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Breeding schemes that utilize modern breeding methods like genomic selection (GS) and 
speed breeding (SB) have the potential to accelerate genetic gain for different crops. We 
investigated through stochastic computer simulation the advantages and disadvantages of 
adopting both GS and SB (SpeedGS) into commercial breeding programs for allogamous 
crops. In addition, we studied the effect of omitting one or two selection stages from the 
conventional phenotypic scheme on GS accuracy, genetic gain, and inbreeding. As an 
example, we simulated GS and SB for five traits (heading date, forage yield, seed yield, 
persistency, and quality) with different genetic architectures and heritabilities (0.7, 0.3, 
0.4, 0.1, and 0.3; respectively) for a tall fescue breeding program. We developed a new 
method to simulate correlated traits with complex architectures of which effects can be 
sampled from multiple distributions, e.g. to simulate the presence of both minor and 
major genes. The phenotypic selection scheme required 11 years, while the proposed 
SpeedGS schemes required four to nine years per cycle. Generally, SpeedGS schemes 
resulted in higher genetic gain per year for all traits especially for traits with low heritability 
such as persistency. Our results showed that running more SB rounds resulted in higher 
genetic gain per cycle when compared to phenotypic or GS only schemes and this 
increase was more pronounced per year when cycle time was shortened by omitting 
cycle stages. While GS accuracy declined with additional SB rounds, the decline was 
less in round three than in round two, and it stabilized after the fourth SB round. However, 
more SB rounds resulted in higher inbreeding rate, which could limit long-term genetic 
gain. The inbreeding rate was reduced by approximately 30% when generating the initial 
population for each cycle through random crosses instead of generating half-sib families. 
Our study demonstrated a large potential for additional genetic gain from combining GS 
and SB. Nevertheless, methods to mitigate inbreeding should be considered for optimal 
utilization of these highly accelerated breeding programs.
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inTrODUCTiOn
Allogamous species are obligate outbreeding, or cross-pollinated, 
due to the presence of self-incompatibility mechanisms that 
cause dissonant pollen-stigma interactions (McClure et al., 
1989). Allogamous species include a number of major crops 
that are important for human and animal nutrition including 
cassava, different cereals and forages as well as other important 
sources for commercial products such as oil, fiber, and sugar 
(e.g. sugar beets and most forage grasses). The majority of 
current breeding programs for allogamous crops require more 
than a decade to develop a new cultivar as they are based on 
phenotypic recurrent selection (Vogel and Pedersen, 1993; 
Casler and Brummer, 2008). For this reason, genetic gain 
using conventional phenotypic programs tends to be low and, 
for example, has not exceeded 1.3% per year in several forage 
species (e.g. Gates et al., 1999; Humphreys, 1999; Wilkins and 
Humphreys, 2003; Casler, 2012).

The development of cost-effective and high-throughput 
genotyping methods have made it possible to improve selection 
efficiency through genomic selection (GS) (Varshney et al., 
2014). GS, first proposed by Meuwissen et al. (2001), makes 
use of phenotypic and genotypic records collected on a set 
of individuals, called the training or reference population, to 
predict the performance of other individuals with genotypic 
records only. These effects can be used to predict the potential of 
genotyped individuals with no phenotypic records in the training 
populations. GS is now a demonstrated method to improve 
selection efficiency for different animals such as dairy cattle 
(Hayes et al., 2009; García-Ruiz et al., 2016); trees such as apples 
(Muranty et al., 2015); forage crops such as ryegrass (Pembleton 
et al., 2018); and cereal crops such as bread wheat (Daetwyler 
et al., 2014) and maize (Krchov and Bernardo, 2015). The main 
advantages of applying GS on crops includes reducing the length 
of the breeding cycle (i.e. allowing a selection of superior plants 
at the seedling developmental stage), which can improve genetic 
gain per unit of time (Lin et al., 2016); whilst reducing the cost 
per unit of genetic gain (Lin et al., 2017a).

Combining GS with other modern breeding strategies may 
further enhance its efficiency on improving genetic gain. For 
instance, Cabrera‐Bosquet et al. (2012) recommended combining 
GS with high-throughput phenotyping methods to further increase 
the efficiency of both methods. Doubled haploid technology, 
the doubling the chromosome number of a haploid cell using 
colchicine, is used in several species. Extensions to GS that focused 
on selecting the best haplotypes (Optimal Haploid Value Selection) 
has been proposed to increase genetic diversity and genetic gain in 
crops (Daetwyler et al., 2015).

The recent development of “speed breeding” (SB) protocols 
has the potential to significantly accelerate breeding programs 
for different crops by reducing the generation time (Watson et al., 
2018; Voss-Fels et al., 2018). In SB, plants are grown in controlled 
environments with continuous light for 22 h per day at optimal 
temperature. The advantage of SB has been proven for many 
crops such as Brassica species, bread wheat, durum wheat, barley, 
chickpea, pea, grass pea, quinoa, oat, Brachypodium distachyon, 
and peanut; and at least four generations have been achieved in 

a single year using SB (O'Connor et al., 2013; Ghosh et al., 2018; 
Watson et al., 2018). Thus, combining GS and SB should allow for 
more intense and more frequent selection stages and contribute 
to higher genetic gain per year. Although SB has already been 
used in practice (Hickey et al., 2017; Gorjanc et al., 2018), such 
novel breeding programs need to be adequately tested for optimal 
utilization in a commercial setting.

While breeding strategies such as GS and SB show 
considerable promise, their efficient implementation requires 
optimization as implementation could be achieved in many 
ways. Large scale empirical testing of many scenarios is costly 
and slow. Alternatively, computer simulation can be a time- and 
cost-effective tool to predict the outcome of multiple breeding 
designs and strategies. Simulation can facilitate the assessment 
of optimal population sizes, selection intensities or other 
breeding program parameters ending with a small number of 
recommended schemes for the industry. Planning a simulation 
study for a breeding program requires 1) information about the 
genomic characteristics of the empirical breeding population 
for the target species; 2) understanding the genetic architecture 
and variance components of the traits under investigation; 3) 
knowledge about current breeding practices; and 4) designing 
and integrating new strategies into the current breeding practices 
(e.g. Lin et al., 2016). Once several alternate breeding programs 
have been simulated, the most effective in terms of additional 
genetic gain and cost can become the focus for empirical testing.

