Vance et al., 2000), their yield is limited due to environmental 
adaptability challenges and damage caused by pests and pathogens (Graham and Vance, 2003). 
Some of the major fungal diseases of legumes include rusts, mildews, root rots, wilts, blights, and 
anthracnoses. Bacterial diseases are mainly grouped into leaf blights, leaf spots, bacterial wilts, and a 
diverse group with symptoms such as dwarfing and rots (Rubiales et al., 2015; Wille et al., 2019). Viral 
diseases are caused by Bean pod mottle virus, Soybean mosaic virus, and Peanut stripe virus, among 
others. Cyst and root-knot nematodes are the devastating parasites of legumes (Rubiales et al., 2015).

Plants have evolved robust defense mechanisms against pathogen attack that are triggered by initial 
recognition of the pathogen. These mechanisms involve a cascade of signaling responses known as 
Pathogen-Associated Molecular Pattern (PAMP) Triggered Immune (PTI) response, which eventually 
leads to changes in the gene expression of the host. Depending on the type of interaction, this can 
result in either disease susceptibility or disease resistance. The pathogens, on the other end of the 
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spectrum, have evolved several mechanisms involving effector 
delivery to evade the host defenses. The host defense response to 
effectors is called Effector-Triggered Immunity (ETI) (Young et al., 
2005). The continuous arms race between the host and pathogen 
eventually determines the outcome of the interaction (Jones and 
Dangl, 2006). The host responses also vary based on pathogen 
infection strategies. The current understanding is that successful 
defense responses against biotrophic pathogens are predominantly 
mediated by the salicylic acid (SA)-dependent pathway and that 
those against hemibiotrophs and necrotrophs involve ethylene and 
jasmonic acid (JA) signaling (Glazebrook, 2005).

Leguminosae includes a diverse variety of plants. Medicago 
truncatula and Lotus japonicus have been chosen as model species 
to advance the study of legumes (Zhu et al., 2005). Several genetic 
and genomic resources have been developed in these two model 
legumes to assist breeding programs for enhanced tolerance/
resistance to abiotic and biotic stresses in legume crop species. 
These include genome sequences (Sato et al., 2008; Young et al., 
2011), expressed sequence tags (ESTs) (Asamizu et al., 2004; Gamas 
et al., 2006), physical and genetic maps (Choi et al., 2004; Yan 
et al., 2004; Young et al., 2005; Wang et al., 2008; Ohmido et al., 
2010; Shah et al., 2016), and insertional mutagenesis lines (Tadege 
et al., 2008; Urbanski et al., 2013), among others. In addition to the 
model plants, the genome sequences of crop plants such as Glycine 
max (cultivated soybean), Glycine soja (wild soybean), Cajanus 
Cajun (pigeon pea), Cicer arietinum (chickpea), Vigna radiata 
(mung bean), V. angularis (adzuki bean), V. unguiculata (cowpea), 
Arachis hypogaea (cultivated peanut), A. duranensis (wild peanut 
A genome), A. ipaensis (wild peanut B genome), Medicago sativa 
(alfalfa), Phaseolus vulgaris (common bean), Trifolium pretense (red 
clover), Lupinus angustifolius (lupin), and Lens culinaris (lentil) 
are currently available at https://legumeinfo.org/genomes. The 
macrosynteny and microsynteny studies among some of these 
genomes have been useful for translating the knowledge from 
model to crop plants (Zhu et al., 2005). The availability of genome 
sequences coupled with recent advancements in affordable Next-
Generation Sequencing (NGS) techniques and bioinformatics 
tools has enabled extensive study of genome-wide expression 
changes during plant–pathogen interactions to identify the 
pathways involved in plant defense. Macroarrays, microarrays, 
RNAseq, suppressive subtractive hybridization (Mehrtens et al., 
2005), cDNA-amplified fragment length polymorphism (AFLP) 
techniques and gene-expression atlases have been used extensively 
to identify candidate genes for disease resistance. In this review, we 
focus on the interactions of legumes with plant pathogens such as 
fungi, oomycete, bacteria, nematodes, and viruses at the genomic 
level and the use of genomic technologies in breeding for resistance.

USING GeNOMICS TO UNDeRSTAND 
THe BASICS OF PLANT–PATHOGeN 
INTeRACTIONS IN LeGUMeS

Genomics of Plant–Fungal Interactions
Fungi are among the most challenging plant pathogens to tackle 
owing to their genetic flexibility and plasticity, which allow them 

to adapt quickly to their changing environments (Perez-Nadales 
et al., 2014). Considerable effort has gone into understanding the 
plant–fungal interaction mechanisms in both model and crop 
legumes. Large-scale genomic studies have enabled understanding 
of the various plant disease-resistance mechanisms against 
hemibiotrophic, biotrophic, and necrotrophic fungal pathogens.

Hemibiotrophic Interactions
Mycosphaerella pinodes is a broad-host range fungal pathogen 
that causes ascochyta blight disease. It is known to have a 
transient biotrophic phase in some hosts and to behave like a 
necrotrophic pathogen in other hosts (Fondevilla et al., 2011; 
Almeida et al., 2015). M. truncatula-based microarrays were 
used to study resistant interactions of pea with M. pinodes. The 
functional gene categories involved in the resistance mechanism 
included phytohormones, Pathogenesis Related (PR) genes, the 
phenylpropanoid pathway, cell-wall fortification, and genes 
involved in ethylene- and jasmonic-acid(JA)-related defense 
pathways (Fondevilla et al., 2011). This work was later augmented 
by investigating the transcriptome in the host pea plants using 
deep SuperSAGE analysis to enrich for transcripts in the pea–M. 
pinodes interactions, followed by next-generation sequencing 
(NGS) of the transcripts (Fondevilla et al., 2014). Several factors 
that play key roles in resistance were identified, such as the WRKY 
protein in pathogen perception, proteases as an active defense 
against fungal toxins, and the roles of ethylene, abscisic acid, and 
indole-3-acetic acid as phytohormones in defense. Flavonoids, 
terpenoids, reactive oxygen species (ROS) and phytoalexins were 
identified as antifungal components that inhibit hyphal growth 
and destroy toxins (Fondevilla et al., 2014).

In Vigna unguiculata (cowpea) and orphan legumes such as 
Lathyrus sativus (grass pea) and Vicia faba (fava bean) where 
whole-genome sequence information is not available, SuperSAGE 
and Deep SuperSAGE coupled with NGS sequencing has been 
used successfully to study transcriptomes during Ascochyta 
infections (Madrid et al., 2013; Almeida et al., 2015). Early gene 
expression profiling in a resistant variety of grass pea during 
Ascochyta infection identified that classical defense-response 
genes involved in cell-wall fortification and the phenylpopanoid 
pathway were differentially expressed in resistant interactions. 
In addition, homologs of several candidate resistance genes 
such as receptor kinases containing thaumatin-like protein 
(TLP) domains, leucine-rich repeat (LRR) domains, and a gene 
homologous to Resistance to Pseudomonas syringae pv maculicola 
1 (RPM1) involved in conferring resistance to P. syringae in 
Arabidopsis were identified (Almeida et al., 2015). During resistant 
interactions in the fava bean-Ascochyta fabae infection process, 
genes involved in JA signaling and pectin esterase-encoding genes 
were identified with the SuperSAGE technique (Madrid et al., 
2013). In a later study, de novo transcriptome assembly was used 
to identify transcripts in susceptible and resistant interactions 
of fava bean and A. fabae. Genes encoding LRR proteins, Rho2 
GTPase-activating protein 2 (RGA2), several plant growth 
regulators, heat shock proteins, chitin elicitor-binding protein, 
and those genes that produce chlorogenic acid, scopoletin, and 
flavonoids were among the significant genes involved in fava bean 
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defenses (Ocaña et al., 2015). Functional characterization of these 
candidate genes will be the next essential step toward including 
them in breeding programs.

Anthracnose disease is caused by a hemibiotrophic fungal 
pathogen, Colletotrichum spp. The genomics of Colletotrichum–
host and –nonhost interactions were investigated using 
microarray analysis in M. truncatula (Jaulneau et al., 2010). 
In this study, resistant and susceptible M. truncatula varieties 
were infected with pathogenic strain Colletotrichum trifolii and 
non-adapted strains C. higginsianum and C. lindemuthianum. 
Resistance responses to non-adapted Colletotrichum spp. were 
similar to the incompatible responses induced by the adapted 
strain on the resistant line. The nonhost responses included 
localized oxidative burst and fluorescent compound release. 
The host resistance response was characterized through defense 
gene signaling and SA accumulation (Jaulneau et al., 2010). 
To identify the genetic components of bean immunity against 
C. lindemuthianum, EST analysis was carried out in common 
bean with putative A. thaliana orthologs (Oblessuc et al., 
2012). This study suggested that ETI-triggered hypersensitive 
response is mediated by downregulation of FLS2-like and 
MKK-5 like putative orthologs of A. thaliana genes involved in 
pathogen perception (Oblessuc et al., 2012). The resistant and 
susceptible interactions of P. vulgaris with C. lindemuthianum 
were investigated using NGS methods (Padder et al., 2016). 
Most of the DEGs were expressed in the biotrophic phase in the 
susceptible interaction, while most of the DEGs were expressed 
in the necrotrophic phase in the resistant interaction. DEGs in the 
resistant interaction were over-represented by genes expressing 
PR proteins and peroxidases, while the susceptible interaction 
was over-represented by genes encoding sugar transporters 
(Padder et al., 2016). The genomics of partially resistant and 
susceptible interactions of Lens culinaris and C. lentis were 
studied using EST analysis (Bhadauria et al., 2017). Twenty-six 
resistance genes were identified during the symptomatic phase 
of infection in the compatible interaction. Further, a complex 
interplay of plant hormone pathways was also observed in this 
study (Bhadauria et al., 2017).

