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Protein crops have gained increasing interest in recent years, as a transition towards 
plant-protein based diets appears pivotal to ensure global food security and preserve the 
environment. The Andean species Lupinus mutabilis emerges as an ideal protein crop 
with great potential for Europe and other regions with temperate climates. This species 
is characterized by oil and protein content similar to soybean and is highly valued for its 
adaptability to colder climates and low input agriculture on marginal land. However, its 
introduction outside the Andes has yet to take off. To date, L. mutabilis remains an under-
studied crop, lacking high yield, early maturity and a consistent breeding history. This 
review paper identifies L. mutabilis limitations and potential uses, and suggests the main 
breeding targets for further improvement of this crop. It also highlights the potential of new 
molecular tools and available germplasm resources that can now be used to establish L. 
mutabilis as a viable protein crop.
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INTRODUCTION

Over the past decades, challenges such as food security and environmental sustainability have 
earned the status of main priorities worldwide and are the basis of the 17 Sustainable Development 
Goals (SDGs) defined by the United Nations in 2015. As world population continues to rise, our 
food production has already exceeded the planet’s environmental boundaries driving climate 
changes, biodiversity loss and unsustainable use of land and water. The growing demand for animal 
proteins has played an important role in this process, by turning livestock sector in the main user 
of agricultural land and in one of the biggest contributors to climate change. In light of the current 
situation, a transition from meat-intensive diets towards plant proteins-based diets is vital to ensure 
global food security and preserve the environment.

To create alternatives to animal protein, the cultivation of protein crops has gained interest in 
recent years. The European Union has launched initiatives to reduce its dependency on the import 
of soybean by growing an increasing quantity and variety of protein crops within the European 
member states. Research has focused on identifying sources of proteins that can reduce the current 
protein deficit while contributing to the transition to more sustainable agricultural systems. One 
such source is protein-rich leguminous plants. Legumes also stand out for their great potential 
in the reclamation of poor and marginal lands for agriculture, due to their ability to fix nitrogen 
and their beneficial effects on the soil (De Ron et al., 2017). Among legumes, lupins have been 
identified as particularly promising, characterized by high-quality protein content, suitability for 
sustainable production and potential health benefits (Lucas et al., 2015). The genus Lupinus includes 
almost 300 species, but only four play an important role in agriculture: L. albus, L. angustifolius, 
L. luteus and L. mutabilis (Gresta et al., 2017). The first three listed species are native to Europe 
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and represent the majority of lupins cultivated worldwide. At 
the same time, despite years of extensive research, the success 
of these species has been hampered by unstable yields, low oil 
content and adaptation to a narrow-range of agro-climatic 
conditions. The fourth species listed, L. mutabilis, is a species 
native to the Andes, and is cultivated only in some parts of South 
America and not yet commercially available in Europe (Lucas 
et al., 2015). However, L. mutabilis is characterized by the highest 
grain quality of all cultivated lupins, with an oil content similar 
to soybean, and is adapted to low input farming in temperate 
climates. The combination of these characteristics makes L. 
mutabilis a potentially superior alternative to the current plant-
based sources of protein and oil in Europe and other regions with 
temperate climates.

Lupinus mutabilis Sweet is considered to be one of the lost 
crops of the Incas. Its seeds are characterized by a high protein 
and oil content (44% dw and 18% dw, respectively), which exceeds 
that of any other lupin species (Blanco-Galdos, 1982; Pate et al., 
1985). In addition, lupin seeds are practically devoid of starch, 
and the major carbohydrates found are oligosaccharides (mainly 
stachyose and raffinose) and cell wall storage polysaccharides 
(Trugo et al., 2003). Most essential amino acids, lysine in 
particular, are also present in the seeds (Table 1) together with  

a substantial amount of dietary fiber and fatty acids (Table 2) 
(Carvajal-Larenas et al., 2016). The history of this species as a 
subsistence crop in the Andes demonstrates its potential as a crop 
for low input agriculture on marginal lands. L. mutabilis shows a 
high adaptability to temperate and cold climates, low-fertile soils, 
high altitudes and harsh conditions while actively enriching the 
soil with nitrogen (Cowling et al., 1998). Currently, its cultivation 
is mostly confined to the Andean region of South America, where 
its bitter seeds represent a regionally important food known as 
tarwi. It is an economically accessible source of good quality 
protein, on par with animal proteins, to a large percentage of the 
population (Carvajal-Larenas, 2013).