A previous study simulated a simple breeding program which 
combined both SB and GS (SpeedGS) in wheat (Voss-Fels et al., 
2018). However, they used 1,020 loci and they assumed that 
they are all causative variants. In reality, the causal variants are 
unknown and the genomic prediction models depend on linkage 
disequilibrium between causal and genotyped loci (Meuwissen 
et al., 2001). Simulation studies showed that including causative 
variants in the prediction model result in higher prediction 
accuracy, which contributes to overestimating the potential of 
breeding schemes that simulate only causal variants (Meuwissen 
and Goddard, 2010). For this reason, simulated causal variants 
should be masked in the GS analysis to avoid overestimating the 
prediction accuracy.

In this study, through stochastic computer simulation, 
the potential of incorporating both GS and SB strategies into 
allogamous crop breeding programs was investigated to improve 
multiple traits with different genetic architectures. The main 
strategy involved selecting parents for crosses based on their 
genomic estimated breeding values (GEBVs), generating their 
progeny through SB, and repeating the process multiple times 
in a single year. Multiple designs were tested omitting some of 
the conventional phenotypic selection (PS) stages to study their 
effects on the genetic gain, GS accuracy, and inbreeding rate. We 
aimed to compare the genetic gain per breeding cycle, genetic 
gain per year, accuracy of GS, and inbreeding levels for each 
proposed scheme. In each scheme, we simulated one, two, or 
three SB rounds and we also aimed to study the effect of reducing 
the number of full-sib plants in the initial population. As a case 
study, the commercial breeding program for the pasture crop tall 
fescue (Fescue arundinacea; 2n = 6x = 42; G1G1G2G2PP) was 
simulated. Tall fescue is a hexaploid pasture crop that evolved 
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from the hybridization of three diploid genomes, G1, G2, and 
P. To the best of our knowledge, this is the first simulation study 
to investigate the potential of breeding programs for allogamous 
crops that combine GS and SB and its effect on inbreeding.

MATeriAlS AnD MeThODS
The simulated phenotypic scheme is similar to many worldwide 
commercial programs for allogamous crops. The simulation was 
conducted in the following steps (Figure 1). First, 2.1 million 
equally distributed loci were simulated on 21 chromosomes, 
representing a base population that mimics genomic 
characteristics of a tall fescue natural population (including 
the extent of linkage disequilibrium, LD, and heterozygosity, 
He; Brazauskas et al., 2011; Fiil et al., 2011). Second, 1,000 
quantitative trait loci (QTL) per trait (five traits) were randomly 
sampled from the simulated 2.1 million loci. The effect of these 
QTL was sampled from different distributions to match the 
proposed architecture for each trait. Third, 20 initial breeding 
cultivars were simulated from the base population to match the 
diversity of commercial tall fescue cultivars. Finally, conventional 
PS and our proposed SpeedGS schemes (breeding program 
which combined both speed breeding and genomic selection) 
were simulated from the initial cultivars. Each step is described 
in detail in the following sections. One hundred replicates of 
breeding programs with different schemes were simulated.

Simulating Tall Fescue Base Population 
and Cultivars
The first step in the present study is to develop a simulated 
population with similar genomic characteristics to the natural 
population of the target crop, tall fescue in our case. As tall fescue 
is an allohexaploid crop, we used the software PolySim (Jighly 
et al., 2018b) to simulate the evolution of the hexaploid crop 
from its diploid progenitor species. The parameter file used for 
PolySim can be found in supplementary text 1. We started the 
simulation with a common diploid ancestor that underwent three 
speciation events to form the three diploid ancestors of tall fescue 
at generations 8,000, 8,200 and 15,000 (Figure S1). The first two 
diploids were hybridized to form the tetraploid ancestor Fescue 
glaucescens (G1G1G2G2) at generation 16,000. The hexaploid 
tall fescue was evolved at generation 25,000 by hybridizing the 
tetraploid and the third diploid (Fescue Pratensis; PP). We stopped 
the simulation at generation 105 to ensure that the hexaploid 
populations reached mutation-drift equilibrium. For all newly 
evolved taxa, populations were expanded exponentially within 
100 generations to reach the final population size. The number 
of generations in each stage was selected to run the analysis long 
enough to reach mutation-drift equilibrium (Jighly et al., 2018b).

The hexaploid population was simulated with 104 individuals, 
seven haploid chromosomes, and 105 loci per chromosome. The 
mutation rate was set to 10-5 per locus and recombination were 
sampled from Poisson distribution with λ equal to one crossover 
per chromosome, where each of 21 chromosomes was 100 cM. 
Because tall fescue is an allohexaploid, we treated it as a diploid 
organism having 21 independent diploid chromosomes (Jighly 
et al., 2018b). Twenty cultivars were simulated by randomly 
selecting 1,000 plants from the base population and running the 
simulation for an extra 100 generations with no mutation. These 
cultivars were used as the founders for the breeding program. All 
these parameters were selected following Lin et al. (2016) as tall 
fescue has similar or more extensive LD compared to ryegrass 
(Forster et al., 2014) and because the main aim of the present 
study is to demonstrate the potential of implementing SpeedGS 
in breeding programs.

Simulating Traits and QTl effects
We simulated five different traits to be subject to selection which 
were heading date (HD) with narrow sense heritability h2 = 0.7, 
forage yield (FY) h2 = 0.3, persistency (Per) h2 = 0.1, seed yield 
(SY) h2 = 0.4, and quality (Q) h2 = 0.3 (Table 1). FY was simulated 
to have correlation with SY (r = 0.2) and HD (r = 0.3). These values 
were selected based on results from (Nguyen and Sleper, 1983; 
Araujo et al., 1983; Veronesi and Falcinelli, 1988; Ebrahimiyan 
et  al., 2013a; Ebrahimiyan et al., 2013b) and knowledge from 
other similar pasture species (unpublished data). Each trait 
had 1.000 different additive QTL that were randomly sampled 
from loci with minor allele frequency >5% (Lin et al., 2016). To 
simulate pleiotropy and to achieve the genetic correlations, 500 
QTL were shared among FY, SY. and HD (Table 1).

