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Several genomic prediction models combining genotype × environment (G×E) interactions 
have recently been developed and used for genomic selection (GS) in plant breeding 
programs. G×E interactions reduce selection accuracy and limit genetic gains in plant 
breeding. Two data sets were used to compare the prediction abilities of multienvironment 
G×E genomic models and two kernel methods. Specifically, a linear kernel, or GB (genomic 
best linear unbiased predictor [GBLUP]), and a nonlinear kernel, or Gaussian kernel (GK), 
were used to compare the prediction accuracies (PAs) of four genomic prediction models: 
1) a single-environment, main genotypic effect model (SM); 2) a multienvironment, main 
genotypic effect model (MM); 3) a multienvironment, single-variance G×E deviation model 
(MDs); and 4) a multienvironment, environment-specific variance G×E deviation model (MDe). 
We evaluated the utility of genomic selection (GS) for 435 individual rubber trees at two sites 
and genotyped the individuals via genotyping-by-sequencing (GBS) of single-nucleotide 
polymorphisms (SNPs). Prediction models were used to estimate stem circumference (SC) 
during the first 4 years of tree development in conjunction with a broad-sense heritability 
(H2) of 0.60. Applying the model (SM, MM, MDs, and MDe) and kernel method (GB and 
GK) combinations to the rubber tree data revealed that the multienvironment models were 
superior to the single-environment genomic models, regardless of the kernel (GB or GK) used, 
suggesting that introducing interactions between markers and environmental conditions 
increases the proportion of variance explained by the model and, more importantly, the PA. 
Compared with the classic breeding method (CBM), methods in which GS is incorporated 
resulted in a 5-fold increase in response to selection for SC with multienvironment GS (MM, 
MDe, or MDs). Furthermore, GS resulted in a more balanced selection response for SC and 
contributed to a reduction in selection time when used in conjunction with traditional genetic 
breeding programs. Given the rapid advances in genotyping methods and their declining 
costs and given the overall costs of large-scale progeny testing and shortened breeding 
cycles, we expect GS to be implemented in rubber tree breeding programs.
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INTRODUCTION

Rubber tree (Hevea brasiliensis) breeding programs are generally 
characterized by breeding cycles of 25–30 years and include the 
crosses, evaluation, and selection of field progeny as well as the 
propagation of selected superior materials (Gonçalves et al., 
2006). Compared with animal and annual crop species breeding, 
forest tree breeding is still in its infancy; the most advanced 
programs are in their third or fourth cycle of breeding, with very 
little differentiation occurring between the bred populations and 
natural populations (Isik, 2014). Rubber tree breeding programs 
are complex and costly because the large size of these trees 
necessitates experiments over large tracts of land, and progeny 
tests are expensive to establish, manage over many years, and 
evaluate via measurements.

The main objective of rubber tree breeding is the development 
of early selection methods that support the accurate prediction of 
mature phenotypes at a young stage; these methods are therefore 
important for shortening breeding cycles and thus improving 
the cost efficiency of such breeding programs. The time taken to 
derive a Hevea through breeding must be substantially reduced. 
Priyadarshan (2017) proposed two strategies: 1) truncating 
the breeding steps that follow conventional means and 2) 
incorporating genomics into breeding programs specifically 
to identify high-yielding genotypes in half-sib, full-sib, and 
polycross seedlings during the juvenile stage to minimize both 
space and time.

Classic plant breeding programs depend principally on 
phenotypic evaluation in several environments; selection and 
recombination are based on the resulting data and genotype 
information when available. Genomic selection (GS), a new 
approach in which whole-genome molecular markers are 
used, has the potential to quickly improve complex traits with 
low heritability, significantly reduce the cost of line and hybrid 
development and increase yields in reduced amounts of time, 
allowing improvements to quantitative traits within large plant 
breeding populations (Meuwissen et al., 2001).

Genomic prediction combines phenotypic and pedigree data 
with marker data in efforts to increase the prediction accuracy 
(PA) for breeding and genotypic values. This method depends 
on dense genome-wide marker coverage to produce genomic 
estimated breeding values (GEBVs) from a comprehensive 
analysis of all available markers.

According to Lorenz et al. (2011), the accuracy of GS, which 
is measured as the correlation between GEBVs and true breeding 
values, is affected by the relationship between the training 
(TRN) and testing (TST) sets, the number of individuals in the 
TRN set, linkage disequilibrium (LD) between the markers and 
quantitative trait loci (QTLs), the distribution of the underlying 
QTL effects, the statistical method used to estimate the GEBVs, 
and the trait heritability.

According to Meuwissen et al. (2001), GS has received 
increasing interest from forest tree breeders. In reports of 
initial experiments involving Pinus and Eucalyptus (Resende 
et al., 2012a; Resende et al., 2012b), this new method showed 
encouraging prospects, thus confirming the potential of GS in 
studies of conifers, pines, and eucalypts (Zapata-Valenzuela 

et al., 2013; Lima, 2014; El-Dien et al., 2015; Ratcliffe et al., 2015; 
Bartholome et al., 2016; Isik et al., 2016), which further supports 
the potential for GS to accelerate the breeding of forest trees.

In rubber tree breeding programs, pedigree-based analysis 
has been widely used to evaluate field experiments, estimate 
genetic parameters, and predict breeding values (Furlani et al., 
2005). However, due to the decreasing costs of genotyping 
thousands or millions of markers and the increasing costs of 
phenotyping (Krchov and Bernardo, 2015), GS is emerging as 
an alternative genome-wide marker-based method to predict 
future genetic responses.

Genomic prediction models were originally developed for use 
in a single environment. However, to implement GS strategies 
in plant breeding, genotype × environment (G×E) interactions 
must be predicted. Habier et al. (2007) used genetic marker 
information to identify associations between individuals via 
the genomic relationship matrix K. Two very frequently used 
matrix-based methods include the genomic best linear unbiased 
predictor (GBLUP) (GB) (VanRaden, 2007, VanRaden, 2008) 
and the nonlinear Gaussian kernel (GK) methods (Gonzalez-
Camacho et al., 2012). Burgueño et al. (2012) extended this 
general methodology to incorporate G×E effects. A separate GB 
extension introduces interaction effects between markers and 
environmental factors, and studies have shown that modeling 
G×E can result in substantial gains in PA (Heslot et al., 2014; 
Jarquin et al., 2014; Crossa et al., 2016; Cuevas et al., 2016).

A GBLUP model was proposed by Lopez-Cruz et al. (2015) to 
explicitly model the partitioning of genomic values and marker 
effects into components that are stable among environments 
and others that are environment specific. Therefore, according 
Cuevas et al. (2016), the marker × environment interaction 
model is suitable for application in groups of positively correlated 
environments. However, in practice, this approach can be very 
restrictive in cases where several environments have correlations 
close to zero, as it can lead to a large G×E variance component 
compared with the genetic variance component (Burgueño et al., 
2011). VanRaden (2008) first suggested models in which the 
GBLUP was a linear model that included parameters associated 
with additive quantitative genetics theory.