The presence of toxic alkaloids in the seeds and low yields 
(800–1300 kg/ha) have strongly limited the expansion of this 
crop (Tapia, 2015). Selection activities by Andean farmers in the 
past 1,500 years of cultivation have represented the only means 
of domestication for L. mutabilis, leading to semi-domesticated 
forms characterized by non-shattering pods, large seeds, multi-
colored flowers, highly branched architecture and a more or less 
annual life cycle (Clements et al., 2008). It played an important 
role as a rotation crop in Andean agriculture, but the introduction 
of western pulses during the Spanish conquest in the sixteenth 
century, led to its decline and marginalization (Cowling et al., 
1998; Caligari et al., 2000). In contrast, the wide genetic diversity 
that characterizes this crop has enabled its adaptation to poor 
soils and microhabitats, preserving its cultivation in many areas 
where other crops cannot grow (Carvajal-Larenas, 2013). This 
genetic diversity is also reflected in a broad phenotypic diversity, 
e.g. of seeds and flowers color (as shown in Figure 1).

In recent years, efforts have been made to re-establish L. 
mutabilis as a crop in South America, and to also adapt it to 
conditions in Europe (Caligari et al., 2000). Numerous studies 
investigating the nutritional profile and potential applications 
of these grains have found a wide range of possible products 
ranging from proteins, oil, and food additives to cosmetics, 
medicines, and bio-pesticides. In contrast, few studies have 
addressed the agronomic aspect of L. mutabilis cultivation. From 
these studies it emerges that the main obstacle to L. mutabilis 
cultivation is the lack of high yielding, early maturing genotypes. 
These results are mainly determined by an indeterminate 
growth habit and a lack of locally adapted genotypes, and can be 
overcome via breeding (Caligari et al., 2000). To date L. mutabilis 

TABLE 1 | A comparison of the essential amino acids profiles (+ cystine) of four 
species of lupins and soybean (Glycine Max).

L. 
mutabilis

L. 
angustifolius

L. 
albus

L. 
luteus

Glycine 
Max

Histidine 3.5 2.6 2.0 3.1 3.8
Isoleucine 4.2 4 4.1 3.6 n.a.
Leucine 7.0 6.9 6.8 7.8 7.2
Lysine 5.8 4.6 4.5 4.5 5.4
Methionine 0.8 0.7 0.7 0.6 1.2
Phenylalanine 3.5 3.7 3.4 3.7 4.9
Threonine 3.5 3.4 3.4 3 5.4
Tryptophan 0.8 0.9 0.9 0.9 n.a.
Valine 3.8 3.7 3.8 3.4 4.9
Cystine 1.6 1.6 1.5 2.4 1.5

Data are expressed as g/100 g of proteins (Carvajal-Larenas et al., 2016; 
Prakash and Misra, 1988).
(n.a., data not available).

TABLE 2 | Nutritional composition of four species of Lupinus as compared to Soybean (Glycine max).