Fusarium wilt is a destructive disease in several legumes 
that is caused by host-specific Fusarium oxysporum strains. 
Extensive studies have been done to understand the molecular 
basis of this disease interaction in various legumes. In Phaseolus 
vulgaris (common bean), the cDNA-AFLP technique was used 
to determine transcriptionally regulated genes in response to 
F. oxysporum f. sp. phaseoli (Fop) infection in resistant and 
susceptible interactions (Xue et al., 2015). This study identified 
122 defense-related gene fragments that are distributed across 
the genome. This distribution could serve to tag defense-related 
molecular markers in breeding programs (Xue et al., 2015). 
RNAseq analysis of Glycine max infected with both pathogenic 
and non-pathogenic strains of F. oxysporum identified over-
representation of defense-related genes corresponding to necrosis 
in resistant interactions (Lanubile et al., 2015). RNAseq was 
carried out to understand the molecular differences in defense 
responses between cultivated and wild species of Glycine max 
against the pathogenic F. oxysporum Schltdl (Chang et al., 2019). 
That study identified the role of secondary metabolites and plant 

hormones in wild-type germplasm that could be adapted into 
cultivated species for enhanced resistance.

Several races of F. oxysporum f. sp. Ciceri (Foc) have been 
identified across the chickpea-growing regions of the world. 
While most F. oxysporum strains are considered as necrotrophic 
or hemibiotrophic pathogens, Foc race 1 (Foc1) is reported to 
be an obligate biotrophic pathogen of chickpea (Gupta et al., 
2009). cDNA-AFLP-based analyses, cDNA-based microarrays, 
and cDNA RAPD methods have been used to study chickpea 
interactions with Foc1 (Nimbalkar et al., 2006; Ashraf et al., 
2009; Gupta et al., 2009; Gupta et al., 2010; Gurjar et al., 2012). 
Although host responses during biotrophic infections are 
mediated by SA-dependent pathways, gene expression analyses in 
the above-referenced studies indicate non-traditional responses. 
The cDNA-AFLP method identified that genes encoding sucrose 
synthases, invertases, and β-amylase were induced in resistant 
interactions. The 14-3-3 gene expression was overrepresented 
in the susceptible interaction, indicating potential nutrient 
starvation, and the resistant interaction potentially copes 
with this sugar starvation by over-inducing sugar-metabolism 
genes. This study was highly suggestive that sugar also acts as a 
signaling molecule in response to pathogen perception (Gupta 
et al., 2010). A comparative study of resistant and susceptible 
interactions with Foc races 1, 2, and 7 was conducted in chickpea 
using the cDNA-RAPD method (Gurjar et al., 2012). This study 
identified a role for plant glucosyltransferase genes in resistance 
response. Further, race-dependent defense responses were 
observed (Gurjar et al., 2012). A similar study with resistant and 
susceptible interactions with Foc race 1, 2, and 4 was conducted 
recently with the LongSAGE method (Upasani et al., 2017). 
Clustering analysis and interaction networks of differentially 
expressed genes (DEGs) identified that the resistant interaction is 
characterized by ROS production, SA production, lignification, 
R-gene expression, and hormone homeostasis. The susceptible 
interaction was enriched for actin depolymerization genes, 
aquaporin genes, and tetrapyrrole synthesis genes (Upasani et 
al., 2017). Another study detailing the transcriptional changes 
during resistant and susceptible chickpea interactions with 
Foc1 was done using RNAseq analysis (Gupta et al., 2017). 
Plant pathogen interaction networks constructed with this 
transcriptional data identified several nodal hub genes that 
modulate defense responses and could be further characterized 
for resistance (Gupta et al., 2017). A microarray-based study of 
resistant and susceptible chickpea interaction transcriptomes 
with Foc1 was used to create regulatory gene networks (Ashraf 
et  al., 2018). This study identified 76 disease- and immunity-
related genes. The gene regulatory networks identified 
transcriptional plasticity in immune pathways and disease 
pathways during wilt interactions. This work also highlighted 
that the primary metabolic components are shared between 
defense and disease (Ashraf et al., 2018).

Biotrophic Interactions
Asian soybean rust (ASR), caused by Phakospora pachyrhizi, 
is a devastating disease that is listed among the top five biotic 
threats to agriculture (Pennisi, 2010). Although six resistance 
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genes, Resistance to Phakospora pachyrhizi (Rpp1-6), have 
been identified in soybean that confer resistance to ASR in a 
race-specific manner, no single soybean genotype can confer 
resistance to all races of the rust fungus (Langenbach et al., 
2016a). Several studies have been conducted to identify key 
players in resistance to ASR. Initial studies to identify key 
players in the R-gene-mediated response of ASR employed the 
SSH complementary DNA (cDNA) method (Choi et al., 2008; 
Soria-Guerra et al., 2010b). These studies indicated a time-
dependent coordinated gene expression pattern in Rpp-mediated 
resistant and susceptible interactions and identified the role of 
peroxidases and lipoxygenases in resistance. Later work using 
whole-genome microarrays confirmed these two findings and 
provided further detail (Van De Mortel et al., 2007; Panthee 
et al., 2009; Soria-Guerra et al., 2010a; Soria-Guerra et al., 2010b; 
Morales et al., 2013). Several of these studies have reported an 
overrepresentation of transcription factors (TF) and the roles 
of flavonoids and cell-wall lignification in the active resistance 
mechanisms. Metabolite analysis of the ASR interactions has 
confirmed some of these findings (Lygin et al., 2009). Several 
genomic studies involving TFs identified roles for WRKY, the 
Basic Leucine Zipper (bZIP) domain, and predicted TF families 
in resistant interactions (Pandey et al., 2011; Aoyagi et al., 2014; 
Bencke-Malato et al., 2014; Alves et al., 2015). The SuperSAGE 
technique was used to identify several antimicrobial peptides 
such as defensins, thionin, and lipid transfer protein (LTP) family 
genes in cowpea and soybean infected with the rust pathogen P. 
pachyrhizi (Kido et al., 2010).

Nonhost resistance (NHR) is a type of resistance that is 
displayed by plants against most potential pathogens. This type 
of resistance can be multi-layered, and plants can exhibit this 
either prior to infection (pre-invasive NHR) or post-infection 
(post-invasive NHR) (Senthil-Kumar and Mysore, 2013; Gill et 
al., 2015; Lee et al., 2017; Fonseca and Mysore, 2019). The NHR 
responses of Arabidopsis and M. truncatula against P. pachyrhizi 
were explored to identify sources of durable disease resistance. 
Studies with Arabidopsis have indicated that the ASR fungus 
exploits the necrotrophic pathway by inducing JA-mediated 
responses to evade host defense responses (Loehrer et al., 2008; 
Campe et al., 2014). The roles of PENETRATION 1-4 (PEN1-4), 
SENESCENCE-ASSOCIATED GENE 101, BRIGHT TRICHOMES 
1, and POSTINVASION-INDUCED NONHOST RESISTANCE 
GENES4/5/9 (PING4/5/9) in pre-invasive and post-invasive 
NHR mechanisms have been explored (Loehrer et al., 2008; 
Langenbach et al., 2013; Langenbach et al., 2016b). Furthermore, 
the potential of transferring NHR PING genes to soybeans and 
conferring enhanced ASR resistance has been demonstrated 
(Langenbach et al., 2016b). Transcriptional changes during the 
interaction of P. pachyrhizi with M. truncatula were used to identify 
genes involved in NHR (Ishiga et al., 2015). A combination of 
transcriptome and metabolite analysis indicated the role of the 
secondary metabolite, medicarpin, in inhibiting the germination 
and differentiation of rust urediniospores. Transcriptome 
analysis also indicated the role of chlorophyll catabolism genes in 
disease resistance. Further characterization of the STAY GREEN 
gene indicated its role in the hypersensitive-like response during 
the resistance interaction (Ishiga et al., 2015). Further, a forward 

genetics-based screening of M. truncatula Tnt1 insertion lines 
(Tadege et al., 2008; Sun et al., 2019) for alterations in response 
against P. pachyrhizi identified the inhibitior of rust germ tube 
differentiation1 (irg1) mutant (Uppalapati et al., 2012). IRG1 
encodes a Cys(2)His(2) zinc finger transcription factor, PALM1, 
which plays a role in regulating epicuticular wax metabolism 
and transport, and epicuticular wax is important for ASR spore 
differentiation (Uppalapati et al., 2012; Ishiga et al., 2013).

An interesting study involving resistant interaction with 
two foliar pathogens, Colletotrichum trifolii (hemibiotrophic 
pathogen) and Erysiphe pisi (biotrophic pathogen) and a 
partially resistant root pathogen, Phytophthora medicaginis 
(necrotrophic pathogen), with M. truncatula identified three 
Pathogenesis Related (PR) 10 genes, a TLP, and a gene encoding 
hevein-like protein to be upregulated (Samac et al., 2011). The 
phenylpropanoid pathway involving isoflavonoid synthesis was 
also upregulated. Further characterization of these genes using 
RNAi lines identified the role of the Chalcone Synthase gene 
in the phenylpropanoid pathway in conferring resistance to 
necrotrophic pathogens. (Samac et al., 2011).