QTL effects for FY, Per. and SY were simulated from the 
normal distribution N ~ (0, 1), while QTL effects of Q and 
HD were simulated from two different normal distributions. FiGUre 1 | General diagram for simulated breeding program. TF, Tall fescue.
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It is known that HD has some QTL of large effect (Barre et al., 
2009; Fè et al., 2015) and this is to some extent also true for Q. 
Hence, we wanted to allow for large and small effect QTL for 
both traits and, thus, standard methods to simulate correlated 
QTL (e.g. the R function mvrnorm in MASS package) are not 
applicable to this case and we had to develop a new method for 
this purpose. Unfortunately, HD architecture is unknown for tall 
fescue, but one could expect that it is comparable to perennial 
ryegrass. Fè et al. (2015) detected 14 QTL that combined explain 
approximately 31% of HD narrow sense heritability in perennial 
ryegrass. Given that associated SNPs are expected to explain less 
additive variance than causal variants depending on the level 
of LD (Purcell et al., 2003) and some homoeologous genes can 
work in duplicates or triplicates in polyploids (Takahagi et al., 
2018), we proposed that 20 QTL for HD could explain 50% of 
the total trait genetic variance. Similarly, we assumed that 100 
QTL for Q could explain 50% of the total additive variance. Thus, 
the remaining small effect QTL (980 for HD and 900 for Q) 
were simulated from normal distribution N ~ (0, 1), while the 
large effect QTL were simulated from normal distribution with a 
scaled standard deviation N ~ (0, m) in which:

 
m e n

l e
= ( - )

( - )
1

1  

Where e is the total genetic variance explained by large effect 
QTL (ranged between 0 and 1); n is the total number of simulated 
QTL and l is the number of large effect QTL.

Simulating Correlation Between QTl 
effects
Simulating correlated traits is usually done by multiplying a 
matrix R (n × p) of random QTL effects with the Cholesky 
decomposition of the targeted (p × p) correlation matrix C (n QTL 
for p traits); assuming C is a Hermitian, positive definite matrix. 
This works because Var(R) = I; in which I is the identity matrix. 
However, if the QTL effects for multiple traits were sampled from 
multiple normal distributions with different variances (such as 
our case), the variance of R will not be equal to that of the identity 
matrix. For this reason, we proposed the below method to solve 
this problem.

First, simulate an (n × p) matrix (R) in which random 
QTL effects for each trait were drawn from different normal 
distributions, i.e. Var(R) ≠ I. Second, rescale R to keep its variance 

equal to the identity matrix variance by multiplying it with the 
inverse of a matrix L, the Cholesky decomposition of the variance 
of R (Var(R) = L × LT); where LT is the transpose of L.

 RS R L= × −1
 

RS can be then multiplied with D, the Cholesky decomposition 
of the required correlation matrix C (C = D × DT); where DT is 
the transpose of D; to get the final correlated QTL effects, where 
20 QTL explain 50% of the genetic variance and 980 QTL explain 
the other 50% for HD.

Simulating True Breeding Values and 
Phenotypes
True breeding values (TBVs) for individuals were calculated 
as the sum of all QTL effects multiplied by their allelic dosage 
(recorded as 0, 1. or 2). Phenotypes were simulated considering 
the h2 for each trait by adding random environmental error 
terms to TBVs as Pheno=TBV+e; where e is a random normal 
deviate sampled from N ( , )0 2σ e  and errors for different 
traits were independent. The error variances were rescaled 
after each breeding cycle to ensure constant h2 during the 
breeding program.

Simulating the Phenotypic Breeding 
Program
We ran eight cycles of the following PS program. The PS 
program required a total of 11 years to release new cultivars 
with six major stages of which four containing a selection step 
(Figure 2A). The first stage (crossing; one year) of the program 
started with selecting five random plants from each of 20 
cultivars. Then, randomly crossing the selected plants from 
each pair of cultivars to generate a total of 50 F1 populations 
with 100 seeds each (five F1 populations from each pair of 
cultivars × 10 pairwise cultivar crosses). In stage two (top 
cross; two years), the resulting 5,000 seeds would be planted 
in a single-spaced plant trial with random mating among 
them. At this stage, selection for HD and SY was applied by 
first discarding the earliest 1,000 plants (20%) for HD and then 
randomly selecting 100 plants from the top remaining 3,000 
plants (60%) for SY.

Five hundred seeds from each of the 100 selected plants 
were planted in small plots (stage three; two years) and these 
small plots were phenotyped for FY and Per for selection. 

TABle 1 | Information about simulated traits: narrow sense heritability on diagonal with selection weight in the SpeedGS stage between brackets, correlation between 
traits below diagonal and number of shared QTL above diagonal.

Trait FY hD SY Q Per

FY 0.3(0.25) 500 500 0 0
HD 0.3 0.7(0.1) 500 0 0
SY 0.2 0 0.4(0.15) 0 0
Q 0 0 0 0.3(0.15) 0
Per 0 0 0 0 0.1(0.35)

FY, forage yield; Per, persistency; SY, seed yield; Q, quality; HD, heading date.
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Equal selection pressure was applied, and phenotypes were 
standardized. The top 40 small plots were selected based on 
FY and Per and 25 plants from the top 80% plants for FY and 
Per within each small plot were cloned to be planted in a single 
row trial. This resulted in 1,000 plants (25 plants × 40 small 
plots) being grown in single rows and phenotyped for HD and 
Q, which is stage four (single rows; three years). In stage five 
(synthetics; one year), the top 500 rows for Q were selected and 
were grouped into 50 synthetic populations where each involved 
10 rows with similar HD phenotypes. In the final stage (field 
trial; two years), the 50 synthetic populations were planted in 
large plots and the top 20 large plots were selected as cultivars for 
the next breeding cycle based on their FY and Per performance. 
Again, both FY and Per were selected for simultaneously using 
an index with an equal 50% weight for each trait.