Crude 
protein

Crude lipids Crude fiber FA 
saturated/

unsaturated

Unsaturated fatty acids (g/100 g Dw)

C18:1 (Oleic) C18:2 
(Linoleic)

C18:3 
(Linolenic)

C22:1 (Erucic)

L. mutabilis 43.3 18.9 8.2 0.17 46.4 33.1 2.5 –
L. albus 38.2 11.2 8.9 0.5 54.0 18.7 8.6 0.4–2.7
L. luteus 42.2 5.5 15.8 0.13 28.5 48.2 6.3 tr-1.5
L. angustifolius 33.9 6.3 16 0.23 33.9 40.3 5.6 0.1–0.5
Glycine max  42.9 19.8 5.1 0.18 22.8 50.8 5.9–8.3 –

Data are expressed in g/100 g DW (Collins and Howell, 1957; Hudson et al., 1983; Prakash and Misra, 1988; Sharma et al., 2014; Carvajal-Larenas et al., 2016)  
Crude fiber: insoluble residue, primarily composed of cellulose and lignin.
(tr, in traces, less than 0.1%)
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remains an under-studied crop, characterized by a very young 
and fragmented breeding history. The important role that this 
crop could play in the transition toward a more sustainable food 
production system has prompted us to review the current state 
of this crop. This paper summarizes past breeding achievements 
and sheds light on the new breeding challenges we must resolve 
to establish L. mutabilis as a protein crop in Europe.

ORIGIN AND DISTRIBUTION OF THE 
“ANDEAN LUPIN”

The earliest archeological evidence of domesticated L. mutabilis 
seeds has been found in Mantaro Valley, central Peru and dates 
back to ca. 1800 BP. The use of RADseq in the analysis of this 
archeological material confirms that L. mutabilis was first 
domesticated not far from the Montaro Valley in the Cajamarca 
region (north Peru), from the wild progenitor L. piurensis. 
Demographic analysis suggests that L. mutabilis split from its 
progenitor around 2600 BP (650 BC) and suffered a domestication 
bottleneck and a subsequent rapid population expansion as it 
became cultivated across the Andes (Atchison et al., 2016). L. 
mutabilis presence has been reported across the eastern side of 
South America, from Colombia to the North of Argentina (from 
10°N to 20°S), and over a wide range of altitudes, from 1,500 to 
3,800 m a.s.l. (Jacobsen and Mujica, 2008). The crop is adapted to 
a temperate climate and is strongly influenced by day length. It is 
susceptible to low temperatures (−2°C) in the initial stages, and 
requires about 350–800 mm of rainfall and can grow for 240–300 
days (Jacobsen and Mujica, 2006; Jacobsen and Mujica, 2008; 
Adomas et al., 2015). Based on these requirements, L. mutabilis 
could be cultivated in Southern Europe as a winter crop, and in 
Northern Europe as a summer crop. Nowadays L. mutabilis is 
of agricultural importance only in Ecuador, Peru, and Bolivia. 

Approximately 1,895 ha are cultivated in Bolivia with an average 
yield of 648 kg/ha, 5,974 ha in Ecuador (400 kg/ha) and 10,628 ha 
in Peru (1,335 kg/ha) (Mercado et al., 2018).

BIOLOGICAL AND GENETIC FEATURES

L. mutabilis is an annual herbaceous plant of the Fabaceae 
family. It is an autogamous species, with hermaphroditic flowers 
arranged in apical racemes, but characterized by a predominant 
level of allogamy. Different ranges of cross-fertilization by insects 
have been reported, fluctuating from 4–11% in Peru to 9.5–18.9% 
in Poland (Blanco-Galdos, 1982; Gnatowska et al., 2000). It has 
been observed that multiple groups of insects visit L. mutabilis, 
suggesting that this species could be a generalist; bees of the 
Apidae family and bumblebees from the genus Xylocopa are the 
main visitors in native environments, while bumblebees from the 
genus Bombus are more common in Europe (Ochoa-Zavala et al., 
2016; Arnold et al., 2014). The isolation of different genotypes is 
thus indispensable in breeding programs, as much as the careful 
wrapping of emasculated flowers in intraspecific hybridization 
(Von Baer, 2011; Adomas et al., 2015). Phylogenetic analysis 
places L. mutabilis (2n = 48) within the Andean clade of Western 
New World species of the genus Lupinus. This genus includes 
almost 300 species, grouped by their different centers of origin 
into Old World (Mediterranean) and New World (American) 
subgenera. To date, L. mutabilis is the only cultivated species from 
the New World group (Gresta et al., 2017). Notably, the Andean 
clade to which it belongs is characterized by the highest speciation 
rate within the genus (Hughes and Eastwood, 2006). The species 
in this clade belong to a paleoploid group of plants with basic 
chromosome number x = 6 (Naganowska et al., 2003). Events of 
allo- and autopolyploidization, together with other chromosomal 
rearrangements, during the evolution of this species might have 