A quantitative PCR-based TF platform in M. truncatula was 
used to conduct TF expression profiling during interactions with 
Uromyces striatus (Madrid et al., 2010; Villegas-Fernández et al., 
2014). The TF profiling in resistant interactions of M. truncatula 
with U. striatus identified genes encoding pathogenesis-related 
ethylene response factor (PR-ERF), WRKY, and the Myb class of 
TFs to be differentially expressed (Madrid et al., 2010). Comparing 
the TF expression profiling in the two pathosystems, Botrytis spp. 
and U. striatus, there were higher constitutively expressed TFs 
in M. truncatula-Botrytis spp. interactions, indicating an NHR-
like response, although this resistance was compromised in the 
lab-experimental system, allowing infection. This may also be 
indicative of the differences in the host response to biotrophic 
versus necrotrophic pathogens (Madrid et al., 2010).

Necrotrophic Pathogen Interactions
The availability of whole-genome microarrays of the model 
legume M. truncatula has advanced the understanding of various 
other fungal pathogen interactions in legumes (Uppalapati 
et al., 2009; Samac et al., 2011). M. truncatula is a susceptible 
host for Phymatotrichopsis root rot caused by the fungus 
Phymatotrichopsis omnivora (Uppalapati et al., 2010). Microarray 
analysis of this interaction identified JA- and ethylene-responsive 
genes, indicating a necrotrophic infection strategy (Uppalapati 
et al., 2009). Secondary metabolite genes involved in isoflavonoid 
synthesis were upregulated at the early infection stage but were 
eventually reduced to basal level during later disease progression 
stages, indicating the role of fungal manipulation of host defenses 
(Uppalapati et al., 2009).

Although M. truncatula is a nonhost for Botrytis spp., by 
screening several M. truncatula genotypes under lab conditions, 
a partially resistant genotype and a susceptible genotype were 
identified (Villegas-Fernández et al., 2014). This study identified 
Botrytis fabae as a more aggressive pathogen compared to B. 
cinerea on M. truncatula. However, microscopic studies indicate 
there is higher spore germination of the later pathogen species. 
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Transcription factor (TF) profiling indicated that the host 
perceives B. fabae to be a more virulent pathogen by upregulating 
diverse TFs involved in stress responses even before the visible 
symptoms appear (Villegas-Fernández et al., 2014).

An integrated omics approach using RNAseq and 
metabolomics (1H NMR) data was used to understand the 
primary metabolism regulation of soybean in response to 
Rhizoctonia solani infection (Copley et al., 2017). A significant 
flux of responses in redox reactions and ROS signaling along 
with changes in peroxidases, post-infection, were observed in 
soybean leaves (Copley et al., 2017).

Genomics of Plant-Oomycete Interactions
The oomycete pathogens of legumes that have been most studied 
using genomic tools are Phytophthora spp and Aphanomyces spp. 
Some of the early studies of gene expression changes in soybean 
with Phytophthora sojae reflected the hemibiotrophic infection 
strategy of the pathogen at the molecular level (Moy et al., 2004). A 
cDNA microarray with genes from both host plant and pathogen 
was custom-built, and a time course of susceptible interaction 
studies revealed the expression of active defenses in the host 
mediated by SA-triggered pathways at early infection stages. 
This included expression of PR1a gene and genes involved in 
the phenylpropanoid pathway. The host and pathogen responses 
peaked at around 24 hpi, followed by a reduction in the host 
responses, indicating the shift from biotrophy to necrotrophy 
(Moy et al., 2004). With the availability of the Affymetrix® gene 
chip for soybean, a detailed mapping of the soybean transcriptome 
change was carried out using three genotypes – resistant, partially 
resistant, and susceptible soybean varieties. This experiment was 
conducted with 72 biological replicates to understand the effect 
of genotypic variation on transcriptome changes (Zhou et  al., 
2009). The large number of replicates coupled with detailed 
statistical analysis demonstrated that almost the entire genome 
underwent low-level transcriptional changes in response to 
disease and genetic variation, yet most of the differences were 
less than two-fold in magnitude. This work hypothesized that 
these pervasive and statistically significant low-level changes may 
reflect the genotype-specific host adaptive changes in response 
to the pathogen and that studying these might be valuable. A 
macroarray study of resistant and susceptible interactions in 
the same disease system identified a role for putative regulators 
of chromosome condensation 1 protein family in the resistant 
interaction, suggesting the suppression of nucleocytoplasmic 
trafficking as one of the host strategies for combating disease 
(Narayanan et al., 2009). A more recent attempt to enrich the 
transcripts differentially expressed during the disease process 
employed the SSH cDNA library coupled with NGS (Xu et al., 
2012). This study identified genes encoding several traditional 
proteins involved in disease-resistance strategies, including 
various PR-like proteins, the WRKY class of transcription 
factors, and proteins involved in the phenylpropanoid pathway. 
A novel discovery of this work involved identifying the allergen 
gene Pru ar 1 (Prunus armeniaca) in soybean, which could be 
involved in resistance. Functional characterization of the Pru ar 
1 gene identified it as a novel gene encoding PR10 protein (Fan 
et al., 2015).

MicroRNAs (miRNAs) are 20- to 24-nucleotide long, single-
stranded non-coding RNAs that play critical roles in various 
biological functions, including plant innate immunity. miRNAs-
mRNA complexes regulate these responses (Navarro et al., 
2008). Microarray analysis was conducted with susceptible, 
qualitative-resistant, and quantitative-resistant cultivars of 
soybean infected with Phytophthora sojae (Guo et al., 2011). 
This study identified different microRNAs in the three different 
interactions. The bioinformatics search indicated that some of 
the targets involved diverse categories such as defense response 
genes, kinases, transcriptional factors, etc. Several microRNAs 
have inverse expression patterns to their putative target genes. 
These data indicated a role for microRNAs in regulating plant 
defense responses in resistant interactions. To understand 
the single dominant gene in Resistance to Phytophthora sojae 
(Rps)-mediated resistance mechanisms in soybean-P. sojae 
interactions, researchers conducted transcriptome analysis of 
10 near-isogenic lines, each with a unique Rps gene/allele (Lin 
et al., 2014). This study identified that Rps recognition was 
characterized by induction of SA-, ethylene-, and brassinosteroid 
phytohormone-signaling pathways, repression of JA pathways, 
ROS, WRKY transcription factors, MAP kinase-signaling 
pathways, and phytoalexin production. The compatible 
reaction was characterized by the induction of the JA pathway, 
repression of the ethylene pathway, and no changes to the SA and 
brassinosteroid pathways (Lin et al., 2014).

Aphanomyces euteiches, the causal organism of Aphanomyces 
root rot, is a major soilborne oomycete pathogen that infects 
various legume species, including pea, lentil, and alfalfa (Pilet-
Nayel et al., 2009). In an attempt to understand the strategies 
employed during A. euteuches interactions with M. truncatula 
in a compatible interaction, a cDNA-AFLP approach was first 
employed to understand the optimal infection time for evaluation, 
followed by cDNA enrichment with SSH (Nyamsuren et al., 
2003). This study identified classical PR- and defense genes. The 
molecular analysis indicated abscisic acid-mediated signaling 
that could induce PR-10 protein. The PR-4 protein-containing 
hevein domain, which could bind chitin, was also identified. A 
more recent study was conducted to compare the transcriptional 
responses in compatible interactions of pea plants with both 
the oomycete pathogens discussed here—Phytophthora pisi and 
A. euteiches—using a M. truncatula microarray (Hosseini et al., 
2015). The study revealed different recognition and signaling 
components in the host against the two pathogens. PTI and 
ETI responses were detected in the early stages of infection with 
both pathogens. JA- and ET-hormone signaling were involved 
in both interactions, while the auxin-induced SAUR family 
proteins were specific to A. euteiches. The interactions of downy 
mildew pathogen, Peranospora viciae f. sp. Pisi, with pea leaves 
were investigated with SSH cDNA libraries (Feng et al., 2012). 
The study identified downy mildew resistance genes RPP6/6/27 
involved in this interaction.

Genomics of Plant–Bacteria Interactions
The application of genomic tools in understanding bacterial 
pathogenesis in legumes is relatively limited compared to in 
fungal pathogenesis studies. NGS technologies have been 
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employed to understand the interactions of Xanthomonas 
axonopodis pv. glycines (Xag), which causes bacterial leaf pustule 
(BLP) disease in soybean (Kim et al., 2011; Chatnaparat et al., 
2016). Kim et  al. (2011) studied the transcriptome profiling in 
near-isogenic lines (NILs) of resistant and susceptible cultivars of 
BLP while Chatnaparat et al. (2016) studied the gene expression 
of the pathogen in susceptible host leaves. In the former study, 
several genes involved in PTI response such as EF-TU RECEPTOR 
(EFR)- and FLAGELLIN SENSING 2 (FLS2)-, ATPASE 4 (ACA4)-, 
ACA11-, MAP KINASE 4 (MPK4)-, MPK6-, and RESPIRATORY 
BURST OXIDASE HOMOLOGUE (RBOH)-like genes, and 
Damage-Associated Molecular Pattern (DAMP) receptors such 
as PLASMA MEMBRANE LRR RECEPTOR KINASE 1(PEPR1) 
and PEPR2, were induced at 0 hours post inoculation (hpi) in 
BLP-resistant NILs and not in BLP-susceptible NILs. Defense 
response genes such as RPP-, RPM1-, and Mildew Locus O (MLO)-
like genes also were induced at this time point in BLP-resistant 
NILs. The authors speculate that this early up-regulation of PTI-
related genes potentiates immune response during pathogen 
attack. Although the Xanthomonas species is known to be a 
biotroph, Xag behaves like a necrotrophic pathogen in soybean, 
as demonstrated by the molecular mechanisms in this study. 
Several genes encoding jasmonate-zim domain (JAZ)-like and 
MYC2 TF proteins were also induced at 0 hpi (Kim et al., 2011). 
This work demonstrates that the activity of PTI components at 
the early stage of infection is an important defense mechanism in 
the resistant soybean NIL tested.