Simulating Different Combined Speed 
Breeding and Genomic Selection 
(SpeedGS) Schemes
In all proposed SpeedGS schemes, we replaced the first two 
stages in the PS scheme with one year of SB, with one to three 
rounds (Figure 2B). Having one SB round indicates a scheme 
that utilizes GS only without SB. For each SB round within 
this year, we genotyped 1,000 single plants, predicted their 
GEBVs and selected 1,000 × 1 progeny or 100 × 10 progenies 
diverse crosses for the next SB round or the next stage of the 

breeding program. We simulated genomic parent average 
GEBVs for all possible crosses (1,000×999/2=499,500 crosses) 
and randomly selected the best crosses from the top 10,000 
possible combination of parents. All traits were selected 
simultaneously with index weights of 0.35, 0.25, 0.15, 0.15, 
and 0.1 on the GEBVs of Per, FY, SY, Q, and HD; respectively. 
The weights were selected to give higher intensities for traits 
with lower heritabilities with more emphasis on FY and were 
combined as Index = Σ biXi, where bi is the index weight and 
Xi is the plant GEBV for trait i. The cultivars released after the 
fourth PS program were used to commence the first SpeedGS 
cycle, while the small plots from the first four phenotypic 
cycles (400 small plots) were genotyped and used as a 
reference population to train the GS prediction equation for 
all five traits. The genotyping for small plots were recoded as 
the allelic dosage of SNPs (2 × the allele frequency) calculated 
using 20 randomly selected plants per plot (Ashraf et al., 2014; 
Lin et al., 2016). Four breeding program cycles were run for all 
SpeedGS scenarios.

We proposed four major SpeedGS schemes (Figure 2B). For 
each major scenario, we tested whether it is best to have one, two, 
or three SB rounds or whether it is best to select 1,000 crosses × 
one offspring, or 100 crosses × 10 offspring during the SpeedGS 
stage. For this reason, the total number of tested scenarios was 
24 (six scenarios per each of the four major SpeedGS schemes; 
Figure 2B).

FiGUre 2 | Detailed stages of (A) the phenotypic and (B) the proposed SpeedGS scenarios.
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• Scenario one (requiring 9 years) involved the same stages 
as the phenotypic program except for replacing the first two 
conventional stages with the 1-year SpeedGS stage

• Scenario two (6 years) omitted the single row stage
• Scenario three (7 years) left out the small plots stage
• Scenario four (4 years) omitted both the small plots and the 

single row stages so it had the shortest cycle.

The initial population (Topcross, Figure 2A) in the PS program 
consisted of 5,000 individuals, while the initial population for the 
proposed SpeedGS programs contained 1,000 individuals to reduce 
genotyping cost. For the first SpeedGS cycle, 1,000 individuals 
were randomly selected from the 5,000 individuals of the fifth 
phenotypic cycle initial population. small plots and field trial stages 
were genotyped and added to the reference population to update 
the GS prediction equation after every cycle. Field trial size was 
changed to 100 instead of 50 for the third and the forth scenarios to 
partially compensate for omitting small plots. After the single row 
trial, selection was conducted on SY and Q (equal index) instead of 
Q only. Everything else was the same as the PS program.

As SpeedGS involving multiple selection stages in a short 
time period, we tried to investigate the components that affect 
inbreeding, and to find possible ways to reduce inbreeding. We 
considered the fourth major scenario with three SB rounds and 
1,000 crosses during the SpeedGS as our base for comparison. 
We investigated the following alternative scenarios in our study: 
1) developing the synthetic cultivars from five plants instead of 
ten; and 2) developing the initial population starting from cycle 5 
from 100, 200 or 1,000 crosses instead of 50 crosses × 100 plants. 
We kept the same pairwise crossing scheme but involved more 
plants per cultivar to be crossed. In other words, we aimed to 
study the effect of reducing the number of full-sib plants in the 
initial population.

Statistical Analysis
We tracked the linkage disequilibrium (LD) and heterozygosity 
(He) of the hexaploid population after its first appearance 
every 5,000 generations to ensure that the population reached 
equilibrium between mutation and drift and to be compared 
with empirical values and expected values given the simulation 
parameters. However, given the limited information available 
on tall fescue, we compared it with ryegrass as it is expected to 
have similar LD with tall fescue (Forster et al., 2014). LD was 
calculated following Hill and Weir (1988) between each pair of 
loci with minor allele frequency (MAF) > 5% within the same 
chromosome. The expected LD decay was calculated following 
Tenesa et al. (2007) method which considering the relation 
between LD and the effective population size (Ne) considering 
the mutation rate as [E(r2) = 1/(2+4NeC) + 1/n]; in which C is the 
genetic distance in Morgan and n is the sample size. The expected 
He was calculated following Crow and Kimura (1970) method 
taking into account the presence of only two alleles per loci as: 
[E(He) = 4Neμ/(8Neμ+1)]; in which μ is the mutation rate. Two-
sample student’s t tests were performed to investigate the level 
of significant differences between scenarios or different analyses, 
where required. Throughout the manuscript, comparisons with 
p<0.01 were declared to have significant differences.

To estimate SNP effects, we randomly selected 100,000 
SNPs from the simulated 2.1 m loci after excluding the causal 
variants or the simulated QTL. These loci had MAF > 5% in the 
base population so it is possible for some of them to get fixed 
before the commencement or during the SpeedGS program. 
SNP effects were estimated using the Bayesian ridge regression 
(BRR) method implemented in the R package Bayesian 
Generalized Linear Regression, BGLR (Pérez and de Los 
Campos, 2014). BRR assumes that regression coefficients have 
common variances so all SNPs with similar allele frequencies 
should have similar contribution to the additive variance 
(Gianola, 2013). We ran each BGLR analysis for 50,000 
iterations and discarded the first 10,000 as burn in. GEBVs 
were calculated as GEBV = Zβ̂  where Z is a matrix of plant 
SNP allelic dosages and β̂  is a vector of estimated SNP effects. 
The accuracy of GS was investigated for all scenarios and all 
three SB rounds to allow for comparing GS accuracy with SB 
rounds = 1, 2, or 3. The accuracy was calculated as the Pearson 
correlation between GEBVs and TBVs. The initial population 
for the fifth phenotypic cycle was used as the base to compare 
its genetic gain with the following cycles as a standardized 
difference in average TBVs using the following equation:

 
∆σ g

c c

c

av
std

i=
−.( ) .( )

.( )
TBV av TBV

TBV
5

5  

where av. (TBVc5) and av.(TBVci) are the average TBVs of the 
initial population in cycle five and cycle i (i ranged from six to 
nine), and std.(TBVc5) is the TBV standard deviation in the fifth 
cycle initial population. In cycle nine, we only generated the 
initial population to track genetic gain.