FIGURE 1 | Phenotypic variation in flowers and seeds of L. mutabilis.
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led to duplication/or triplication of genome regions, as observed 
in the Old World species Lupinus angustifolius (Kroc et al., 2014).

THE UNEXPLOITED POTENTIAL OF L. 
MUTABILIS, AN UNDER-STUDIED CROP

L. mutabilis appears to be a valid alternative to soybeans for 
satisfying plant protein requirements in Europe. Like soybean, 
L. mutabilis seeds are rich in proteins as well as in oil. They can 
find applications as food and feed, but also as raw materials 
for the production of bio-based products. On the other hand, 
L. mutabilis cultivation tolerates better cold climates and can 
therefore contribute to the production and diversification of 
sustainable European sources of proteins and oil.

However, despite the clear potential, research on L. mutabilis 
has been limited. As is often the case for under-utilized crops, 
L. mutabilis has been long neglected by research and industry 
due to its limited economic importance on the global market. 
A recent domestication and a breeding history fragmented in 
time and space have also contributed to this neglect, resulting in 
a lack of genetic improvement and inferior yield. In the Andes, 
L. mutabilis germplasm collection and breeding programs 
started only in the 1970s and have so far relied on participatory 
approaches with farmers for the selection of local ecotypes 
(Table 3). The selection of genotypes with better yields mainly 
relies on the geographical distribution and vegetative cycle of the 
ecotypes and it has rarely resulted in the registration of cultivars 
(Fries and Tapia, 2007; Peralta et al., 2012; Vicente Rojas, 
2016). In Europe, researchers began working on the selection 

of sweet lines in the 1920s, but it was only in the 1970s, when 
the nutritional value of L. mutabilis seeds became well known, 
that the interest for this crop arose. The difficult accessibility 
of germplasm from the Andean area was overcome in Europe 
with a large use of induced mutations and intraspecific crossing 
of mutants. Preliminary field trials of L. mutabilis in Europe 
reported large differences in seed yields, from 0.5 to 6.5 t/
ha depending on years and location (Masefield, 1976; Romer 
and Jahn-Deesbach, 1992; Weissmann and Weissmann, 1992; 
Rubenschuh, 1997). In 1993, the first European project aimed 
at evaluating the “Adaptation of Lupinus mutabilis to European 
soil and climate conditions” was funded. Field trials reported 
very low seed yields (1.1 t/ha) and pointed out the need of 
breeding for a better plant architecture and early maturity 
(Caligari et al., 2000). Many years of mutation experiments in 
Poland have resulted in improvement in yield and sweetness 
and in the selection of determinate lines for research purposes, 
but not yet in the establishment or registration of new varieties 
(Galek, 2010; Galek et al., 2017) (Table 3). Australia has also 
shown interest in L. mutabilis and multiple projects to evaluate 
its potential for southern Australia were funded. Of particular 
relevance in their work was the selection of male sterile lines, 
used to introduce early vigor, anthracnose resistance, tolerance 
to brown spot and resistance to cucumber mosaic virus in L. 
mutabilis (Sweetingham et al., 2006) (Table 3). The ongoing 
development of recombinant inbred lines (RIL) population 
at the University of Western Australia is mentioned in the 
literature and could be exploited for mapping QTLs, however 
little information is available about its existence and state (J. C. 
Clements and M. N. Nelson, unpubl. data in Berger et al., 2013).

TABLE 3 | A list of L. mutabilis lines involved in breeding research.