Bacterial wilt caused by Ralstonia solanacearum is an 
important pathogen of peanuts, and genomic tools have been 
employed to understand the host–pathogen interactions. Early 
studies in this system were done using cDNA libraries where 
both the roots and leaves of peanuts were challenged with the 
pathogen, while in nature Ralstonia is a root pathogen (Huang 
et al., 2012). Ethylene and JA pathway genes were induced in 
both the roots and leaves of a highly resistant peanut cultivar. 
Several secondary metabolite genes were induced in roots and 
not in leaves, indicating the natural adaptation of the host to 
a root pathogen (Huang et al., 2012). In a more recent study 
of this pathosystem, NGS technology was used to study the 
gene expression differences between susceptible and resistant 
cultivars (Chen et al., 2014). In this study, the suppression of 
primary metabolism, especially carbohydrate metabolism, was 
an important feature in the resistant interaction, indicating the 
shift of energy investment from the primary metabolism to 
defense mechanisms. The PTI defense pathway was triggered 
in both resistant and susceptible interactions, and its partial 
suppression by the pathogen was observed. The expression 
patterns of secondary metabolites and defense response genes 
and hormone analysis indicated that resistance was primarily 
conferred by defense response genes in the ETI response cascade. 
Bacterial blight disease of soybean is caused by Pseudomonas 
syringae pv. glycinea (Psg). In a cDNA microarray study of both 
resistant and susceptible interactions of Psg with soybean using 
a virulent and avirulent strain of Psg, a three-phase response was 
studied. In phase I, which corresponded to the induction stage 
at 2 hpi, no significant differences were seen between susceptible 
and resistant interactions. Phase II, which lasted from 3 to 10 hpi, 

and phase III, up to 24 hpi, corresponded to the effector stage 
and programmed cell death (PCD) stages in resistant interaction, 
respectively. Several gene expression changes were observed in 
phases II and III. An important reported observation was a 92% 
reduction in the expression of chloroplast-related genes in the 
resistant interaction event at 8 hpi with no visible symptoms. 
Physiological measurements supported these data. There was 
a lack of ROS in the susceptible interaction at phase II. This 
study suggested the role of photosystem centers as a potential 
source of the secondary ROS or the oxidative burst response 
that eventually leads to PCD in phase III (Zou et al., 2005). 
Pseudomonas syringae pv. syringae causes bacterial stem blight 
in alfalfa. RNAseq was conducted to study the host–pathogen 
interactions in resistant and susceptible alfalfa cultivars at two 
different time points (Nemchinov et al., 2017). The timing of 
resistance response differed in both cultivars. The ZG9830 
cultivar triggered ETI responses much earlier than the Maverick 
cultivar. The resistance response in cultivar ZG9830 may involve 
NBS-LRR, TIR-unknown (TX), and nematode-resistance 
proteins named based on their homology to Hs1pro-1 (HSPRO2)-
like R genes, while the cultivar Maverick may involve the CNL 
class of R genes (Nemchinov et al., 2017).

Genomics of Nematode–Plant Interactions
Heterodera glycines, commonly known as soybean cyst nematode 
(SCN), is among the most devastating soybean pathogens. 
In an attempt to engineer resistance against SCN, detailed 
characterization of the molecular changes during the infection 
process in both soybean and the pathogen have been performed. 
cDNA-based microarrays were initially used to profile the 
transcriptome changes in the soybean roots during different 
infection stages in both compatible and incompatible interactions 
with SCN (Alkharouf et al., 2004; Khan et al., 2004; Alkharouf 
et  al., 2006). These studies identified compatible interaction-
specific and incompatible interaction-specific genes as well as 
time-based induction of genes. Stress-induced gene PR-10 was 
identified in both compatible and incompatible interactions. 
Several genes belonging to carbohydrate metabolism, plant 
defense response, and signaling were indicated in compatible 
interaction. In a time-course study by Alkharouf et al. (2006), 
plant responses were documented prior to feeding cell selection 
(pre-FCS) as well as after feeding cell selection (post-FCS) during 
compatible interaction. The pre-FCS stages induced PR-10 
genes, stress-related genes, carbohydrate-metabolism genes, 
and secondary metabolism genes. The differentially expressed 
genes during post-FCS were involved in transcription and 
protein synthesis. Later studies employing the Affymetrix® gene 
chip identified differentially expressed genes like PR-5, PR1a, 
Expansins, cell wall-fortification genes, and phenylpropanoid 
pathway genes during the post-FCS stage (Ithal et al., 2007). 
Differential gene expression changes were observed in different 
genotypes even during the pre-FCS based on the interaction 
type (compatible/incompatible) in whole-root analysis. Genes 
belonging to No Apical Meristem (NAM) domain-containing 
TFs, the WRKY class of TFs, Nucleotide Binding Site-Leucine 
Rich Repeat (NBS-LRR) kinases, signal transduction, cell wall-
fortification, and GC-enriched elements in promoters of genes 
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were identified in the incompatible interaction (Klink et al., 2007b; 
Mazarei et al., 2011; Wan et al., 2015). In an attempt to enrich for 
genes differentially expressed during pathogenesis, RNA isolated 
from laser-capture microdissection samples of syncytial cells was 
used for microarray analysis with the soybean Affymetrix® gene 
chip to understand the defense responses in both compatible and 
incompatible interactions (Klink et al., 2007a; Klink et al., 2009b; 
Klink et al., 2010; Kandoth et al., 2011; Matsye et al., 2011). The 
developmental stages of syncytium are divided into a parasitism 
phase where the syncytium develops and a second phase when 
the resistance develops. Microarray studies of gene expression 
during these specific stages indicated that the whole-root analysis 
masked several key players that are involved in the specific 
interactions. There were no significant changes in gene expression 
in the parasitism stage in the compatible and incompatible 
interactions (Klink et al., 2010). Lipoxygenases, 14-3-3, and 
genes involved in JA and ethylene biosynthesis, the S-adenosyl 
methionine pathway, the flavonoid pathway, and coumarin 
and cellulose biosynthesis were highly induced in the resistant 
interaction at different stages of resistance response (Klink et al., 
2007a; Klink et al., 2009b; Klink et al., 2010). The gene expression 
profiling in Resistance to H. glycines (Rhg1)-mediated soybean 
resistance utilizing laser capture microdissections identified 
apoptosis-related, hypersensitive, and SA-induced defense 
response genes in the resistant interaction. Several of these genes 
were either partially or completely suppressed during susceptible 
interactions with SCN (Kandoth et al., 2011). Genotype-specific 
defense response studies in soybean indicated two different types 
of resistant responses involving the varieties Peking and PI88788. 
Resistance in the Peking variety involved rapid and potent 
cell wall appositions, while resistance in the PI88788 variety 
involved potent but slow response without cell wall appositions 
(Matsye et al., 2011). Microarray studies in these two varieties 
indicated the role of amino acid transporter and alpha soluble 
NSF (N-ethylmaleimide-sensitive factor) attachment protein 
in plant defense (Matsye et al., 2011). Another study with two 
different SCN populations that invoke a resistant and susceptible 
response in the same soybean genotype, Peking, revealed that 
SCN might have evolved different mechanisms to overcome host 
resistance (Klink et al., 2009a). Approximately 71 genes were 
induced and 44 genes were suppressed in the SCN strain that 
triggered a resistant reaction in the host during pre-infection 
stage. As the infection progressed, many SCN genes were 
suppressed in the resistant interaction. These data indicate that 
the feeding and nutritional uptake mechanisms of SCN might be 
the targets of the host defense. A recent study conducted by Tian 
et al. identified the microRNAs that are differentially expressed 
between two soybean cultivars, KS4313N and KS4607, which 
have differential resistance response to SCN. They identified 
a total of 60 differentially expressed miRNAs belonging to 25 
families correlating to the response of the cultivars (Tian et al., 
2017). Black soybean, Huipizhi Heidou, has different grades of 
resistance to SCN. RNAseq analyses at three different infection 
time points were conducted in two cultivars representing 
resistant and susceptible interactions (Li et al., 2018b). The study 
suggested roles for five plant hormones in the resistance. While 
SCN is a pathogen of soybean, it can also infect and reproduce 

in the roots of common bean, causing yield reductions. Gene 
expression profiling of common bean roots upon infection with 
SCN resulted in the differential expression of genes encoding 
nucleotide-binding site leucine-rich repeat resistance (NLR) 
proteins, WRKY TFs, PR proteins, and heat shock proteins (Jain 
et al., 2016).