A nonparametric and semiparametric method was proposed 
by Gianola et al. (2006) and accounted for small, complex epistatic 
interactions without explicitly modeling them. According to 
Heslot et al. (2012), the semiparametric reproducing kernel 
Hilbert space (RKHS method) uses a kernel function to 
convert the marker matrix into a set of distances between pairs 
of individuals. RKHS regression is thought to increase PA 
by capturing nonadditive variation, and several studies have 
confirmed this advantage (de los Campos et al., 2010; Perez-
Rodriguez et al., 2013; Morota and Gianola, 2014).

Cuevas et al. (2016) applied GS with the marker × 
environment interaction model of Lopez-Cruz et al. (2015) and 
modeled the GB (linear kernel) and GK (nonlinear kernel) in 
a manner similar to that of de los Campos et al. (2010) in the 
RKHS with kernel averaging, and by estimating the bandwidth 
via an empirical Bayesian method (Pérez-Elizalde et al., 2015), 
and using wheat and maize data sets, they performed single-
environment analyses and expanded them to account for G×E 
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interactions. Compared with the other approaches, the GK 
combined with the G×E model provided greater flexibility and 
accounted for smaller, more complex marker main effects and 
marker-specific interaction effects (Cuevas et al., 2016). However, 
as in the study by Lopez-Cruz et al. (2015), this model assumes 
sets of environments that are positively correlated. To solve this 
problem, Cuevas et al. (2016) proposed two multienvironment 
genomic models to overcome some of the restrictions of previous 
genomic models.

Accurate predictions are obtained when the appropriate 
method is used even for untested genotypes, allowing 
considerable progress in breeding programs by reducing the 
number of field-tested genotypes and, consequently, the costs 
of phenotyping (Krchov and Bernardo, 2015). The benefits of 
GS are more evident when traits are difficult, time consuming, 
and expensive to measure and when several environments need 
to be evaluated.

The objective of this paper was to evaluate the predictive 
capability of GS implementation in rubber trees when linear 
and nonlinear kernel methods are used and to examine the 
performance of the predictions, including G×E interactions, of 
each of the four models described by Bandeira et al. (2017). Thus, 
for all data sets, we fitted models with a linear kernel via GB or 
GK with a bandwidth parameter estimated according to the 
methods of Pérez-Elizalde et al. (2015). We also compared the PA 
of the two kernel regression methods for the four models, which 
included the following: a single-environment, main genotypic 
effect model (SM); a multienvironment, main genotypic effect 
model (MM) (Jarquin et al., 2014); a multienvironment, single-
variance G×E deviation model (MDs) (Jarquin et al., 2014); 
and a multienvironment, environment-specific variance G×E 
deviation model (MDe) (Lopez-Cruz et al., 2015).

To the best of our knowledge, this is the first attempt to apply 
GS with a multienvironment technique to a rubber tree breeding 
program. The development of a robust methodology enables 
the implementation of GS in routine evaluations to accelerate 
genetic progress.

MATERIALS AND METHODS

Populations and Phenotypes
The data set included 435 samples, which comprised 252 F1 
hybrids derived from a PR255 × PB217 cross (Souza et al., 2013; 
Rosa et al., 2018), 146 F1 hybrids derived from a GT1 × RRIM701 
cross (Conson et al., 2018), 37 genotypes from a GT1 × PB235 
cross, and 4 testers (GT1, PB235, RRIM701, and RRIM600), 
which are described further below.

Populations
The PR255 × PB217 population is a full-sib segregating population 
with a total of 252 individuals (progeny). Seedlings acquired via 
controlled pollination were clonally propagated by budding onto 
rootstocks. PR255 is a rapidly growing clone with vigorous and 
high yield, good growth, and stable latex production. In contrast, 
clone PB217 is the opposite, presenting slow growth and delayed 
latex production in its early years of development, although its 

latex production increases rapidly during the early years; however, 
this clone has potential for superior yield performance in the 
long term (Souza et al., 2013; Rosa et al., 2018). The field trial was 
performed in Itiquira, Mato Grosso state, Brazil (17°24′03″S and 
54°44′53″W), from March 2006 until March 2007. The climate of 
this region is characterized by very dry and relatively cold winters 
and hot and humid summers, which represent conditions typical 
of southeastern Brazil, the most productive region for rubber. 
The experimental design was a randomized block design with 
four replications, with four grafted trees of the same individual 
in each plot (Rosa et al., 2018).

The GT1 × RRIM701 population comprised 146 individuals, 
and the GT1 × PB235 population comprised a total of 37 
individuals. These two groups of progeny were derived from 
open pollination, and their effective pollination was checked via 
microsatellite markers. The hybrids were selected on the basis of 
polymorphisms between the parents. GT1 is a male-sterile clone 
that is classified as a primary clone (Shearman et al., 2014) and 
is tolerant to wind and cold. RRIM701 grows vigorously and 
presents an increased circumference after initial tapping (Romain 
and Thierry, 2011). PB235 is reported to be a high-yielding 
clone with an active metabolism and is known to be particularly 
susceptible to tapping panel dryness (Sivakumaran et al., 1988). 
These two groups of progeny were planted at the Center of Rubber 
Tree and Agroforestry Systems/Agronomic Institute (IAC) in 
the northwestern region of São Paulo state (20°25′00″S and 
49°59′00″W at an altitude of 450 m), Brazil, in 2012 (Alvares et al., 
2013). A modified block design was used (Federer and Raghavarao, 
1975), and the trial was repeated four times. Each trial consisted of 
four blocks with two trees (clones) per plot spaced 4 m by 4 m. 
The experiment comprised a total of 656 (41 plots × 4 blocks × 4 
replicates) plots and 1,312 trees (Conson et al., 2018).

Phenotypic Analysis
Stem circumference (SC, in cm) at 50 cm above ground level was 
measured to evaluate the growth of individual trees, where the 
average per plot was calculated. Growth traits were frequently 
measured only during the first 6 years, as height and SC are the 
main selection traits for rubber tree breeding (Rao and Kole, 
2016). Measurements were taken at four different ages and are 
listed in Supplementary Table 1. Two sets of measurements 
were taken each year: one set applied to trees under low-water 
conditions (LW), and the other applied to trees under well-
watered conditions (WW). These conditions were established 
according to the water distribution of each region in which 
the experiments were installed (Supplementary Figure 1, 
Supplementary Table 2).