Area of 
Selection

Line Characteristics Reference

Chile Inti* Stable cultivar with 0.0075% alkaloid content in seeds, but low yield and long 
vegetation period.

(Gross et al., 1988; Von Baer, 2011)

Bolivia Chumpi, TarwiNawi Ecotypes grown in Potosi, characterized by dark brown seeds. (Vicente Rojas, 2016)
Tolarapa,Dulce Ecotypes grown in the area of Cochabamba. (Gross and Baer, 1981)
Carabuco* Variety inscribed in the National Register of seeds. Characterized by early maturing 

and white seeds with a cuboid flat shape.
(Vicente Rojas, 2016)

Ecuador I-450 Andino*I-451 
Guaranguito*

Early maturing genotypes (6 months), uniform white seeds and higher yield (1370 
kg/ha on average). Susceptible to anthracnose.Registered by INIAP.

(Peralta et al., 2012)

ECU-2700, ECU-2658 Genotypes selected for resistance to anthracnose and high yield (1445 kg/ha on 
average).

(Guaytarilla and Falconi, 2014)

Poland KW-1 Completely determinate mutant, with no lateral branches. Characterized by tall 
growth, liability to lodge and low seed production.

(Römer, 1994)

Research lines Genotypes with shorter growth period, reduced number of branches and lower 
alkaloid content obtained combining intraspecific crosses with induced mutation.

(Sawicka, 1993; Stawinski and 
Rybinski, 2001; Galek, 2010)

Australia ID13, ID18, ID32,ID33, 
JC243, P28725

Advanced low alkaloid, breeding lines to assess adaptation of the species to 
eastern states.

(Clements et al., 2008)

P27033 Male sterile line (Sweetingham et al., 2006)
P25954 Restorer line (Sweetingham et al., 2006)
P26961 Early line (Adhikari et al., 2012)
P27808 Mid-season line (Adhikari et al., 2012)

Russia KVIR2381 Russian breeding line used in crosses to introduce tolerance to brown spot and 
resistance to cucumber mosaic virus (CMV).

(Sweetingham et al., 2006)

*L. mutabilis lines that developed into cultivars.
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In Europe, the urgent need to provide alternative protein 
sources and recover marginal land has contributed to revive the 
interest in L. mutabilis. Recently, a new program investigating L. 
mutabilis cropping in marginal lands for enhanced bio economy 
has been funded under the European Union’s Horizon 2020 
program (www.libbio.net). The possibility of cultivating L. 

mutabilis as a summer crop in North-central Europe and winter 
crop in the Mediterranean area is being investigated, along with 
the development of pre-industrial processing and the assessment 
of its socio-economic and environmental impact.

ESTABLISHING L. MUTABILIS AS A 
PROTEIN CROP IN EUROPE: THE 
BREEDING CHALLENGES

Adaptation to European Environment
The environmental differences between the native environment 
of L. mutabilis and other cultivation areas around the world, 
such as europe, represent one of the barriers to the expansion 
of this crop. In temperate climatic conditions L. mutabilis 
cultivation is characterized by a long period of maturation and 
uneven maturation of the pod, blossom drop, and shattering 
of early stage pods (Hardy et al., 1998; Swiecicki and Nawrot, 
2004; Galek et al., 2007). Due to low resistance to frost 
during the first growth stage, sowing is limited to autumn 
in mediterranean environments and to spring in northern 
countries. In both cases, the crop will reach flowering towards 
the beginning of the dry season. Dry conditions can accelerate 
maturation, but considerably affect the biomass yield, pod set 
and consequently, the seed yield (Hardy et al., 1997). Hence, it 
is crucial to generate early maturing genotypes with increased 
drought tolerance and consistent yield performance (yield 
stability). Previous work has pointed out that vernalization has 
no effect on early and mid-season genotypes of L. mutabilis, but 
can reduce the flowering time of late season genotypes such as 
Inti. It was observed that a vernalization period of 2–4 weeks at 
6°C can shorten flowering time of four weeks in Inti, reducing 
the gap between early- and late-flowering lines to only 3 weeks 
(Adhikari et al., 2012).