The initial populations of breeding cycles five to nine were also 
used to track the increase in the inbreeding coefficient (F). The 
genomic relatedness matrices (GRM) for initial populations were 
generated following the first method described in VanRaden 
(2008) and used the allele frequencies observed in the initial 
population of the phenotypic cycle five. We calculated the mean 
population F for each cycle as the average initial population GRM 
diagonal elements minus one. The rate of inbreeding change 
(ΔF) between neighboring cycles (cycle c and c-1) was calculated 
according to Falconer and Mackay (1996) as:
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11  

reSUlTS

Genetic Gain Per Breeding Cycle
Selecting 100 instead of 1,000 crosses during the SpeedGS 
stage resulted in no significant differences in genetic gain for 
all traits and under all scenarios. Generally, the first scenario 
performed better than all other scenarios for all traits after 
four breeding cycles. For each of the four major scenarios 
suggested in this study, we tested the case of having one 
crossing round, which tested implementation of GS without 
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applying SB. For all traits in all scenarios, having more SB 
rounds generally resulted in significantly (SB1 vs SB3) higher 
genetic gain per cycle (Figure 3; Table S1). Compared to PS, 
having three SB rounds resulted in similar or significantly 

higher genetic gain per cycle, except for Q in scenarios two 
and four (Figure 3).

The genetic gain of all four SpeedGS scenarios were comparable 
after each SB round for HD. PS performed significantly better 

FiGUre 3 | Cumulative genetic gain across cycles for all simulated breeding schemes for all traits with SB equal to (A) one, (B) two, and (C) three.
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than all four scenarios for HD when considering SB1, but was 
comparable to SB2 (PS slightly higher) and SB3 (PS slightly 
lower). For FY, scenario one performed better than all other 
scenarios followed by scenarios two and three. Scenarios one 
and two consistently showed significantly higher genetic gain 
compared to scenario four, while their differences from scenario 
three were not significant except between scenario one and three 
for SB3. The PS exhibited significantly higher genetic gain than 
scenario four for SB1 and significantly lower genetic gain than 
scenario one for SB2 as well as scenarios one and two for SB3. 
Scenarios one and three showed significantly higher genetic gain 
for SY compared to scenarios two and four as well as the PS for 
all SB rounds. SY genetic gain for scenario two was significantly 
higher than the PS only for SB3.

All SpeedGS scenarios, regardless of the number of SB 
rounds or the crossing scheme, resulted in significantly higher 
genetic gain compared to PS for Per, which had the lowest 
heritability. Scenarios one and two steadily showed significantly 
higher genetic gain compared to scenarios three and four. For 
the trait Q, PS always showed higher genetic gain than scenarios 
two and four but resulted in no significant differences between 
scenarios one and three, involving the single row planting 
stage. Scenarios one and three were not significantlydifferent, 
regardless of the number of SB rounds, and this was also the 
case for scenarios two and four. However, scenarios one and 
three showed significantly higher genetic gain compared to 
scenarios two and four.

Genetic Gain Per Year
Similar to the genetic gain per cycle, having 100 or 1,000 crosses 
during the SpeedGS stage resulted in no significant differences 
in genetic gain per unit of time (year), regardless of the scenario 
or the number of SB rounds. As SpeedGS schemes had a shorter 
cycle, the general trend showed that they performed better than 
the PS in most cases especially after three SB rounds (Figure 4). 
For example, the genetic gain of scenario four with three SB rounds 
was 2.7, 2.5, 3.7, 10.0, and 1.2 times higher than PS for HD, FY, SY, 
Per, and Q after 16 years; respectively (dividing the genetic gain 
of all traits in scenario four on the genetic gain of the PS; inferred 
from Figure 4).

For HD, shorter scenarios (two and four) always exhibited 
significantly higher genetic gain except for scenario two with 
one SB round compared to PS. The genetic gain of the longer 
scenarios (one and three) was always comparable to PS, 
although they were slightly higher with three SB rounds. The 
shortest scenario (four), resulted in significantly higher genetic 
gain compared to all other SpeedGS scenarios (Figure 4). For 
FY, the genetic gain in all scenarios showed significantly higher 
genetic gain compared to PS except for scenario three when 
running a single SB round. Scenarios two and four consistently 
displayed higher genetic gain compared to scenarios one and 
three and the differences were significant for SB2 and SB3. PS for 
SY resulted in a significantly lower genetic gain compared to all 
other scenarios regardless the number of SB rounds. The longer 
scenarios, one and three, showed significantly higher genetic 
gain compared to the shorter scenarios when running one or 

two SB rounds. When running three SB rounds, the differences 
were significantly higher only when compared with scenario 
two. Similar to SY, all scenarios showed significantly higher 
genetic gain than the PS for Per. The shorter scenarios, two and 
four, always showed significantly higher genetic gain compared 
to the longer scenarios except when comparing scenario four 
with scenarios one and three for SB1. Q was the only trait 
which PS exceeded some SpeedGS scenarios (Figure 4). PS 
significantly exceeded scenarios two and four when running a 
single SB round. On the other hand, PS showed significantly 
lower genetic gain compared to scenario three for all SB cases as 
well as scenario one for SB3.