Analyses of the SC traits were carried out via the breedR 
package (Munõz and Sanchez, 2017) in conjunction with the 
remlf90 function and method = “ai,” and the best linear unbiased 
predictors (BLUPs) of each genotype used with the following 
mixed linear model were taken:

 y Xb Zg e= + +  

where y is the adjusted mean phenotypic value (best linear 
unbiased estimated [BLUES]), × and Z are known incidence 
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matrices, b is the vector of fixed effects (environmental effects), 
and g is the vector of random effects (genetic effects). In the general 
model (H2), when the entire data set from both environments 
(LW and WW) is used, the fixed effects included locale (place 
where the experiment was performed), block, water, and year. 
The G × E interaction and genotype were included as random 
effects in the model. When we considered each environment 
(LW or WW) separately ( )Henv

2 , the fixed effects were the G × 
E interaction, locale, year, repetition, and block. Genotype was 
included as a random effect.

The broad-sense heritability (H2) (clonal mean heritability) 
was estimated for SC for each water management system (LW 
and WW) and for every data set:

H
s

e
sag g

gxe2 2 2
2

= + +












σ σ
σ

/

where σ g
2  is the genetic variance, σ gxe

2  is the variance caused by 
the interaction between genotype and the environment, e is the 
residual variance, s is the number of environments, and a is the 
number of blocks.

For each environment, we estimated heritability ( )Henv
2  

separately as follows:

 
H

renv g g
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2
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σ σ σ/

 

where σ g
2    is the genetic variance, σ e

2  is the residual variance, 
and r is the number of trees per replicate.

Genotypic Data and Single-Nucleotide 
Polymorphism Calling
Genomic DNA was extracted according to the methods of 
Souza et al. (2013) and Conson et al. (2018). Genotyping-
by-sequencing (GBS) library preparation and sequencing 
were performed as described by Elshire et al. (2011). Genome 
complexity was reduced by digesting individual genomic DNA 
samples with EcoT22I, a methylation-sensitive restriction 
enzyme, and 96 samples were included in each sequencing lane. 
The resulting fragments from each sample were directly ligated 
to a pair of enzyme-specific adapters and combined into pools. 
PCR amplification was carried out to generate the GBS libraries. 
Library sequencing of GT1 × RRIM701 and GT1 × PB235 was 
performed on an Illumina GAIIx platform (Illumina Inc., San 
Diego, CA, United States), and sequencing of PR255 × PB217 
was performed on the Illumina HiSeq platform.

The raw data were processed, and single-nucleotide 
polymorphism (SNP) calling was performed via TASSEL 
5.0 (Glaubitz et al., 2014). Initially, the FASTQ files were 
demultiplexed according to their assigned barcodes. The reads 
from each sample were trimmed, and the tags were identified 
by the following parameters: Kmer length of 64 bp, minimum 
quality score within the barcode and read length of 20, minimum 
Kmer length of 20 and minimum count of reads for a tag of 

6. The  retained tags with a minimum count of six reads were 
aligned to the H. brasiliensis reference genome sequence (Tang 
et al., 2016) via Bowtie 2 version 2.1 (Langmead and Salzberg, 
2012), with the very sensitive option enabled. SNP calling was 
performed via the TASSEL 5 GBSv2 pipeline (Glaubitz et al., 
2014) and filtered with snpReady software (Granato and Fritsche-
Neto, 2018). The following criteria were used: 20% missing data, 
minor allele frequency (MAF) greater than or equal to 5% (MAF 
of 0.05), and removal of individuals with more than 50% (sweep.
sample  = 0.5) missing data for the called SNPs. Only biallelic 
SNPs were maintained, which was performed via VCFtools 
(Danecek et al., 2011). After the data were filtered, the missing 
data were imputed by the knni method with snpReady software 
(Granato and Fritsche-Neto, 2018).

The genotypic data are available under NCBI accession 
PRJNA540286 (ID: 5440286) (GT1 × PB235 and GT1  × 
RRIM701) and accession PRJNA541308 (ID: 541308) 
(PR255 × PB217).

Genomic Selection Analysis
Phenotypic analysis was carried out jointly for all years of 
evaluation via the mixed model approach.

Prediction based on genomic relationships and predictive 
ability assessment was performed via a relationship matrix-based 
approach for genomic prediction (Habier et al., 2007); the matrix 
K was the central object denoting the genomic relationship 
matrix. Two kernel methods were used: the linear kernel method 
(GB) used by Jarquin et al. (2014) and Lopez-Cruz et al. (2015) 
and the nonlinear kernel method (GK) proposed by Cuevas 
et  al. (2016). The matrix for the GB (VanRaden, 2008) and GK 
(Gonzalez-Camacho et al., 2012) methods was obtained via the 
function G.matrix in snpReady software (Granato and Fritsche-
Neto, 2018). Statistical models for genomic predictions taking 
G×E interactions into account (Jarquin et al., 2014; Lopez-
Cruz et al., 2015) combine genetic information from molecular 
markers or from pedigrees (Pérez-Rodríguez et al., 2015) 
with environmental covariates, while the López-Cruz model 
breaks down the marker effect across all environments and the 
interaction for each specific environment.

The PA was obtained from the correlation between the 
predicted BLUPs and the observed BLUPs. Four statistical 
prediction models were fitted to all the data sets to study their 
PA via random cross-validation (CV) schemes. The main 
objective was to compare the prediction ability of kinship 
matrices (GB and GK) and the proposed single-environment and 
multienvironment (G×E) genomic models.

The PA values were also compared for the single-environment 
and multienvironment models SM, MM (Jarquin et al., 2014), MDs 
(Jarquin et al., 2014), and MDe (Lopez-Cruz et al., 2015) and fitted 
with the GB and GK methods; this was applied to all the data sets 
for all the studied traits. These analyses were performed to derive 
estimates of variance components resulting from the main genetic 
effect, and genetic environment-specific effects and residual effects 
of the four models described above for SC in the data sets from the 
two different conditions (LW and WW) were computed. For all GS 
models, BLUPs were estimated via the mixed model with breedR 
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software (Munõz and Sanchez, 2017), and all models were fitted 
with G×E interactions via BGGE software (Granato et al., 2018), 
in which 20,000 iterations were performed (ite = 20,000), 5,000 
samples were discarded (burn-in = 5,000), and every fifth iteration 
was used to estimate the posterior mean (thin = 5).