Research on drought stress in L. mutabilis has uncovered 
the existence of different drought tolerance strategies across 
genotypes, either via stomatal adjustments or through the 
accumulation of osmoprotectants. Some traits, like stomatal 
conductance and water potential, appear to decrease uniformly 
among all accessions while other traits such as membrane ion 
leakage or accumulation of proline and soluble sugars show 
particular trends depending on the genotype. This might 
indicate the ability of some L. mutabilis genotypes to adapt their 
cell membrane during periods of water stress, as an alternative 
strategy to stomatal adjustment (Lizarazo et al., 2010). Therefore, 
both stomatal conductance and membrane ion leakage can prove 
useful in the selection of drought resistant cultivars.

Response to photoperiod is another important factor 
for determining adaptation to different locations. Reports 
on photoperiodic sensitivity in L. mutabilis are contrasting. 
Hackbarth reported L. mutabilis as neutral to day length, 
while Jacobsen and Mujica affirm that in the Andean region 
L. mutabilis accelerates grain filling when the day length is 
short (Hackbarth, 1961; Jacobsen and Mujica, 2008).Given the 
latter, adaptation at higher latitudes should be based on the 
selection of lines less sensitive to day length effects on grain 
filling. A more exhaustive understanding of sensitivity to day 

TABLE 4 | Suggested breeding traits for the improvement of L. mutabilis, goals 
and proposed strategies.

BREEDING 
TARGETS

GOALS PROPOSED STRATEGIES

Semi-
determinate 
growth habit

• Determinate forms 
distinguished by 
medium-tall stems 
without lateral branches, 
resistant to lodgings and 
with early generative 
growth

• Higher productivity and 
uniform maturation

• Identification of rb locus in 
L. mutabilis

• Fixing the trait and 
breeding it into a stable 
variety

Environmental 
adaptation

• Early maturing 
genotypes

• Increased drought 
tolerance

• Yield stability

• Selection of early maturing 
genotypes

• Study the effect of 
vernalization on flowering 
time

• Selection of genotypes 
based on photoperiod 
sensitivity

• Investigation of drought 
tolerance strategies across 
genotypes

• Breeding of homozygous 
lines

Alkaloid content • Breeding of stable sweet 
varieties

• Bitter/sweet lines

• Derive homozygous lines 
from “sweet” genotypes

• Study the inheritance of 
alkaloid content in seeds

• Study the translocation of 
QAs from source tissues 
to seeds

• Target QAs transporters 
for the development of 
bitter/sweet lines

Seed color • Seeds with uniform and 
heritable color (white)

• Select pure lines with 
uniform and heritable color 
patterns

• Identify locus/loci 
responsible for color and 
patterns

• Combine loci for high yield 
and white color

Proteins • Identification and 
valorization of unique 
properties in L. mutabilis 
proteins

• Increased production 
of γ- and β-conglutins; 
albumins and ferritin

• Identification of new 
valuable proteins

• Elucidate biosynthetic 
pathways and functions of 
the different proteins

Oil • Make L. mutabilis a 
dual-purpose crop for 
protein and oil

• Identification of accessions 
with low negative 
correlation between oil and 
protein

• Elucidate relation between 
β-galactan and oil content 
in seeds
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length through characterization of germplasm collections and 
knowledge about its genetic basis would enable the generation 
of genotypes for high latitudes with little or no sensitivity 
(Jacobsen and Mujica, 2008).