Accuracy of Genomic Selection
The accuracy of GEBVs varied considerably among different 
SpeedGS scenarios, SB rounds within the SpeedGS stage, and 
different breeding cycles (Figure 5; Table S2). Scenarios with 
100 crosses × 10 plants during the SpeedGS stage improved 
accuracy over 1,000 crosses × 1 plant (Figure 5). Prediction 
accuracy decreased with each additional SB round. However, 
this decrease was not linear with a larger difference between 
SB1 and SB2 compared to the difference between SB2 and SB3. 
For this reason, we run a single breeding cycle of the SpeedGS 
scenario four with six SB rounds. The results suggested reaching 
a stable value for accuracy after the fourth SB round for all traits 
(Figure S3). Accuracy increased as overall breeding cycles 
increased due to expanding reference populations. The first 
SpeedGS cycle (cycle five) resulted in very similar accuracies 
in all scenarios. In the following cycles (cycle six to eight), the 
highest accuracy was observed in the second scenario followed 
by the first for all traits except for HD. The last scenario, which 
had the shortest time, had the highest accuracy for HD, but the 
lowest accuracy for the remaining traits. HD was predicted with 
high accuracy compared to other traits, while Per showed the 
lowest accuracy.

inbreeding
All SpeedGS scenarios resulted in larger increases in inbreeding 
per cycle and reductions in genetic diversity compared to PS even 
when only one SB round was applied. Extra SB rounds resulted in 
higher inbreeding rate (Figure 6; Table S3) and lower diversity 
(Table S4). For example, applying three SB rounds when running 
1,000 SpeedGS crosses for the fourth scenario resulted in twice 
the inbreeding rate (0.22) obtained when applying a single SB 
round only (0.11). The first scenario resulted in the highest 
inbreeding rate per cycle followed by the second, while the fourth 
had the lowest inbreeding rate. However, when considering 
the inbreeding per year, the fourth scenario had the highest 
inbreeding rate, while the first resulted in the lowest. Having 100 
crosses × 10 plants during the SpeedGS stage resulted in larger 
increase in inbreeding.

As SpeedGS schemes resulted in higher inbreeding rates, 
we tried to investigate possible modifications to the proposed 
SpeedGS programs that can limit this sharp increase (Figure 
7A). We considered the fourth scenario with 1,000 crosses as 
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our base scenario to compare the changes. Our results showed 
that having a larger number and more diverse plants to form the 
synthetic populations could affect the inbreeding rate as using 10 
plants instead of five significantly reduced the inbreeding rate. 

Generating the initial population using much larger number of 
crosses resulted in the largest reduction of inbreeding rate and 
the larger the number of crosses, the lower the inbreeding rate. 
Developing the initial population of 1,000 individuals using 1,000 

FiGUre 4 | Cumulative genetic gain across year for all simulated breeding schemes for all traits with SB equal to (A) one, (B) two, and (C) three.
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random crosses decreased the inbreeding rate by 30% from 0.226 
to 0.158 compared to the base scenario. Interestingly, the same 
inbreeding level was obtained whether we used 100 or 1,000 
crosses during the SpeedGS stage (Figure 7A), without affecting 
genetic gain (Figure 7B).

DiSCUSSiOn
The revolution of next generation sequencing methods has moved 
genomic selection from a theoretical possibility to a practical choice 
for modern commercial breeding programs. Several empirical (e.g. 

Hayes et al., 2009; Daetwyler et al., 2014; Krchov and Bernardo, 2015; 
Muranty et al., 2015; Pembleton et al., 2018) and simulation-based 
studies (e.g. Yabe et al., 2013; Lin et al., 2016) have demonstrated the 
importance of adapting GS into current practices in both plant and 
animal breeding. Today, after almost two decades since the inception 
of the GS idea (Meuwissen et al., 2001), the research question has 
changed from whether using GS will increase genetic gain and 
profits, to how one can further increase the efficiency of GS. In this 
paper, we investigated the pros and cons of combining the newly 
proposed breeding strategy “speed breeding” with GS in allogamous 
crop breeding programs. Generally, we found that breeding schemes 
that involved more SB rounds have significantly higher genetic gains 

FiGUre 5 | The changes in the accuracy of genomic selection after each of the three SB rounds in SpeedGS scenarios (A) one, (B) two, (C) three, and (D) four.
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for different traits compared to schemes that used GS only, and 
they both (GS and SpeedGS schemes) outperformed conventional 
PS in almost all scenarios and traits. However, we found that the 
more SB rounds were performed in each breeding cycle the faster 
the shrinkage in the genetic diversity of the breeding population, 
which may limit the long-term genetic gain (Goddard, 2009). For 
example, the inbreeding level was doubled when having three SB 
cycles compared to the scenario with only one SB cycle.

Simulating the Tall Fescue Base 
Population
The simulated population using PolySim followed the theoretical 
expectation for LD and He. Our population had very similar LD 
decay pattern to the expected decay considering our simulation 
parameters (Figure S2). Previous empirical studies on ryegrass 
also reported similar quick LD decay in less than one centimorgan 
(Brazauskas et al., 2011; Fiil et al., 2011). He was equal to 0.218±0.01, 

FiGUre 6 | Cumulative inbreeding rate increase across cycle (A−C) and per year (D−F) for SB equal to one, two and three; respectively.

FiGUre 7 | (A) A comparison between inbreeding rate for scenario four with three SB rounds and 1000 crosses during SpeedGS stage (the Base scenario in 
the black line) with alternative scenarios of having five plants per synthetic instead of 10 (red line), or developing the initial population from 100 F1 × 10 progenies 
(green), 200 F1 × five progenies (blue) or 1000 F1 × one progeny with 1000 crosses during SpeedGS (orange) or 100 crosses (cyan). All other parameters were 
similar for all lines. (B) A comparison for genetic gain for all traits among the base scenario (straight line) and the alternative scenarios developed from 1000 F1 with 
1000 crosses × one progeny during SpeedGS (dashed line) or 100 crosses × 10 progenies (dotted line).
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which is comparable to the expected He value of 0.222 as well as the 
empirical He reported for perennial ryegrass in Fiil et al. (2011), 
which was 25.9%. The average He in Brazauskas et al. (2011) was 
equal to 0.4 but they used microsatellite markers, which are known 
to be highly mutable and have multiple alleles per loci which 
contribute to higher He (Ellegren, 2004).