SM
Using the main effect of the genotype, the single-environment 
model fits data from each environment (LW and WW) 
separately. Equation (1) shows the matrix representation of 
this model.

   y µ Z g eg= + +1  (1)

where y = (y1…., yn)’ is the response vector (BLUP), yi is the 
observation of the ith line (i = 1,…., n) in each environment, 
µ is the general mean, Zg is the incidence matrix that combines 
the random genetic effects and phenotypes, and g and e are the 
random genetic effect and the residual random effect, respectively, 
for each environment (LW and WW). In SM (1), g is considered 
to present a multivariate normal distribution with a mean of zero 
and a covariance matrix σ gjK2 ; that is,   , )(g Kgj 0 2σ , where σ gj

2  
is the genetic variance of g in the jth environment, and where K is a 
positive semidefinite symmetric matrix that shows the variance–
covariance of the genetic values calculated from the molecular 
markers. Furthermore, the residual error e in each environment is 
considered to be separate from the homogeneous variance ( )σ e

2  
and is distributed as e N Iej~ , )( 0 2σ , where I is the identity matrix 
and σ ej

2    is the residual variance in the jth environment. Thus, g is 
an estimation of the true unknown genetic values, and e includes 
the residual genetic effects that are not elucidated by g more other 
nongenetic effects that approximate the errors, as described by 
Bandeira et al. (2017). For SM (1), matrix K can be constructed 

using the linear kernel K XX
p

=









′

 (de los Campos et al., 2012) 

proposed by VanRaden (2007, 2008) for estimating the GBLUP, 
where x is the standardized matrix of molecular markers for the 
individuals, of order n x p and p is the number of markers. The 
entries of the GK are computed as K x x hdi i ii` `( )( ) = −exp 2 , where 
dii′ is the Euclidean distance between the ith and i′th individuals 

i nj= …( )1, ,     given by the markers and h > 0 is the bandwidth 
parameter that controls the rate of decay of K values (Pérez-
Rodríguez et al., 2013; Cuevas et al., 2016). In this study, GK 
takes the form K x x hd median di i ii ii` ` `exp( / )( ) = − ( )2 2 , where h = 1 
and where the median of the distances is used as a scaling factor 
(Crossa et al., 2010). de los Campos et al. (2010) described the 
theory of the GK in the context of the RKHS KA (KA is well 
known as the GK, which is based on the Euclidian distance, 
aiming to capture additive and nonadditive effects).

MM
The MM takes into account the main fixed effects of 
environments, even in the presence of random genetic effects 
across environments. Equation (2) indicates the matrix 
representation of this model.

 y µ X Z g eE E g= + + +1 β  (2)

where y = (y1, …, yj,…, ys)’ is the response vector and yj is the 
vector of line observations (i = 1,…, nj) in the jth environment 
(j = 1,…, s). The fixed environmental effects in the data are 
models in the XE incidence matrix, where the intercept for 
each environment (βE) is the parameter to be estimated. 
The incidence matrix Zg is the other fixed effect that can be 
incorporated into the model, the matrix Zg combines genotype 
with phenotype for each environment, and g is the variance 
in the main genetic effects across environments. The random 
vector of genetic effects g across environments is considered to 
follow a multivariate normal distribution with a mean of zero 
and a covariance matrix of σ g K0

2 ; that is, g ~ N Kg( ,  )0 0
2σ   , 

where σ g 0
2  is the variance of the main genetic effects across 

environments and e N e~ ,( )0 2σ , as described by Bandeira et al. 
(2017). We used g with GB or GK.

MDs
The MDs extends the MM to implement the random interaction 
effect of the environments to incorporate more genetic 
information of the lines (ge).

 y µ X Z g ge eE E g= + + + +1 β     (3)

The vector of random effects of the interaction ge is 
considered to follow a multivariate normal distribution, 
ge N Z KZg g E E ge~ , '] [ ]( [0 2

 X X ′ σ . Here, (∘) is the Hadamard 
product operator and indicates, according to Jarquin et al. 
(2014), the product (element to element) between two matrices 
in the same order, and σ ge

2  is the variance component of the 
interaction. The K matrix is defined the same as that above, 
and the vector of the main genetic effects is g, which presents 
a multivariate normal distribution with a mean of zero and a 
covariance matrix σ g K0

2 ; that is, g N Kg~ , )(0 0
2σ , with variance 

of the main genetic effects ( )σ g 0
2  and e Ie~ , )(0 2σ , as described by 

Bandeira et al. (2017):
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where Kj represents the kernel constructed from the molecular 
markers of the lines in the jth environment. As in the MM, the 
matrix K is used in the variance–covariance for g of the MDs and 
is also a component of the variance–covariance of ge. The kernel 
matrix K can be constructed with GB and GK.

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org


Genomic Selection in Rubber TreeSouza et al.

6 October 2019 | Volume 10 | Article 1353Frontiers in Plant Science | www.frontiersin.org

MDe
In the MDe (Lopez-Cruz et al., 2015), the genetic effects of markers 
are partitioned into main marker effects across all environments 
and specific marker effects within each environment. Equation 
(4) indicates the matrix representation of this model:

 y µ X Z g g eE E g E= + + + +1 0β  (4)

where g0 denotes the main effect of the markers with a 
variance–covariance g ~ , )(0

20 0N Kgσ  across all environments, 
σ g0

2  is common to all s environments, and the borrowing of 
information among environments is generated through the 
kernel matrix K. Otherwise, the specific effect of the markers 
( )g E  in environments or even the effects of the interaction with 
a variance–covariance structure differ from those of model (4); 
in other words, g N KE E~ ,( )0 , where KE is as follows:
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The matrix KE can be expressed as the sum of s matrices, 
and the effects given by gEj are specific for the jth environment, 
which has a variance–covariance matrix of σ gEj jK2 . These two 
terms (g and gE) of the MDe are given by the components of 
the estimated variance for the data. The kernel matrix K is used 
in the components of g, while kernel matrix KE is used in the 
component of gE; both K and KE can be used with GB or GK, as 
described by Bandeira et al. (2017).

Assessing Prediction Accuracy by 
Random Cross-Validation
The PA of SM-method combinations was evaluated with the TRN 
set (which comprised 80% of the hybrids). The TST set comprised 
20% of the individuals, and none of the lines to be predicted in the 
TST set were also in the TRN set, in which 5 random partitions were 
arranged 5-fold, with 100 random partitions each. This procedure 
was performed separately for each environment, namely, LW and 
WW, and the SMs were fitted separately for each environment.

The PA values of the multienvironment (LW and WW) 
model-method combinations were generated using two different 
cross-validation (CV) designs according to the methods of 
Burgueño et al. (2012). The random CV 1 design (CV1) assumes 
that new genotypes have not been tested or evaluated in either 
environment, where 20% of genotypes were not phenotyped in 
any environment and had to be predicted. The random CV 2 
design (CV2) is a simulation of genotypes that has been evaluated 
in some environments but not in others. The CV2 design can 
be used only for multienvironment modeling methods (MM, 
MDs, and MDe) and not for single-environment (SM) modeling 
methods where the random CV is CV1.

The parameters of the models, which include the main 
genetic effects, variance components resulting from residual 
effects, G×E interaction effects, and environment-specific 
effects, were reestimated from the TRN data in each TRN-TST 
partition (50 random), and the models were fitted to the TRN 
data set. PA was assessed by computing Pearson’s product-
moment correlations between predictions and phenotypes in 
the TST data set within environments.