Growth Habit: Toward a Semi-Determinate 
Type
Indeterminate growth habit and sympodial branching pattern 
have been identified as the main factors limiting yield of L. 
mutabilis in European field trials (Caligari et al., 2000). In L. 
mutabilis the vegetative development begins with the production 
of a main stem bearing a terminal inflorescence and continues 
with the production of successive orders of branches throughout 
the entire growing season (that can be from 0 to 52 branches), as 
long as growing conditions are favorable (Blanco-Galdos, 1982; 
Hardy et al., 1997) (Figure 2A). This growth habit leads to an 
overlap of vegetative and reproductive phases, characterized 
in this species by a preferential partitioning of nutrients to 
vegetative growth. As a result, the possibility of uniform 
maturation is hindered and reproductive growth is constantly 
delayed, often so far as to coincide with late-season drought, thus 
further reducing productivity. Furthermore, only the racemes 
of the main stem and first order branches are highly productive, 
while the production becomes progressively weaker on the other 
order of branches (Adhikari et al., 2001).

It has long been proposed that the development of 
determinate lines could guarantee a more stable seed yield by 
providing an earlier and more uniform maturation (Huyghe, 
1998). Determinate lupin cultivars have been obtained in L. 
albus, L. luteus, and L. angustifolius mainly through selection of 
spontaneous or induced mutants. Vavilov’s homologous order 
of restricted branching (rb) was selected independently in these 
species with a different mode of inheritance, a different number 
of alleles in the rb locus and somewhat differentiated expression 
in the respective species (Gorynowicz et al., 2014). Similarly, a 
completely determinate line of L. mutabilis was found upon 
induced mutation with EMS. This mono-stem determinate 
mutant—L. mutabilis KW 1—did not produce lateral branches, 

matured early and was characterized by tall stems (Sawicka, 
1993) (Figure 2C). The inheritance of the determinate 
character was found to be monogenic recessive (Römer, 1994). 
Unfortunately, determinate plants were found to lodge and were 
not able to compensate for stress during main stem flowering 
because of increased pod set on the branches (Romer, 1995). 
Semi-determinate types with only one or two orders of lateral 
branches up to the top of the plant thus seem preferable from 
an agronomic point of view (Caligari et al., 2000) (Figure 2B). 
Ongoing research in Poland has focused on crossing the KW-1 
mutant with early maturing mutants characterized by a reduced 
number of side branches for the selection of determinate form 
for research purposes (Sawicka-Sienkiewicz and Kadlubiec, 
2001; Sawicka-Sienkiewicz et al., 2005; Galek et al., 2007). 
Determinate forms distinguished by medium-tall stems without 
lateral branches, resistant to lodgings and with early generative 
growth have been obtained (Galek et al., 2007). Indeterminate 
forms appear to have a higher mass of stems and plant aerial 
parts and a lower share of seeds in the yield structure, and may 
therefore be more suitable for biomass production (Gas, 2014; 
Adomas et al., 2015).

Understanding the Mechanisms 
Regulating Alkaloid Content
Food and feed industries have set the strict threshold of 0.02% 
(DM weight) alkaloid content in lupin seeds (Cowling et al., 
1998; Frick et al., 2017). Quinolizidine Alkaloids (QAs) are 
typically synthesized by lupin species and are mainly known for 
causing bitter taste and anticholinergic toxicity when present 
in the grains. However, QAs also play an important role in 
the mechanism of defense against pathogens and predators, 
have allelopathic functions (Wink, 1993) and constitute 
nitrogen reserves for the plant (Wink and Witte, 1985). They 
are biosynthesized from L-lysine in green tissues of the plant, 
transported via phloem and stored in all the organs of the plant, 
especially seeds. The content and composition of QAs depend 
on many factors, including genotype, biotic/abiotic stresses and 
pedoclimatic conditions. Each lupin species is characterized by 

FIGURE 2 | Different growth forms of L. mutabilis.
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a different alkaloid profile, known as an alkaloid-fingerprint, 
which fluctuates among the different organs of the plant, 
expressing a lower diversity and concentration in leaves than in 
seeds (Wink et al., 1995; Boschin and Resta, 2013). Although 
the chemistry of Quinolizidine alkaloids has been extensively 
studied leading to the identification of more than 170 structures 
(Wink, 1993), their biosynthetic pathway is only partially 
elucidated and information on the genes and enzymes involved 
remains limited (Frick et al., 2017).