Meloidogyne spp., commonly known as root-knot nematodes 
(RKN), are biotrophic parasites of soybean and cause major 
crop losses. The resistance mechanisms of incompatible soybean 
interactions with Meloidogyne incognita indicated auxin-
mediated defense responses (Beneventi et al., 2013). Based on 
transcript profiling, a potential defense model was proposed in 
which ROS-mediated calcium signaling and nucleoside sugar 
formation play a critical role in plant hormone signaling. ROS 
homeostasis was proposed through a balance of auxin-mediated 
gibberellic acid (GA) and ROS-mediated JA and GA pathway 
signaling, which maintains low oxidative stress in plants and 
allows for plant growth. DELLA-like protein was proposed to 
be a key element in the plant hormone signaling pathway. On 
the other hand, the gene expression studies on the compatible 
interactions with RKN indicated an induction of genes involved 
in the cell cycle, sugar metabolism, and cell wall metabolism. 
These processes are involved in the successful establishment of 
giant cells during the infection process. Host defense response 
genes involving JA-mediated pathways were induced in the 
early infection stages, while most of them were downregulated 
by the time the infection had progressed, indicating that RKN 
actively manipulates host defenses (Ibrahim et al., 2011). 
The studies on the Rk locus-mediated resistant interaction of 
RKN indicated that most of the host defenses were suppressed 
during the infection and feedings stages. Based on this work, 
it was proposed that the host defenses are triggered against 
the nematode infection, likely due to the high accumulation 
of toxins involving unique resistance mechanisms (Das 
et  al., 2010). NGS studies during the early and late stages of 
the compatible interaction of M. incognita in common bean 
identified biotic and abiotic stress responses (Santini et al., 
2016). Enhanced expression of wound responsive genes at 
early stages and the TMV resistance protein encoding N gene 
indicated an active host response to block pathogen infection. 
This basal response was broken by suppression of ET/JA 
pathways and at later infection stage (Santini et al., 2016). 
M. incognita can also infect alfalfa and cause disease in some 
varieties or accessions. Resistant and susceptible interactions 
of M. incognita with alfalfa were profiled using both cDNA 
libraries and through NGS using Illumina Hiseq 2000 (Potenza 
et al., 2001; Postnikova et al., 2015). There was a high induction 
of defense-related and stress-response genes in susceptible 
interaction, indicating basal defense responses. Analysis with 
the bioinformatics platform for plant resistance (R) gene 
analysis, PRGdb, identified two potential resistance (R) genes 
specific to the resistant interaction. Recently, NGS was used to 
study the genomics of resistance in wild diploid peanut Arachis 
stenosperma that harbors resistance to M. arenaria (Guimaraes 
et al., 2015). This study identified components of genetic 
resistance and induced resistance that could be integrated into 
breeding programs for durable resistance to RKN.
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Genomics of Plant–Virus Interactions
Soybean mosaic virus (SMV) is an RNA virus and is one of 
the most prevalent viral pathogens of soybean. A handful 
of genomics studies have been conducted to understand the 
molecular changes involved in this disease interaction, including 
transcriptomics, degradome-seq, and smallRNA-seq (sRNA-seq). 
One of the earliest genomic studies of SMV-soybean interaction 
was conducted using cDNA microarrays to investigate the 
transcriptional changes from early to late infection stages. This 
study revealed that the plant immune responses are activated at 
late infection stages in the compatible interaction and that this 
delayed defense response may be critical to establishing systemic 
infection (Babu et al., 2008). To study the impact of elevated 
ozone on the SMV–soybean compatible interaction, gene 
expression profiling was conducted using soybean microarrays. 
Increasing ozone concentrations delayed the onset of disease, 
and this delay corresponded to the expression of basal defense 
response genes (Bilgin et al., 2008). Comprehensive RNA-seq, 
sRNAseq, and degradome-seq were performed in soybean 
during compatible and incompatible interactions with SMV in 
two different studies (Chen et al., 2016; Chen et al., 2017). An 
miRNA-mRNA regulatory network was developed based on 
these data to elucidate the role of miRNAs in the SMV infection 
process. This study further identified 71 genes that potentially 
play a role in defense during SMV infection (Chen et al., 2016). 
One of the differentially expressed genes, Eukaryotic Elongation 
Initiation Factor 5A (ElF5A), was further characterized, and the 
knockout mutant of this gene was hyper-susceptible to SMV 
(Chen et al., 2017). A time-course RNA-seq study during the 
soybean–SMV compatible interaction identified roles for SA and 
NLR family genes that were downregulated during compatible 
interaction and upregulated during incompatible interactions 
(Zhao et al., 2018).

Transcriptional responses during Bean common mosaic virus 
(BCMV) interaction with common bean were investigated with 
two known and one unknown strains of BCMV. The known 
strains that caused moderate disease symptoms induced more 
transcriptional changes than the unknown strain that caused 
severe symptoms (Martin et al., 2016). More recently, a study was 
conducted to identify miRNAs during the infection of Mungbean 
yellow mosaic India virus (MYMIV) in common bean employing 
high-throughput sequencing and identified 107 differentially 
expressed miRNAs during infection and 3,367 potential target 
genes for these miRNAs (Patwa et al., 2018).

Genomic Applications in Legume Breeding
Molecular Markers in Legume Plant–Pathogen 
Interactions
Engineering or breeding for resistance against plant diseases and 
nematodes is a more economical and eco-friendly approach than 
is the use of pesticides. The selective breeding process depends on 
the type of trait and whether the information for such resistance 
can be inherited in a qualitative or quantitative manner (Poland 
and Rutkoski, 2016). Qualitative disease-resistance breeding 
involves large screening assays that are often laborious and 
require extensive knowledge of plant–pathogen interactions. 

Lately, introgression of resistance genes into selective breeding 
material have relied on the use of molecular markers to assist 
breeders in the breeding process, which is often called Marker 
Assisted Selection (MAS) (Cobb et al., 2019). Molecular markers, 
including AFLPs, simple sequence repeats (SSRs), and more 
commonly single nucleotide polymorphisms (SNPs), have been 
developed in a variety of crops and used for different breeding 
programs. Nucleotide binding site (NBS) profiling, a new marker 
technology that improves the detection of molecular markers for 
disease resistance, was developed to identify markers by using 
NBS regions in the genomes (Van Der Linden et al., 2004). Due 
to its gene-targeting nature, NBS-profiling directs a PCR reaction 
to NBS domains through which a large number of R genes can 
be identified as molecular markers (Van Der Linden et al., 2004). 
More recently, the availability of genome sequence information 
for a number of plant species, including legumes, has helped the 
identification of molecular markers such as SNP markers that can 
be integrated into breeding programs for resistance screening. 
Some of the recent genomic resources available in legumes such 
as M. truncatula, L. japonicus, soybean, chickpea, and pigeon pea 
are described here (Sato et al., 2007; Sato et al., 2008; Schmutz et 
al., 2010; Young et al., 2011; Varshney et al., 2012; Varshney et al., 
2013; Wang et al., 2013; Pecrix et al., 2018). Markers developed 
in a variety of ways are integrated into legume breeding programs 
for resistance against plant pathogenic fungi, oomycetes, bacteria, 
and nematodes. Though a common approach for engineering 
resistance into plants is through the integration of race-specific 
resistance against a known pathogen, this may not impart long or 
durable resistance, as the single R gene-mediated resistance can 
be overcome in an arms race by the rapidly evolving pathogens 
(Fonseca and Mysore, 2019). Hence, a better approach to create 
a durable resistance is through the deployment of quantitative 
trait loci (QTLs) through breeding strategies (Kou and Wang, 
2010; Kou and Wang, 2012; Zhou et  al., 2018) or through a 
transgenic approach using genes involved in NHR from different 
plant species (Fonseca and Mysore, 2019). Previous studies 
identified several genes involved in NHR against important 
legume pathogens (Fonseca and Mysore, 2019). Phytophthora 
sojae is a fungal pathogen that causes root rot in soybean and 
is non-pathogenic on M. truncatula, alfalfa, and Arabidopsis. 
Penetration mutants (pen1-1) in Arabidopsis were found to 
be compromised to Phytophthora sojae, thus establishing the 
case for pre-invasive non-host resistance (Sumit et al., 2012). 
This gene, when transferred to soybean, resulted in enhanced 
resistance to Fusarium virguliforme (Wang et al., 2018). Similarly, 
the Asian soybean rust pathogen, P. pachyrhizi, was not able 
to infect M. truncatula, alfalfa, or Arabidopsis (Loehrer et  al., 
2008; Langenbach et al., 2013; Ishiga et al., 2015). The strategy 
of transferring genes involved in NHR was used to increase the 
resistance of soybean to P. pachyrhizi. In this case study, 10 PING 
genes were overexpressed in soybean, resulting in enhanced 
resistance to P. pachyrhizi infections (Langenbach et al., 2016b).

In this section, we will explore the use of markers and QTLs 
in legume resistance breeding. Bulk segregant analysis (BSA) was 
used to map resistance to A. euteiches (AER1) in M. truncatula 
(Pilet-Nayel et al., 2009). Meta-QTL analysis in pea resulted in 
the identification of 27 meta-QTLs for resistance to A. euteiches. 
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Six of them were found to co-localize with six of the meta-QTL 
regions identified for plant height and earliness (Hamon et al., 
2013). Two major QTLs Ae-Ps7.6 and Ae-Ps4.5 were identified 
in pea near-isogenic lines (NILs) that were able to delay the 
symptoms of oomycete pathogen A. euteiches in pea (Lavaud 
et al., 2016).

Ascochyta blight (AB) of pea is caused by complex of fungal 
pathogens including Didymella pinodes and Phoma medicaginis 
var pinodella. QTLs of resistance to the blight complex 
pathogens were identified as QTLs based on two QTL mapping 
populations, A26 × Rovar and A88 × Rovar. QTL peaks, for the 
Asc2.1, Asc4.2, Asc4.3, and Asc7.1 QTLs, were defined by four 
of the pea defense candidate genes (Timmerman-Vaughan et al., 
2016). These regions were identified on linkage group I in the 
vicinity of markers c206 and sB17-655, on linkage group III 
in the vicinity of markers M2P5-169 and PI39, and on linkage 
group VII in the vicinity of markers Z12-2400, HSP18.1, and 
MAPKinase (Timmerman-Vaughan et al., 2016). Similarly, AB 
of dry pea is predominantly caused by Didymella pisi. In an effort 
to identify QTLs that show consistency across locations and 
years, Jha et al. (2016) identified two QTLs, abIII-1 and abI-IV-2, 
for AB resistance. AB is also an important disease in faba bean, 
resulting in yield losses of 35-40% (Atienza et al., 2016). Two 
QTLs governing resistance to Ascochyta fabae were identified 
on chromosome II (Af2) and chromosome II (Af3) of faba bean 
(Atienza et al., 2016).