Expected Genetic Gain
Expected genetic gain (EGG) was estimated in two ways: the 
classic method used in rubber tree breeding via the breeder’s 
equation and phenotypic data and with information from the 
SNPs obtained via GS. The EGG was calculated according to the 
methods of Matias et al. (2019) and Grattapaglia (2017).

Expected Genetic Gain Obtained by a Classic 
Breeding Cycle With Only Phenotypic  
Information Used
The EGGs obtained by a classic breeding cycle (EGGcs) were 
estimated under the assumption that the time for first selection 
is 10 years. In rubber tree breeding, 3 years are needed from 
pollination to planting in the field, and as rubber trees usually 
require 6 years or more to reach tapping girth, there is a wait time 
of 7–9 years until tapping is started and a long period of 10 to 15 
years before production and adaptation can be evaluated in the 
field (Gonçalves et al., 2005) according to the following equation:

 
EGGc rc i

T
= . .δg

 

where rc is the accuracy of selection, in which the breeding 
improvement is equivalent to the square root of the H2, i is the 
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intensity selection, δg is the additive genetic standard deviation, 
and T is the selection cycle time.

Expected Selection Gain via Molecular  
Marker Information
The simulation of breeding cycles in which GS was used was 
based on the EGG via molecular marker information (EGGgs) 
equation, assuming a time of 3 years for each selection cycle 
and representing the time required for crossing, seed selection, 
and selection of the best individuals via molecular markers. The 
equation is as follows:

 
EGGgs rgs i

T
= . .δ g

 

where rgs is the selection accuracy with GS 
PA

H 2







, i is the 

intensity selection, δg is the additive genetic standard deviation, 
and T is the selection cycle time.

RESULTS

Single-Nucleotide Polymorphisms Calling
We started with 435 genotypes, but three genotypes were 
replicates and thus were merged. We removed 27 individuals 
that had more than 50% missing SNPs, leaving 411 genotypes. 
After the data were analyzed, a total of 259.224 million reads of 
sequence data were obtained, of which 69.8% were high-quality 
barcoded reads. The overall alignment rate of these reads to the 
rubber tree reference genome (Tang et al., 2016) was 83.7%, and 
23.1% were aligned exactly one time.

A total of 107,294 SNPs were identified. After markers 1) 
with more than 20% missing data, 2) with an MAF ≤ 0.05, 3) 
with more than two alleles were excluded, tags with a minimum 
depth of six reads were aligned to the H. brasiliensis reference 
genome sequence (Tang et al., 2016). This method was based on 
that of previous studies of other species, in which the authors 
argued that, compared with high-depth sequencing, low-depth 
(approximately 2–4X) sequencing enables more individuals to be 
genotyped for the same cost, which, according to Li et al. (2011), 
is a good strategy for genome-wide association studies (GWAS). 
Gorjanc et al. (2015) obtained similar results for GS studies and 
reported that optimal PA was obtained via low-depth sequencing 
(approximately 1–2X) of many genotypes.

After the data were filtered, 6.7% were missing. The mean depth 
ranged from 444 to 521 for GT1 × RRIM701 and GT1 × PB235, 
respectively, and was 202 for PR255 × PB217 (Supplementary 
Figure 2). Although large variation was observed between 
populations, only SNPs with at least six reads were selected, and 
the entire data set was reduced to 30.546 SNPs.

Estimates of Genetic Parameters by Single-
Nucleotide Polymorphism Genotyping
Using the genotyped SNPs, we assessed the population structure 
via principal component analysis (PCA), and the results 

indicated that the 411 genotypes fell into two major clusters 
(Supplementary Figure 3), which mainly contained hybrids 
derived from the PR255 × PB217 cross and hybrids derived from 
the GT1 × RRIM701 and GT1 × PB235 crosses. The first two PCs 
explained 19.5 and 2.2% of the total variance, respectively, clearly 
splitting the groups along the x- and y-axes.

Descriptive Statistics
Box plots of SC in each environment are depicted in 
Supplementary Figure 4. The distribution of this trait in 
the environments was symmetrical (data not shown). The 
LW environment exhibited relatively high increases in SC, 
while the WW environment exhibited relatively low increases 
(Supplementary Figure 4). The trees grew better under 
increased water availability (WW) (data not shown); however, 
because the phenotypic measurements were taken twice per year 
for each tree, the phenotypes of the trees under WW were always 
measured at the beginning of the year, whereas the phenotypes 
of the trees under the LW were taken half a year later. This 
method inevitably generates a small difference between the two 
phenotypes because the trees under LW are older than those 
under WW when the same measurements are taken. Because 
rubber populations require extensive field trial planting, it is not 
feasible for a breeding program to maintain two planting areas 
and to examine two hydric conditions with trees of the same age.

To assess how much of the phenotypic variation is genetically 
controlled and thus appropriate for GS, we first estimated 
the H2 of SC. The Henv

2    ranged from 0.51 to 0.50 for LW 
and WW, respectively (Table 1). The populations PR255 × 
PB217, GT1 × RRIM701, and GT1 × PB235 were evaluated in 
different environments that presented different site indexes 
(soil and climate conditions). The phenotypic variance differed 
between the sites, but we had common check genotypes in both 
environments; these checks served the connection between 
populations and other factors. Furthermore, on the basis of 
the results of heritability and residual distribution, it is evident 
that this approach allowed a reliable estimate of the error, factor 
effects, and their interactions.

On the basis of the phenotypic data, the estimates of genotypic 
variance ( )σ g

2  and G×E interaction variance ( )σ gxe
2  were 

relatively high (3.61) and relatively low (0.81), respectively, and 
both were significant. Under LW, σ g

2  (4.33) was greater than 
that under WW (3.69). Similarly, the residual variance ( )σ e

2  

TABLE 1 | Phenotypic variation: heritability (H2), variance genotype × 
environment (G×E) interaction ( )σ gxe

2
, residual variance ( )σ e

2
, genetic 

variance main effect ( )σ g
2 , and coefficients of experimental variation (CVe%s) 

in environments with low-water conditions (LW) and with well-watered conditions 
(WW) considered together and alone, with p < .01 indicated by **.

General LW WW

σ g
2 3.61** 4.33 3.69

σ gxe
2 0.81 – –

σ e
2

16.15 16.75 14.75
H2 0.60 0.51 0.50
CVe% 20.00 20.40 19.10
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estimate was greater under LW (16.75) than under WW (14.75). 
The coefficients of experimental variation (CVe%s) (Table 1) 
presented an overall value of 20%, ranging from 20.4% (LW) to 
19.1% (WW), and were considered moderate.