Genetic Gain Per Cycle
Considering cumulative gain across cycles, increasing the 
number of SB rounds resulted in a gradual increase in genetic 
gain per cycle with consistent trends among all SpeedGS schemes. 
Genetic gain across cycles in the first SpeedGS scenario exceeded 
all other scenarios for all traits except HD, as scenario one 
involved selection at all original breeding stages (five selection 
stages), while the remaining scenarios were reduced forms 
omitting steps. The selection for HD happened only during 
the SpeedGS stage, which is a common feature in all scenarios 
explaining its comparable gain per cycle across scenarios with 
the same number of SB rounds (Figure 3). The performance of 
other scenarios varied among traits depending on the number of 
selection stages for each trait within each scenario. Genetic gains 
achieved in scenario two were comparable to the first scenario 
for FY and Per, as both scenarios had an extra selection event for 
these traits after the small plots stage. Similarly, the third scenario 
was comparable to the first for SY and Q for which selection 
occurred at the single row trial stage in both scenarios. The 
shortest scenario (Scenario four) had the lowest genetic gain per 
cycle as it omitted the selection stages at small plots and single 
rows. Nevertheless, the performance per cycle of this scenario 
was equivalent or better than PS for all traits except Q.

PS outperformed all scenarios per cycle when considering GS 
only (SB rounds = 1) for both HD and Q (Figure 3A). Both traits 
had low selection index at the SpeedGS stage, while they were 
more intensely selected in the PS scheme. Having two or more 
SB rounds increased their genetic gains to higher levels than the 
phenotypic program, except for scenarios two and four for Q in 
which there were no single row trial. The presence of small and 
large effect QTL marginally affected the results of BRR-BLUP 
model which assumes the additive infinitesimal model. Applying 
GS models assuming unequal variances for QTL effects such as 
BayesA and BayesB did not improve genetic gain or GS accuracy 
for HD and Q (Table S5). This may be a result of the presence 
of large number of small effect QTL as well as increasing the 
frequency of the desired alleles of the large effect QTL during 
the first four phenotypic cycles which occurred before the first 
SpeedGS cycle. For example, for the majority of the replicates, 
between 80 to 100% of the 10 HD QTL with large effects were 
fixed at the commencement of the SpeedGS scenarios.

Genetic Gain Per Year
In concordance with previous reports (e.g. Iwata and Jannink, 2011; 
Yabe et al., 2013; Lin et al., 2016), shortening the breeding cycle also 
had a large impact on boosting genetic gain per unit of time in our 
study. The shorter the breeding cycle, the higher the genetic gain 
achieved by having more SB rounds. For instance, when GS was 

applied with only one SB round, the genetic gains from scenario 
four were not significantly different from scenarios one and three 
for FY and Per. When increasing the SB rounds to three, the gain 
per year from scenario four became significantly higher than that 
from scenarios one and three. Conversely, the differences of genetic 
gains for SY and Q were significant between scenarios one and four 
for the scheme of one SB round (GS only), while the differences 
were not significant when running three SB rounds.

We also tested whether omitting the small plots and/or the 
single row stages resulted in any tradeoffs regarding to genetic gain. 
The small plots stage takes two years but it adds an extra selection 
step for FY and Per. Comparing scenario two with scenario four or 
scenarios one with scenario three, which differ only with the small 
plots stage, showed that there was similar genetic gain between 
reducing cycle time and increasing selection intensity (Figure 4). 
On the other hand, removing the single row stage, at which we select 
for SY and Q, resulted in significantly lower genetic gains for both 
traits when comparing scenarios one and three with scenarios two 
and four, respectively. This might be a result of the lower selection 
pressure proposed for SY and Q during the SpeedGS stage, which 
was equal to 0.15 for each trait. For this reason, if scenario four 
would be chosen for practical use, the selection index should be 
reweighted to achieve optimal gain, especially for a trait like quality 
that needs to be further improved in tall fescue commercial cultivars 
to compete with other grasses (Forster et al., 2014).

Accuracy of Genomic Selection
Generally, the accuracies of GS achieved in our study were low 
for all traits. The reasons could be due to a small size of reference 
population (Daetwyler et al., 2008; Goddard, 2009) and inferring 
the genotyping of the small plots in the reference population 
through the mean dosage of 20 plants (Lin et al., 2016). The 
mean genotype of a plant population provides less resolution 
than single plant genotypes would. However, single plant and 
plot phenotypes tend to be only lowly correlated, therefore, 
predicting the performance of sward plants indirectly using the 
single plants is generally not very successful for forage yield in 
pasture crops including tall fescue (Waldron et al., 2008), white 
clover (Atwood and Garber, 1942), Kentucky bluegrass (Kramer, 
1947), and alfalfa (Asay et al., 1999). On the other hand, some 
morphological and nutritional quality traits have moderate to 
high correlation between spaced and sward trials (Humphreys, 
1989; Carpenter and Casler, 1990; Waldron et al., 2008). For this 
reason, traits that have high correlation between swards and 
spaced plants could have the advantage of improving their GS 
accuracy by phenotyping the SpeedGS crosses to be added to the 
reference population as those are already genotyped.

The first SpeedGS cycle had exactly the same starting reference 
population resulting in non-significant differences in prediction 
accuracy across the four scenarios. After each breeding cycle, 
the reference population was updated with 150 new plots (small 
and large) in scenario one and two or 100 large plots for scenario 
three and four. For this reason, the accuracy of the first two 
scenarios was generally higher than the other scenarios for later 
cycles except for HD, but, on the other hand, it requires more 
labor resources. The accuracy for HD prediction in scenario 
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four was slightly higher than other scenarios mainly due to the 
lower number of random recombination rounds (generations) 
during meiosis around HD QTL, while it received no selection 
emphasis in any of the omitted stages. In the first three scenarios, 
extra selection steps happen on traits other than HD which will 
just randomly break the linkage disequilibrium between the 
genotyped SNPs and HD QTL without contributing to any sort 
of selective sweep around them (Kondrashov and Yampolsky, 
1996). Thus, higher marker density will be beneficial to improve 
genomic prediction accuracy for such cases (Habier et al., 2009).