Rusts in pea are caused by pea rust pathogen Uromyces pisi. 
Using DArT-Seq and 8,514 SNP markers, two QTLs, UpDSII and 
UpDSIV, were identified in the Linkage Groups (LGs) II and IV 
that controlled resistance to Uromyces pisi (Barilli et al., 2018). In 
cowpea, rust is caused by the Uromyces vignae pathogen. A single 
dominant R gene (Ruv2) that confers resistance against U. vignae 
was found to be inherited in RILs against the U. vignae isolate, 
Auv-LS (Wu et al., 2018).

Powdery mildew in pea is caused by Erysiphe pisi. The 
infection results in the formation of small diffused spots on 
the upper surface of the leaves and at advanced stages covers 
the entire plant surfaces as a white powdery growth (Ek et al., 
2005). Powdery mildew resistance in pea is governed by a pair 
of recessive alleles “er1er1” (W.H, 1948; Tiwari et al., 1997). 
Humphry et al. (2011) identified the Er1 locus as PsMLO1 and 
established through complementation that the loss of PsMLO1 
function conditions durable broad-spectrum powdery mildew 
resistance in pea. Besides the recessive allele er1, another recessive 
allele er2 and a dominant gene Er3 was recently identified and 
reviewed by Fondevilla and Rubiales (Fondevilla and Rubiales, 
2012). Er3, the dominant gene conferring resistance to powdery 
mildew in pea, was mapped to pea linkage group IV (Cobos 
et  al., 2018). A variety of molecular markers closer to the Er 
locus were developed to screen the genotypes of pea for powdery 
mildew resistance (Ek et al., 2005; Sun et al., 2016a; Ganopoulos 
et al., 2018). A novel er1-7 allele conferring pea powdery mildew 
resistance was identified through a 10-bp deletion in PsMLO1 
cDNA (Sun et al., 2016b). Other natural variations of er1 alleles 
have been identified, and markers have been designed to screen 
for powdery mildew resistance in pea (Sudheesh et al., 2015; Sun 
et al., 2016a; Sun et al., 2016b).

Pea root rot is caused by a variety of fungal plant pathogens, 
and the causal agent has been identified as Fusarium solani 
fsp. pisi (Fsp). A strong QTL, Fsp-Ps 2.1, governing resistance 
to Fsp has been detected in the recombinant inbred line (RIL) 
populations of pea (Baccara × PI 180693). The QTL Fsp-Ps 2.1 
has been identified along with two other minor variance QTLs 
using three criteria: root disease severity, ratios of diseased vs. 
healthy shoot heights, and dry plant weights under controlled 
conditions (Coyne et al., 2019).

Soybean cultivation is significantly affected by SCN and 
by the sudden death syndrome (SDS) caused by the soilborne 
fungus F. virguliforme. SDS of soybean results in necrosis/rot of 
roots, while SCN infection results in yellow dwarf symptoms in 
soybean. Using soybean plant populations resistant to SCN and 
SDS, QTL mapping populations have been developed to identify 
QTLs for both SDS and SCN (Swaminathan et al., 2018).

Verticillium wilt, caused by the soil borne fungus Verticillium 
alfalfae, is one of the most serious diseases of alfalfa. Through 
the use of BSA on the alfalfa genotypes and by using marker-
trait associations with the help of SSRs and SNPs, 17 SNP 
markers linked to Verticillium wilt resistance were identified 
(Zhang et al., 2014). Similarly, using M. truncatula as a model to 
develop QTLs for resistance against Verticillium, a population 
of recombinant inbred lines (RILs) from a cross between 
resistant line F83005.5 and susceptible line A17 were inoculated 
with a potato isolate of V. albo-atrum, LPP0323. Following the 
inoculation and screening, a set of four QTLs were identified 
for the area under the disease progress curve and for maximum 
symptom score (Negahi et al., 2014). A similar study design was 
used to identify three distinct QTLs (MtVa1, MtVa2 and MtVa3) 
that confer resistance to V. albo-atrum in a population of A17 
and DZA45.5 (Ben et al., 2013). A recent transcriptomic study 
conducted on the early root responses of M. truncatula lines 
A17 (resistant) and a susceptible line (F83005.5) identified core 
transcriptional responses against root pathogens and showed 
that the resistance line A17 displayed higher defense-related 
genes upon inoculation with V. alfalfae V31-2 (Toueni et al., 
2016). Phytophthora root rot is caused by an oomycete pathogen 
Phytophthora sojae, resulting in damping-off, yellowing and 
wilting diseases in soybean (Li et al., 2017). A QTL, Resistance 
to Phytophthora sojae (RpsQ), which confers resistance against 
P. sojae in soybean cultivar Qichadou 1, was mapped using SSR 
markers to a 118-kb region on the soybean chromosome 3. This 
118-kb mapped region consists of 11 candidate genes, and one of 
them, Glyma.03g027200, was found to encode a serine threonine 
receptor-like kinase (RLK), which was later confirmed as a 
likely candidate gene of RpsQ. In a study of M. truncatula roots 
colonized by pathogenic oomycete Phytophthora palmivora, 
SNP markers associated with plant colonization response were 
identified upstream of a Required for Arbuscule Development 1 
(RAD1) locus, a positive regulator of arbuscular mycorrhizal 
(AM) fungus (Rey et al., 2017). The rad1 mutant was impaired 
in colonization by AM fungi as well as by P. palmivora (Rey et al., 
2017). This is one example showing how the use of association 
mapping in legumes can help identify the genes responsible 
for genetic resistance against an oomycete pathogen. Readers 
are encouraged to read the more recent review on fungal root 
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diseases in grain legumes and the implications of plant genetic 
variation in plant breeding (Wille et al., 2019).

Anthracnose of lentils is caused by Colletotrichum lentis and 
accounts for 70% of the crop loss in lentils (Bhadauria et al., 2019). 
Recent genomic sequencing studies on one of the pathogenic 
races of C. lentis (virulent race 0) combined with QTL mapping 
led to the identification of a single QTL, qClVIR-11, located on 
mini chromosome 11, thus explaining 85% of the variability in 
virulence of the C. lentis population (Bhadauria et al., 2019).

Cowpea is one of the highly cultivated legume crops and is 
susceptible to many biotic stresses caused by nematodes, bacteria, 
and fungi. Root-knot nematodes (RKN) are the most important 
pests of cowpea, resulting in huge losses due to their interference 
with the root architecture, which results in poor development of 
the plants (Santos et al., 2018). Previously, two resistance genes, 
Resistance to Root knot (Rk) and Rk2, were identified to confer 
resistance against RKN in cowpea (Das et al., 2010; Ndeve et al., 
2019). A recent QTL mapping study using RIL population 524B 
x IT84S-2049 in cowpea resulted in the identification of a major 
QTL, QRk-vu9.1, associated with resistance to Meloidogyne 
javanica reproduction (Santos et al., 2018). This QTL was 
mapped on linkage group LG9 at position 13.37 cM using egg 
production data. Interestingly, the mapped intervals for this QTL 
corresponded with six TIR-NBS-LRR (TNL) genes that were 
identified using transcriptomic analysis between NILs resistant 
and susceptible to RKN (Santos et al., 2018). A majority of the 
examples quoted here are in early studies towards achieving 
economic benefits by developing disease-resistant cultivars.

Use of GWAS in Legume–Pathogen Interactions
In plant species, underlying variation with phenotypic data can be 
quantified, and genome-wide association mapping (GWAS) can 
be applied for identifying genes and for associating them with the 
phenotypes. This type of GWAS analysis for SNP discovery is made 
possible through the development of several target-enrichment or 
reduction-of-genome-complexity methods such as Genotyping-
by-Sequencing (GBS) (Elshire et al., 2011; Glaubitz et al., 2014) or 
restriction site-associated DNA sequencing (RADSeq) (Davey and 
Blaxter, 2010). RADseq combines two simple molecular biology 
methods such as restriction digestion of DNA into fragments and 
then tagging them using identifier tags followed by NGS (Das 
et al., 2010). Recently, Diversity Arrays Technology (DArT) in 
combination with NGS platforms, known as DArTseq™, was used 
to develop a relatively large number of polymorphic markers to 
build dense genetic maps (Kilian et al., 2012; Kilian and Graner, 
2012). In the GBS methodology, genome complexity is reduced 
through the use of methylation-sensitive restriction enzymes. Such 
a method helps avoid the sequencing of repetitive regions and can 
aid in the sequencing of low copy regions with high efficiency 
(Elshire et al., 2011). The majority of the GWAS studies described 
below in this section followed the GBS methodology to generate 
the genotyping data for SNP identification and exclusively used 
the GWAS pipelines developed for model and non-model plants 
(Lipka et al., 2012; Glaubitz et al., 2014; Tang et al., 2016). A variety 
of experiments have been conducted using GWAS to study the 
variations associated with the phenotypes in Arabidopsis (Atwell 
et al., 2010), Maize (Tian et al., 2011), rice (Huang et al., 2010), 