Estimates of the Variance Components
The estimates of the variance components for each of the GS 
models derived from the full data analysis are presented in Table 2.

The variance components of genetic effects were greater when 
the GB method was used rather than when the GK method was 
used in all environments for the SM. Both the genetic variance 
and the environmental variance were greater when analyzed in 
the LW (Table 2). The residual variance for SM-GB was lower 
than that for SM-GK in all environments.

Compared with exclusion of the interaction term (G×E), 
inclusion of the term when the MM, MDe, and MDs were used 
led to a more significant reduction in the estimated residual 
variance, and for all the environments, the residuals from the GK 
were smaller than the residuals from the GB for the MM, MDs, 
and MDe. However, the multienvironment model (LW versus 
WW) assumed that there was no marker-environment interaction 
between families tested at the different sites and that there could 
be an effect between marker effect estimations from families tested 
at different sites and environments (LW and WW). This should be 
taken into consideration and should be carefully analyzed in the 
GK approach when additive vs. additive epistasis is targeted.

The residual variance components of MM-GK (corresponding 
to 4% of the total variance) and MM-GB (corresponding to 
1% of the total variance) were similar; the genetic variance 
corresponded to 99% for MM-GB and 96% for MM-GK. 
The percentage of total variance corresponding to variance 
components of the genetic main effects of MDs-GK (93%) and 
MDe-GK (80%) was consistently smaller than that of the genetic 
main effects of MDs-GB (97%) and MDe-GB (90%) (Table 2). 
These results indicate that the G×E model (MM, MDe, or MDs) 
fits the data better than do single-environment models.

Assessment of Prediction Accuracy
The estimated correlations between the phenotypes and 
predictions obtained from the CV test are shown in Figure 1 for 

the single-environment model (SM) and the multienvironment 
models (MM, MDs, and MDe).

Single-Environment Model (SM)
The CV2 design can be used only for multienvironment modeling 
methods (MM, MDs, and MDe) and not single-environment 
modeling methods (SM). Therefore, a single environment (SM) 
is analyzed, the random CV is CV1, but it is applied to only one 
individual environment (LW or WW) (Figure 1).

The results showed that the PA of the SM-GK combination 
was greater than that of the SM-GB combination under both LW 
and WW. The SC results were 0.19 under LW for SM-GB and 0.19 
for SM-GK, and under WW, the results were 0.27 for SM-GB and 
0.28 for SM-GK.

Multienvironment Models (MM, MDe, and MDs)
In terms of evaluating the PA of a model based on the correlation 
between the observed and the predicted values, when the PAs 
obtained by implementing different models (MM, MDs, and 
MDe) were compared, all the models were most accurate when 
CV2 was applied. The PA varied considerably between the CV1 
and CV2 conditions (Figure 1). When only a random CV2 was 
considered, the PA results were very similar and varied little 
between environments.

The PA varied very little between the WW and LW (Figure 1). 
The results obtained with the model-method combinations 
were very similar. Generally, under LW, the best model was 
the GK, which did not differ between the methods (0.84), and 
MM-GB exhibited similar results (0.82). Relatively low PA values 
were obtained using the GB; the PA was 0.82 for the MDs and 
0.83 for the MDe (Figure 1). Under WW, the model-method 
combinations presented the same values; the PA ranged from 
0.86 for the MM to 0.87 for the MDe and MDs with both GK and 
GB (Figure 1).

Expected Genetic Gain
The investigated alternative rubber tree breeding strategies 
differed considerably in the number of years required to finish 
one breeding cycle. For the classic improvement strategy, we 
considered a minimum duration of 10 years for the beginning of 

TABLE 2 | Estimates of different variance components for the following genomic selection (GS) models: the single-environment, main genotypic effect model (SM); 
the multienvironment, main genotypic effect model (MM); the multienvironment, single-variance genotype × environment (G×E) deviation model (MDs); and the 
multienvironment, environment-specific variance G×E deviation model, with the genomic best linear unbiased predictor (GBLUP, GB) and Gaussian kernel (GK) for stem 
circumference (SC). 

SM MM MDs MDe

GK GB GK GB GK GB GK GB

WW LW WW LW – – – – LW WW LW WW

σ g
2 0.47 0.50 0.44 0.46 0.96 0.99 0.93 0.97 0.80 0.90

σ e
2 0.53 0.50 0.56 0.54 0.04 0.01 0.02 0.01 0.02 0.01

σ gxe
2 – – – – – – 0.05 0.02 – – – –

σ env
2 – – – – – – – – 0.11 0.07 0.06 0.03

The genetic variance ( )σ g
2

, residual variance ( )σ e
2

, mean environmental genetic variance ( )σ gxe
2

, and environment-specific genetic variance ( )σ env
2

 are shown.
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the selection of the best genotypes because 3 years are required 
from pollination to planting in the field and because rubber trees 
generally require several additional years (often 6 or more) to 
reach tapping girth. In the case of GS, we considered 3 years for 
initial selection (from pollination to field planting).

The EGG calculations were performed for all the methods and 
models and were compared with classic improvements in both 
environments (Figure 2 and Supplementary Table 3). When the 
CBM, which takes into account only phenotypic data, was used, 
the selection gain without considering the environment was 0.08, 
and if the data were separated by environment, the EGGc was the 
same (0.07) for LW and WW (Figure 2). When we incorporated 
genotypic information in a single environment (SM), the genetic 
gain increased to 0.13 for the WW when GB was used and 
0.09 when GK was used, while for LW, there was no difference 
between GK and GB.

The genetic gains obtained when the information from the 
G×E interaction was incorporated were much greater gains than 
those obtained from a single environment. However, the results 
varied little between methods, with similar values resulting from 
most of the analyses. Considering the overall LW, the EGG was 
0.39 for all models and methods except MDe-GB (0.38). For 
WW, the EGG was slightly greater than that under LW, and 
most models and methods had estimated gains of 0.41, with the 
exception of MM-GB (0.40) (Figure 2).

DISCUSSION

Incorporating and improving the genomic PA of rubber trees 
are a challenge for the successful application of GS in breeding 
programs. In this research, genomic PA was studied in rubber 
tree data sets via the GB and GK methods in conjunction with 
multienvironment models that evaluated trees under contrasting 
hydric conditions in different seasons of the year (LW and WW).

Many factors such as genetic architecture, heritability, 
population structure, and marker density can influence GS 
(Crossa et al., 2017). According to Meuwissen et al. (2001), GS 
is expected to increase the accuracy of selection, particularly for 
traits that have a low heritability and that cannot be measured 
directly from breeding candidates.