The accuracy of GS is expected to decrease when implementing 
more SB rounds in one cycle due to the extra crossing step shifting 
the population away from the reference population. Interestingly, 
the decrease in accuracy was not linearly correlated to the increase 
of the number of SB rounds. A larger decrease was observed in the 
scenarios with two SB rounds compared to the further decrease 
in the scenarios with three SB rounds for all traits across cycles. 
Accuracy stabilized after four SB rounds for all traits (Figure S3). 
Previous studies reported similar observations that the accuracy 
decays quickly during the first generations, while persisting 
over the following generations without updating the reference 
population (Habier et al., 2007; Habier et al., 2009; Sonesson and 
Meuwissen, 2009; Habier et al., 2010; Wolc et al., 2011). Habier 
et al. (2007) attributed the rapid decrease in accuracy during the 
first generations to the decay in genetic relationships between 
the reference and validation population, while the persistency of 
accuracy after that is due to the linkage disequilibrium between 
SNPs and casual mutations. Previous reports also showed that 
higher marker densities retained more GS accuracy after a number 
of breeding generations without updating the reference population 
(Habier et al., 2009), indicating the importance of SNP density for 
breeding schemes aiming to extensively depend on speed breeding.

Previous GS studies on perennial ryegrass resulted in comparable 
or higher prediction accuracies in comparison with our simulation. 
Faville et al. (2018) used a reference population of 517 individuals 
that have comparable quick LD decay to our population. This 
population is similar to our reference in breeding cycle six with 
SB = 1 (Figure 5). They found that the accuracy of HD prediction 
ranged between 0.4 and 0.52, which is very comparable to our 
results. They also estimated the accuracy of a grazing management 
trait (equivalent to persistency) to range from 0.07 to 0.3, which 
is also within our accuracy range. Their accuracy was not affected 
by the SNP density (40,000 vs. one million SNPs). Using a diverse 
reference of 364 individuals (slightly smaller than our starting 
reference population), Grinberg et al. (2016) achieved an average 
accuracy for FY of 0.15 over different phenotypic measures. Other 
studies that used less diverse populations achieved high accuracies. 
Fè et al. (2015, 2016) used a population with high relatedness and 
their accuracies of predicting HD, SY, and other quality traits were 
almost three times higher than our estimations when considering 
the same reference population size. Similarly, Pembleton et al. 
(2018) used a population with less diversity compared to our 
simulated population and they achieved an average accuracy of 
0.76 for HD and 0.33 for FY. These values are almost double the 
values than in our study. Taken together, the prediction accuracies  
we report were in a realistic range with a possible bias towards 
being conservative estimates.

inbreeding vs. Speed Breeding
Increasing the selection rounds and intensities through SB increases 
the risk of running out of heterozygosity due to extensive inbreeding. 
This can increase the opportunity for deleterious recessive genes to 
become prevalent after a few cycles of breeding program and can 
lead to inbreeding depression (Kim et al. 2015). Previous reports 
showed that GS can significantly increase inbreeding (Lin et al., 
2016). Our results also showed that both GS and SB can significantly 
increase inbreeding, and, the shorter the breeding scheme, the 
higher the inbreeding rate per year. However, in our simulation, we 
reduced the size of the initial population for the SpeedGS scheme to 
1,000 (20% of that in the phenotypic scheme) to make the proposed 
scheme cost-effective, which could have further contributed to 
increasing the inbreeding rate. Additionally, we prioritized crosses 
using a half million potential offspring GEBVs. Increasing the 
number of SB rounds affected the shorter schemes more than the 
longer ones. For instance, the inbreeding per year for scenarios 
four and two (1,000 crosses × one progeny) was not significantly 
different for the GS only scenario, but the inbreeding for the former 
became significantly higher when SB rounds = 3 (Figure 6).

Various mathematical methods have been tested for controlling 
inbreeding in animal/plant breeding (Meuwissen, 1997; Pryce 
et al., 2012; Lin et al., 2017b; Gorjanc et al., 2018). Lin et al. (2017b) 
proposed a heuristic algorithm to penalize both 1) the selection 
of mated parents by their co-ancestry and 2) the GEBVs for 
the candidate offspring using their parental co-ancestry. Their 
proposed method resulted in only one third of the original GS 
scheme inbreeding rate without significant reduction in genetic 
gain. While such mathematical models can considerably recover 
the populations from inbreeding and they have been extensively 
investigated (Wray and Goddard, 1994; Meuwissen, 1997; Pryce 
et  al., 2012), in this paper we tried to investigate some other 
breeding practices to reduce inbreeding. Our hypothesis was 
to test the effect of exploiting higher diversity in stages where a 
limited number of parents are involved. More specifically, the 
crosses that form the synthetic population or the initial population. 
Having more parents and crosses in both stages resulted in a large 
reduction in inbreeding rate. The improvement in the inbreeding 
rate did not decline when having fewer crosses during the SpeedGS 
stage and it did not affect genetic gain in any trait (Figure 7). Thus, 
the diversity within crosses is essential. Other strategies to reduce 
inbreeding involve importing cultivars from outside the breeding 
program (Reif et al., 2005) or introducing new variation from 
wild relatives (Harlan, 1976; Hajjar and Hodgkin, 2007; Jighly 
et al., 2018a; Jighly et al., 2019). However, introducing new non-
elite materials may reduce the genetic gain on the short term but 
improve it on the long term.

COnClUSiOn
The present study has investigated the potential of utilizing both 
speed breeding and genomic selection (SpeedGS) in the breeding 
programs of allogamous crops using stochastic computer 
simulation. Although low prediction accuracy for different traits 
was reported, all proposed SpeedGS schemes outperformed 
the conventional phenotypic selection scheme and the higher 
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the number of speed breeding rounds, the higher the genetic 
gain obtained. Persistency, which had the lowest heritability, 
showed the highest improvement in SpeedGS schemes over 
the conventional phenotypic selection program. The reference 
population for the first SpeedGS cycle started with 400 plots 
which were updated with 100/150 plots every cycle. This small 
number was chosen to investigate genetic gain with the minimal 
possible prediction accuracy when resources are limiting. The 
optimal utilization of SpeedGS would require plant breeders to 
carefully consider its impact on inbreeding. The present study 
showed that increasing the diversity of parents used in multiple 
stages of the breeding programs can significantly reduce the 
inbreeding gain. Other mathematical models should also be 
used to further reduce the inbreeding rate and ensure long-
term genetic gain. Moreover, similar comprehensive studies 
should also be done to simulate the potential of SpeedGS in self-
pollinated crops.
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