soybean (Lam et al., 2010), and M. truncatula (Branca et al., 2011). 
In this section, we will review GWAS studies of legumes in relation 
to disease resistance phenotypes. Alternatively, HapMap accessions 
that are sequenced by whole genome sequencing provide an 
excellent opportunity for the identification of SNPs across the 
HapMap populations (http://www.medicagohapmap.org/). Some 
of the M. truncatula HapMap accessions (288 accessions) were 
used to map flowering time traits linked to nitrogen fixation and 
for identifying other traits of interest (Stanton-Geddes et al., 2013; 
Kang et al., 2015; Kang et al., 2019). GWAS was used to estimate 
linkage disequilibrium levels and identify quantitative resistance 
loci (QRL) controlling resistance to both anthracnose and Angular 
leaf spot (ALS) diseases of 180 accessions of common bean. 
The study resulted in the identification of 21 and 17 statistically 
significant SNPs associated with anthracnose and ALS diseases of 
common bean, respectively (Perseguini et al., 2016). Bonhomme 
and his colleagues (Bonhomme et al., 2014) used high-density 
SNPs (~5.1 million single nucleotide polymorphisms) to perform 
GWAS studies with Aphanomyces root rot resistance against 179 
HapMap accessions of M. truncatula. With the use of GWAS, 
they were able to identify two QTL loci on chromosome 3, with 
candidate SNPs in the promoter and coding regions of an F-box 
protein coding gene (Bonhomme et al., 2014). GWAS was recently 
used in 175 Pisum sativum lines and were genotyped for resistance 
to A. euteiches using 13,204 SNPs from the GenoPea Infinium® 
BeadChip (Desgroux et al., 2016). The study resulted in the 
identification of 52 QTLs of small size intervals associated with 
resistance to A. euteiches and further validated six of the seven 
previously reported QTLs (Desgroux et al., 2016). A similar GWAS 
study was performed to find the association between the plant 
system architecture of pea and A. euteiches resistance by using 266 
pea lines that varied in both of the traits (plant system architecture 
and disease resistance). Genotyping the lines with 14,157 SNP 
markers resulted in the identification of one significant SNP 
mapped to major QTL Ae-Ps7.6 associated with both resistance 
and root system architecture (RSA) traits (Desgroux et al., 2017).

Brown stem rot (BSR) of soybean, caused by the soilborne 
fungus Cadophora gregata, affects soybean production in the 
Northern United States, Canada, and Brazil. Using GWAS, a 
BSR resistance QTL has been identified in chromosome 16 and 
is located between 32.8 and 33.1 Mb based on the Glyma2.0 
assembly (Rincker et al., 2016). More importantly, this region 
also maps to previously identified Resistance to Brown Stem Rot 
genes (Rbs) Rbs1, Rbs2, and Rbs3 (Rincker et al., 2016). This 
narrow range of resistance QTL could be useful for MAS breeding 
programs. A comprehensive global view of disease resistance 
loci in soybean against multiple plant pathogens was presented 
through the use of GWAS on public Germplasm Resources 
Information Network and public SNP data (SoySNP50K; (Chang 
et al., 2016). Using GWAS, the authors identified significant 
novel SNPs associated with resistance to: bacterial pustule 
caused by Xanthomonas axonopodis pv. glycines; BSR caused by 
fungus C. gregata; Diaporthe stem canker caused by Diaporthe 
phaseolorum var. caulivora and D. phaseolorum var. meridionalis; 
SDS caused by F. virguliforme; ASR caused by P. pachyrhizi; SCN 
caused by reniform nematode, Rotylenchulus reniformis; and 
bean pod mottle virus (Chang et al., 2016).
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GWAS was applied to detect SNPs significantly associated with 
resistance to H. glycines in the core collection of the common bean. 
There were 84,416 SNPs identified in 363 common bean accessions 
(Wen et al., 2019). GWAS identified SNPs on chromosome 1 that 
were significantly associated with resistance to H. glycines type 
2.5.7. These SNPs were in linkage disequilibrium with a gene 
cluster orthologous to the three genes at the Resistance to H. 
glycines (Rhg1) locus in soybean. A novel signal on chromosome 
7 was detected and associated with resistance to H. glycines type 
1.2.3.5.6.7. Genomic predictions for resistance to these two H. 
glycines types in common bean achieved prediction accuracy of 
0.52 and 0.41, respectively (Wen et al., 2019).

The molecular markers developed in legume species such as 
M. truncatula, pea, lentil, faba bean, and lupin can be used in 
other legumes. Recently, the transferability of molecular markers 
was tested in legumes such as chickling pea (Lathyrus cicera) and 
grass pea (L. sativus) (Almeida et al., 2014). During this study, 
~130 markers were successfully cross-amplified in L. cicera and 
L. sativus with an efficiency of 55% for gene-based markers 
(Almeida et al., 2014). Such comparative mapping can greatly 
boost the use of resources and expand the knowledge base in 
other related species as well.

Gene Editing in Legume–Pathogen Interactions
Gene introgression through breeding often comes with some 
undesirable trait inheritance that can perturb a desired outcome. 
Hence, the integration of plant breeding with precise editing of 
target genes can efficiently aid in the implementation of pathogen 
resistance in plants. This precision editing is recently made 
possible through the use of programmable sequence-specific 
nucleases such as zinc finger nucleases (ZFNs), transcription 
activator-like effector nucleases (TALENs), and, more recently, 
the clustered regularly interspaced short palindromic repeat 
(CRISPR)-associated protein9 (Cas9)-based genome editing 
tool (CRISPR/Cas9). These tools effectively generate target site 
mutations based on base-pairing of the engineered single-guide 
RNAs (sgRNAs) to the target DNA sites. More information on the 
development and applications of the CRISPR-Cas9 technologies 
in plant genomes can be found in previous reviews (Cong et al., 
2013; Jiang et al., 2013; Perez-Pinera et al., 2013; Shan et al., 
2013; Belhaj et al., 2015; Piatek et al., 2015; Kleinstiver et al., 
2016; Ma et al., 2016; Tsai and Joung, 2016; Knott and Doudna, 
2018). CRISPR/Cas9 or TALEN entry vectors were developed 
for gateway cloning in soybean and M. truncatula (Curtin 
et al., 2018). Several new web tools, such as E-CRISP (Heigwer 
et al., 2014) and CHOPCHOP (Montague et al., 2014), for the 
identification of CRISPR-Cas9 target sites are available both for 
target site identification and also for identification of off-target 
sites. In legumes, one such tool was developed for CRISPR/Cas9 
design (Michno et al., 2015), and a methodology to perform gene 
editing in M. truncatula also is available (Curtin, 2018).

Using the CRISPR/cas9 technology, severe loss-of-function 
mutants were developed in the necrotrophic fungal pathogen 
Sclerotinia sclerotiorum. Using the previously characterized 
Ssoah1 gene as the gene target, insertional gene mutants were 
generated that were found to be less virulent on soybean, Brassica 
spp. and tomato (Li et al., 2018a). Similarly, gene editing was 

adapted in P. sojae to generate mutants of P. sojae by manipulating 
Avr4/6 genes of the pathogen (Fang and Tyler, 2016). These 
studies were important for determining the function of fungal or 
oomycete genes in pathogen virulence.

Recently, it has been demonstrated that, by using CRISPR/Cas9 
genome editing of promoters, diverse cis-regulatory alleles can be 
generated and that quantitative variation can be an invaluable 
tool for breeding. A genetic scheme designed by Rodriguez-Leal 
et al. (2017) exploits transgenerational heritability of Cas9 activity 
in heterozygous loss-of-function mutant backgrounds. Such a 
system could also be used in the screening of QTLs for disease 
resistance if we knew the functions of the cis-regulatory alleles and 
could be a valuable tool for breeding (Rodriguez-Leal et al., 2017). 
This concept of generating variations was made possible through 
the use of epimutagenesis, a method that rapidly generates DNA 
methylation variation through random demethylation. This 
ability to manipulate plant methylomes to create epigenetically 
distinct individuals could be an invaluable breeding tool (Ji et al., 
2018). Even though currently not many legume plants have been 
gene-edited to confer resistance against pathogens, in the future, 
we anticipate that gene editing will be used more frequently to 
engineer legume plants with yield-saving disease resistance.

CONCLUSION

The advancements in cost-economic sequencing technologies 
have enabled global transcription profiling during plant–
pathogen interactions in legumes and identified several pathways 
and candidate genes responsible for either disease susceptibility 
or resistance (Table 1). This progress has enabled a broader 
understanding of both plant and pathogen strategies during 
resistant and susceptible disease interactions. These studies have 
identified a repertoire of candidate genes that play key roles in 
resistance or disease processes. However, functional studies to 
evaluate their roles in plant–pathogen interactions are limited 
in some legume species, largely due to lack of mutant resources 
and appropriate methods for gene function validation. The Tnt1-
mediated insertion mutagenesis in M. truncatula has generated 
~21,000 lines with ~90% gene-tagging coverage in the genome 
(Tadege et al., 2008; Cheng et al., 2014; Sun et al., 2019). This 
genetic resource has been utilized to evaluate some candidate 
genes involved in plant–pathogen interactions. Similarly, 
several genetic resources are being developed for other legume 
species such as soybean and L. japonicus (Sato et al., 2007; 
Libault and Dickstein, 2014). Functional characterization of a 
few candidate genes has been achieved through RNAi methods 
and recombinant gene expression studies (Singh et al., 2013). 
Several genes identified in microarray analysis of SCN–soybean 
interactions have been characterized by overexpression studies 
and grouped into genes that enhance, reduce, or have no impact 
on disease susceptibility (Matthews et al., 2013). Such studies will 
augment the genomics data generated through whole-genome 
transcriptional studies. A variety of molecular markers, including 
AFLPs, SSRs, and SNPs, have been developed and then used 
to identify QTLs governing resistance to fungal and bacterial 
pathogens and to root-knot nematodes (Table 2). More recently, 
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TABLe 1 | Summary of genomic methods and legume–pathogen interaction studies.