The accuracy of GS also depends on the genetic architecture 
of traits, such as heritability which are positively related to PA. 
Complex traits that present low heritability and small marker effects 
are suitable for GS. Our analyses revealed moderate heritability 
estimates for SC ranging from 0.50 to 0.51, with the lowest value for 
WW and the highest for LW (Table 1). Nevertheless, the heritabilities 
estimated in this study were within the range of those estimated in 
other studies for SC in Hevea, which were H2 = 0.32 (Moreti et al., 
1994) and H2 = 0.47 (Gonçalves et al., 1999).

The CVe% for SC (Table 1) ranged from 20.4% (LW) to 
19.1% (WW), which is considered moderate according to the 

FIGURE 1 | Correlations between phenotypes and prediction values for the 
single-environment, main genotypic effect model (SM) with the genomic 
best linear unbiased predictor (GBLUP) kernel method (SM-GB) and with 
the Gaussian kernel (GK) method (SM-GK); multienvironment, genotypic 
effect model with the GBLUP kernel (MM-GB) and with the GK (MM-GK); 
multienvironment, single-variance G×E model with the GBLUP kernel 
(MDs-GB) and with the GK (MDs-GK); and multienvironment, environment-
specific variance G×E model with the GBLUP kernel (MDe-GB) and with the 
GK (MDe-GK) for stem circumference (SC). The environments included one 
with low-water conditions (LW) and one with well-watered conditions (WW).

FIGURE 2 | Expected genetic gain (EGG) obtained via the classic breeding 
method (CBM) with phenotypic data sets and analyzed in separate 
environments [one with low-water conditions (LW) and one with well-watered 
conditions (WW)] and EGG obtained via the following genomic selection 
(GS) models: the single-environment, main genotypic effect model (SM); 
multienvironment, genotypic effect model (MM); multienvironment, single-
variance G×E model (MDs); and multienvironment, environment-specific 
variance G×E model (MDe), with GB and GK shown in the two evaluated 
environments (LW and WW).
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classification proposed by Costa et al. (2010), who described 
the coefficient of variation as a useful tool to efficiently and 
accurately specify the experimental results: the lower the CVe% 
is, the more homogeneous the data, and the less environmental 
interference. The environmental variation, genotypes, and 
interaction between these two factors were highly significant, 
indicating that the environments used were contrasting, that 
there was genetic variability among the genotypes, and that the 
genotypes performed differently depending on the environment.

Using the CBM, Moreti et al. (1994) estimated genetic 
parameters and expected gains via the selection of juvenile 
characters in rubber tree progeny, and some parameters (rubber 
production, bark thickness, and SC) positively stood out. 
Gonçalves et al. (1996) observed the same phenomenon in the 
results reported by Moreti et al. (1994), showing a correlation 
and its applicability to the selection process. Strong phenotypic 
and genetic correlations were observed between yield and SC, 
indicating the possibility of obtaining young clones of good 
productive capacity and high vigor (Gonçalves et al., 1984). 
This correlation in conjunction with moderate heritability could 
be used to perform early selection of more productive clones 
without the need to wait for the trees to enter production, which 
requires an extended evaluation period.

Trees with rapid SC development may be more productive, 
and this feature may be a useful way to predict more productive 
hybrids via GS. Given this and latex production having greater 
heritability than circumference growth because the influence of 
the rootstock is relatively low in production, this feature will be 
very important in future studies of this population.

In GS, G×E interactions can be modeled by a marker × 
environment interaction and by a linear kernel or a nonlinear 
GK (Cuevas et al., 2016). Multienvironment genomic 
prediction was successfully implemented using a GBLUP 
model; however, depending on the genetic architecture of the 
trait and germplasm, nonlinear semiparametric approaches 
such as GK could produce more accurate results than could 
linear approaches (Cuevas et al., 2016).

Here, the GK methods presented a small increase in the 
prediction ability of all single-environment and multienvironment 
models with CV2, confirming the results of Lopez-Cruz et al. 
(2015) and Zhang et al. (2015) and demonstrating that predicting 
new genotypes is more complicated than predicting genotypes 
that have been evaluated in correlated trials. The GB method was 
superior when analyzed only via CV1 under LW.

The multienvironment models and the GK method resulted 
in the best PA. Similar decreases in PA were reported by Lopez-
Cruz et al. (2015) when wheat lines were used and by Bandeira 
et al. (2017) when a maize data set was analyzed in attempts to 
predict lines in untested environments under a CV1 random 
partitioning scheme.

Considering only random CV2, the PA was slightly greater 
under WW, ranging from 0.87 (MDe-GK-WW) to 0.82 (MDe-
GB-LW), which is consistent with previously published results 
for forest tree species. Bartholome et al. (2016) reported medium 
to high PAs for all traits studied (0.52 to 0.91) in maritime pine. 
Similar accuracies were reported for the height of loblolly pine 
trees, with values ranging from 0.64 to 0.74 (Resende et al., 

2012b), and eucalyptus hybrids (0.66 to 0.79) (Resende et al., 
2012a), regardless of differences in GS models, species, and 
population structure between studies.

If information concerning WW and LW was combined with 
multienvironment models, the results were superior to those 
of single-environment genomic models with GB and GK. This 
finding suggests that introducing interactions between markers 
and environmental conditions can increase the proportion of 
variance accounted for by the model and, more importantly, can 
increase the PA. Optimized crosses via selection of the best stable 
parents can then be performed to improve hybrid stability and 
the EGG (Toro and Varona, 2010).

G×E interactions are essential in many aspects of a 
breeding program, and the increase in PA with the inclusion 
of environmental information represents a favorable result 
with important implications for both breeding and agronomic 
recommendations. In rubber tree breeding, progeny testing is 
commonly used to evaluate the performance of new genotypes. 
Thus, in this case, new hybrids identified as high-performance 
hybrids with stable development throughout the year can be 
selected for use in new biparental crosses or new population 
selections. Interactions in field trials affect both early selection 
and mature selection; therefore, when the effectiveness of early 
selections is evaluated, it is important to determine whether the 
G×E interactions among environments significantly affect the 
genetic correlation of early maturity.

Application of the combinations of four models (SM, MM, 
MDs, and MDe) and two kernel methods (GB and GK) to 
rubber tree data sets revealed that the PAs of the models with the 
nonlinear GK were similar to those of the models with the linear 
GB kernel. According to Gianola et al. (2014), the GK has a better 
predictive ability and a more flexible structure than does the GB, 
and the GK can capture nonadditive effects between markers.

Akdemir and Jannink (2015) presented different choices for 
estimating kernel functions: linear kernel matrices incorporate 
only the additive effects of the markers, polynomial kernels 
incorporate different degrees of marker interactions, and the 
GK function uses complex epistatic marker interactions. GK 
would be more appropriate for GS of rubber trees because of the 
possibility of exploiting the local epistatic effects captured in the 
GK and their interactions with environments.