Plant Pathogen Methods References

Legume–fungus Interactions
Common bean Fusarium oxysporum f. sp. phaseoli cDNA-AFLP Xue et al., 2015
Soybean Fusarium oxysporum Schltdl NGS Lanubile et al., 2015; Chang et al., 2019
Chickpea Fusarium oxysporum f. sp. ciceri EST analysis Ashraf et al., 2009
Chickpea Fusarium oxysporum f. sp. ciceri cDNA-AFLP Nimbalkar et al., 2006; Gupta et al., 

2009; Gupta et al., 2010
Chickpea Fusarium oxysporum f. sp. ciceri cDNA-RAPD Nimbalkar et al., 2006; Gurjar et al., 

2012
Chickpea Fusarium oxysporum f. sp. ciceri Long-SAGE Upasani et al., 2017
Chickpea Fusarium oxysporum f. sp. ciceri NGS Gupta et al., 2017
Chickpea Fusarium oxysporum f. sp. ciceri Microarray Ashraf et al., 2018
M. truncatula Phymatotrichopsis omnivora Microarray Uppalapati et al., 2009
M. truncatula Botrytis fabae qPCR-based transcription factor 

platform analysis
Villegas-Fernández et al., 2014

Soybean Rhizoctonia solani NGS Copley et al., 2017
M. truncatula Mycosphaerella pinodes Microarray Fondevilla et al., 2011
Pea Mycosphaerella pinodes DeepSuperSAGE Fondevilla et al., 2014
Grass pea Ascochyta lathyri DeepSuperSAGE Almeida et al., 2015
Fava bean Ascochyta fabae DeepSuperSAGE Madrid et al., 2013
Fava bean Ascochyta fabae De novo transcriptome Ocaña et al., 2015
Cowpea Phakopsora pachyrhizi SuperSAGE/DeepSuperSAGE - NGS
M. truncatula Colletotrichum trifolii, C. lindemuthianum, C. 

higginsianum
Microarray Jaulneau et al., 2010

Common bean Colletotrichum lindemuthianum EST analysis Oblessuc et al., 2012
Common bean Colletotrichum lindemuthianum NGS Padder et al., 2016
Lentil Colletotrichum lentis Bhadauria et al., 2017
Soybean Phakospora pachyrhizi SSH-cDNA Choi et al., 2008
Glycine tomentella Phakospora pachyrhizi Microarray Soria-Guerra et al., 2010a; Soria-Guerra 

et al., 2010b
Soybean Phakospora pachyrhizi Microarray Van De Mortel et al., 2007; Panthee 

et al., 2009; Morales et al., 2013
Soybean Phakopsora pachyrhizi SuperSAGE Kido et al., 2010
M. truncatula Phakospora pachyrhizi Microarray Ishiga et al., 2015
M. truncatula Colletotrichum trifolii, Erysiphe pisi, 

Phytophthora medicaginis
Microarray Samac et al., 2011

M. truncatula Uromyces striatus qPCR-based transcription factor 
platform

Madrid et al., 2010

Legume–oomycete 
interactions
Soybean Phytophthora sojae cDNA microarray Moy et al., 2004
Soybean Phytophthora sojae Comparative EST analysis
Soybean Phytophthora sojae Microarray Zhou et al., 2009
Soybean Phytophthora sojae SSH-cDNA - NGS, Xu et al., 2012
Soybean Phytophthora sojae dot blot hybridizations
Soybean Phytophthora sojae Subtractive EST analysis Narayanan et al., 2009
Soybean Phytophthora sojae Microarray Guo et al., 2011; Lin et al., 2014

M. truncatula Aphanomyces euteiches cDNA - AFLP, cDNA - SSH Nyamsuren et al., 2003
Pea Aphanomyces euteiches; Phytophthora pisi Microarray Hosseini et al., 2015
Pea Peronospora viciae f. sp. pisi SSH-cDNA Feng et al., 2012
Legume–bacteria 
interactions
Soybean Xanthomonas axonopodis pv. glycines NGS Kim et al., 2011
Peanut Ralstonia solanacearum cDNA library analysis Huang et al., 2012
Peanut Ralstonia solanacearum NGS Chen et al., 2014a
Soybean Pseudomonas syringae pv. glycinea cDNA microarray Zou et al., 2005
M. sativa Pseudomonas syringae pv. syringae NGS Nemchinov et al., 2017
Legume–nematode 
interactions
Soybean Heterodera glycines cDNA microarray Alkharouf et al., 2004 and Khan et al., 

2004; Alkharouf et al., 2006

(Continued)
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TABLe 2 | Summary of QTL/marker analysis in legume–pathogen interaction studies.

Plant Pathogen Method QTL/R-gene Reference

M.truncatula Aphanomyces euteiches BSA AER1+D2:D25 Pilet-Nayel et al., 2009
M.truncatula Aphanomyces euteiches GWAS using 5.1 million high-

density SNPs
2 QTLs on chr3 Bonhomme et al., 2014

Pea Aphanomyces euteiches Meta-QTL analysis AER1 Hamon et al., 2013
Pea Aphanomyces euteiches QTL mapping Ae-Ps7.6 and Ae-Ps4.5 Lavaud et al., 2015; Lavaud 

et al., 2016
Pea Aphanomyces euteiches GenoPea Infinium® 

BeadChip
52 QTLs Desgroux et al., 2016

Pea Aphanomyces euteiches GWAS Ae-Ps7.6 Desgroux et al., 2017
Faba bean Ascochyta fabae QTL mapping Af2 and Af3 Atienza et al., 2016
Pea Ascochyta pisi QTL mapping Asc2.1, Asc4.2, Asc4.3 and 

Asc7.1
Timmerman-Vaughan et al., 
2016

Pea Ascochyta pisi QTL mapping abIII-1 and abI-IV-2 Jha et al., 2016; Jha et al., 
2017

Chickpea Ascochyta rabiei WGS AB4.1 Li et al., 2017
Soybean Cadophora gregata GWAS Rbs Rincker et al., 2016
Common bean Colletotrichum lindemuthianum, 

Pseudocercospora griseola
GWAS 21 and 17 significant SNPs Perseguini et al., 2016

Soybean Diaporthe phaseolorum, Cadophora 
gregata, Xanthomonas axonopodis 
pv. glycines

GWAS using SoySNP50k NovelSNPs Chang et al., 2016

Pea Erysiphe pisi Deletion mapping er1 Sun et al., 2016a; Sun et al., 
2016b; Ganopoulos et al., 2018

Pea Fusarium solani fsp. pisi (Fsp) QTL mapping Fsp-Ps 2.1 Coyne et al., 2019
Soybean Heterodera glycines QTL mapping Novel QTL Wen et al., 2019
Cowpea Meloidogyne incognita QTL mapping Rk and Rk2 Das et al., 2010; Ndeve et al., 

2019
Cowpea Meloidogyne javanica QTL mapping QRk-vu9.1 Santos et al., 2018
M.truncatula Phytophthora palmivora Association mapping RAD1 Rey et al., 2017
Soybean Phytophthora sojae SSR markers RpsQ Li et al., 2017
Pea Uromyces pisi DArT-Seq UpDSII and UpDSIV Barilli et al., 2018
Cowpea Uromyces vignae BSA Auv-LS Wu et al., 2018
M.truncatula Verticillium albo-atrum QTL mapping MtVa1, MtVa2 and MtVa3 Ben et al., 2013
Alfalfa Verticillium alfalfae BSA 17 SNPs Zhang et al., 2014

TABLe 1 | Continued

Plant Pathogen Methods References

Soybean Heterodera glycines Microarray Ithal et al., 2007; Klink et al., 2007a; 
Klink et al., 2009a; Klink et al., 2009b; 
Klink et al., 2010; Kandoth et al., 2011; 
Matsye et al., 2011

Soybean Heterodera glycines NGS Tian et al., 2017
Black soybean Heterodera glycines NGS Li et al., 2017
Pinto bean Heterodera glycines NGS Jain et al., 2016
Soybean Meloidogyne incognita NGS Beneventi et al., 2013
Soybean Meloidogyne incognita Microarray Ibrahim et al., 2011
M. sativa Meloidogyne incognita cDNA libraries Potenza et al., 2001
M. sativa Meloidogyne incognita NGS Postnikova et al., 2015
Bean Meloidogyne incognita NGS Santini et al., 2016
Wild peanut Meloidogyne arenaria NGS Guimaraes et al., 2015

Legume-virus interactions
Soybean Soybean mosaic virus cDNA microarray Babu et al., 2008
Soybean Soybean mosaic virus Microarray Bilgin et al., 2008
Soybean Soybean mosaic virus NGS Chen et al., 2016; Chen et al., 2017; 

Zhou et al., 2018
Common bean Mungbean yellow mosaic India virus High-throughput sequencing Patwa et al., 2018
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the underlying phenotypic variations combined with genotype 
information (SNPs) have been used for GWAS and are being 
used extensively in legume crops to identify the QTLs associated 
with the resistance loci against plant microbes. Precise genome 
editing technologies such as CRISPR-Cas9 have been employed 
to effectively knock out P. sojae effector Avr4/6 and uncover the 
functional role of the corresponding resistance gene RPS4/6 
(Fang and Tyler, 2016). The utilization of these resources will 
help the biological function of genes identified through various 
genomic approaches to be better understood. Introgression of 
plant defense-related traits identified through genomics is in 
its early infancy and could lead to an economic success in the 
next few years. We predict that the use of the genomics tools 
in breeding mentioned in this review such as the use QTL 
introgression, GWAS, and CRISPR/cas9 editing of the genomes 
for generating plant variation will become increasingly popular 
in the next few years and will further advance our understanding 
as well as define our approaches to making improved cultivars 

in legumes. Genomic studies of plant–pathogen interaction will 
continue to provide us with novel disease resistance or defense-
related genes that can be incorporated into elite legume cultivars, 
either by classical breeding or by biotechnological approaches.
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