Many GS studies of plants have focused on breeding programs 
that generally evaluate crops in multiple environments, such as in 
different seasons/years or in geographic locations, to determine 
performance stability across environments (Crossa et al., 2016) 
and to identify markers whose effects are environment specific 
or whose effects are stable across environments (Crossa et al., 
2016; Oakey et al., 2016). Previous studies in wheat (Lopez-
Cruz et al., 2015) expanded the single-trait GB model to a 
multienvironment context and revealed substantial gains in PA 
with the multienvironment model compared with the single-
environment model.

Advantages of GS applied to the improvement of forest species 
have been demonstrated. For example, Wong and Bernardo 
(2008) and Iwata et al. (2011) demonstrated the potential uses of 
GS and concluded that it could dramatically increase tree breeding 
efficiency. The advantage of marker-based relationship matrices 
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is that gaps in pairwise relatedness in forest tree pedigrees are 
filled, which leads to increased accuracy of breeding candidate 
selection (Muller et al., 2017; Tan et al., 2017).

Using both genetic markers and environmental covariates, 
Cuevas et al. (2016) modeled G×E interactions, and Granato 
et al. (2018) introduced the Bayesian Genomic Genotype × 
Environment (BGGE) R package, which fits genomic linear 
mixed models to single environments and multiple environments 
with G×E models. These studies showed that modeling 
multienvironment interactions can lead to substantial gains in 
the PA of GS for rubber tree breeding programs.

GS is expected to increase the accuracy of selection, especially 
for traits that cannot be measured directly from breeding 
candidates and for traits with a low heritability (Meuwissen et 
al., 2001), and this effect was confirmed in the present study. 
The selection gain with GS for SC was on average 0.40, while 
the genetic gain with the CBM was 0.08. When the CBM for 
rubber trees was compared with the GS method while the 
multienvironment strategy was applied (MM, MDe and MDs), 
GS resulted in a five-fold greater genetic gain for SC.

Implementing Genomic Selection in 
Rubber Tree Breeding Programs
In the last decade, many statistical models have been proposed 
for applying GS in plant and animal breeding programs and have 
received increasing interest from forest tree breeders. Resende 
et  al. (2012a, 2012b) demonstrated encouraging prospects of 
this new method, and the potential for GS in conifers, pines, 
and eucalypts has since been confirmed (Zapata-Valenzuela 
et  al., 2013; Lima, 2014; El-Dien et al., 2015; Ratcliffe et al., 2015; 
Bartholome et al., 2016; Isik et al., 2016), supporting further the 
potential for GS to accelerate the breeding of forest trees. In the 
case of rubber trees, a recent study explored GS in a breeding 
program (Cros et al., 2019).

In this study, we used three full-sib populations, taking 
advantage of breeding populations that had already been 
genotyped and phenotyped (Rosa et al., 2018; Conson et al., 
2018). This type of population is favorable for GS because of 
the high LD between marker alleles and genetic alleles. Similar 
results were obtained in a recent study in which a biparental 
rubber tree population with 189 and 143 clones of the cross 
PB260 × RRIM600 was used; the population was genotyped 
with a limited number of markers (332 simple sequence repeat 
markers) (Cros et al., 2019), which resulted in a GS accuracy 
of 0.53. Other plant species have also been evaluated, with GS 
accuracies reaching moderate to high values (0.59 and 0.91) in a 
family of 180 Citrus clones (Gois et al., 2016).

For rubber trees, the time required to complete a breeding cycle 
and recommend a clone for commercial production can span 
multiple decades and is divided mainly into three selection stages. 
First, the aim is to obtain progeny by controlled or open pollination 
and to establish nurseries. At two and-a-half years, on the basis of 
early evaluations of yield, vigor, and tolerance to disease, breeding 
trees are selected and cloned for testing at a small scale. During this 
second stage of the selection cycle, after the first 2 years of tapping, 
promising clones are multiplied and subsequently evaluated in 

large-scale or regional trials. This last stage usually takes 12 to 
15 years, until it is possible to recommend a clone for large-scale 
cropping. Therefore, it takes approximately 30 years to complete 
the breeding cycle, from controlled pollination to final cultivar 
recommendation (Gonçalves and Fontes, 2012).

In essence, implementing techniques that reduce the long 
breeding cycle of trees is urgently needed, and for this purpose, 
the use of a biparental population was a means of managing the 
difficulty of obtaining complex families, which can take many 
years to generate because of the low fecundity of trees and the 
long duration of the phenotypic evaluation needed. According to 
Cros et al. (2019), a GS approach in which a complex population 
involving several families is used could lead to variation in GS 
among selection candidates depending on their relationships 
with the TRN individuals, leading to GS accuracies lower than 
those from family-specific TRN populations.

In addition, large areas are required for the development 
of hybrids, which not only increases the costs associated with 
maintaining plants in the field but also limits the number 
of genotypes that can be evaluated. GS can minimize these 
difficulties because selection can be performed on juvenile 
plants, which reduces the interval between generations and 
increases the intensity of selection, thus reducing the gain per 
unit time (Resende et al., 2008; Wong and Bernardo, 2008; 
Heffner et al., 2009).

The use of GS could dramatically reduce the time required 
for completion of a genetic improvement cycle by eliminating 
phenotypic progeny testing aimed at selecting the best individuals 
(replaced by GS), significantly increasing the genetic gain relative 
to that obtained by CBMs. Another advantage of GS compared 
with phenotypic selection is that more candidate genotypes 
are generated; therefore, the population size for selection is 
improved. All of the candidates are genotyped, and those with 
the best-predicted test cross values are evaluated in the field; this 
process can be considered a form of indirect selection.

According to Heffner et al. (2009), even when only moderate 
accuracy is obtained with GS, it is possible to obtain a genetic 
gain greater than that obtained by phenotypic selection, as GS 
reduces the duration of the selection cycle. According to Wong 
and Bernardo (2008), the selection cycle was shortened from 19 
to 6 years when GS was implemented in oil palm. Similar results 
were observed in the present study, in that the length of the 
selection cycle was also reduced.

With declining costs and rapid advances in genotyping 
methods, even with the costs of maintaining large progeny trials 
and the potential for increased gains per unit time, we very 
cautiously expect GS to have excellent potential for implementation 
in rubber tree breeding programs. However, additional studies 
examining populations with different structures (which were not 
assessed in this initial work) are necessary before recommending 
GS for operational implementation in tree breeding programs.

This is the first study to incorporate models for G×E 
interaction when phenotypic and/or genotypic information was 
used simultaneously for genetic prediction in the context of GS 
in a rubber tree breeding program. The results presented here 
suggest that GS can be useful for rubber tree breeding because this 
technique can be used to accurately predict the phenotypes and 
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reduce the length of the selection cycle. Thus, GS is a promising 
tool for improving rubber tree cultivation, and we look forward 
to exploring the historical phenotypic data collected during 15 
years as part of national breeding programs.
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