The breeding of sweet lines of L. mutabilis has been mainly 
based on the selection of natural and induced mutants, mostly in 
Chile, Poland and Australia. The first stable “sweet” variety, Inti, 
was bred in Chile in 1980. It was characterized by an alkaloid 
content of 0.0075% with no reported detrimental effect on 
the protein (51%) or oil (16%) content, but low yield and long 
vegetation period hindered its adoption in different places (Gross 
et al., 1988; Von Baer, 2011). Yet, the inheritance of the trait was 
recessive and of polygenic nature, such that only 12% of the F2 
plants had low alkaloid content (Von Baer and Von Baer). These 
characteristics require major efforts to maintain the purity of 
mother’s lines and to prevent the risk of progressive re-bittering 
due to cross-pollination in regions where lupin grows in the 
wild (Santana and Empis, 2001; Von Baer, 2011). In 1984, seed 
treatments with ethyl methanesulfonate led to the identification 
of the recessive allele mutal of the gene Mutal. When homozygous, 
the allele mutal was found to reduce the alkaloid level to 0.2–
0.3% of seeds DM, giving rise to plants organoleptically sweet 
both in their seeds and vegetative parts (Williams et al., 1984). It 
has been suggested that along the reselection process additional 
minor alleles were recombined at several loci to lower alkaloid 
levels (Clements et al., 2008). At present, none of the mutations 
found has led to complete suppression of alkaloids. The 
reduction in total alkaloids is mainly due to a reduced percentage 
of sparteine and lupanine, the two most toxic QAs to humans 
(Williams et al., 1984). The result of the work done in Chile in 
the last 40 years is the acquisition of a new variety, PINTA (Inti 
x SCG9) which combines low content of alkaloids, high content 
of protein and oil, and large seeds (Von Baer, 2011). In Poland, 
post-mutagen treated material has been widely screened using 
iodine test to select 13 lines that don’t exceed 0.1% of alkaloid 
content in the seeds. These genotypes can be very useful in 
breeding programs, particularly to derive homozygous lines. In 
addition to facilitating the development of stables sweet varieties 
these homozygous lines can also be used to study the inheritance 
of alkaloid content in seeds (Galek et al., 2017).

A major drawback of reducing alkaloids is the increased 
sensitivity of plants to pests and diseases. Future work should 
therefore target the development of bitter/sweet lines, with 
sufficient level of alkaloids in the vegetative tissues to deter 
pathogens, but low levels in the seeds (Wink, 1990). To use 
this strategy fundamental knowledge on how to target the 
transporters involved in the translocation of QAs from source 
tissues to seeds is required. Candidate transporters may include 
plasma membrane importers in cells of reproductive tissue, 
and vacuolar membrane importers in cells of both aerial and 
reproductive tissues, as alkaloids are often sequestered within 
vacuoles to avoid toxic effects within tissues (Yazaki et al., 2008). 

To our knowledge, there are no studies yet investigating these 
mechanisms.

Seed Color, a Matter of Acceptance
To further develop the market for L. mutabilis, it is essential to 
take into account consumer preferences. When whole lupin beans 
are marketed as food, seed coat color becomes a decisive trait for 
the acceptance of a cultivar. As for L. mutabilis, white color is 
the most attractive for consumers. The phenotypical diversity in 
seed shape and seed coat color observed in this species appears to 
be larger than that in all the other lupins (Blanco-Galdos, 1982). 
Seed characteristics with large diversity include shape (from 
lenticulate to spherical), primary seed color, secondary seed color 
and its pattern distribution (Figure 1). The color can vary from 
pearly white to solid black, and include beige/yellow, brown, dark 
brown and intermediate colors, like brownish green and greyish 
colors. Most seeds have a secondary color distribution in darker 
tones of the primary color. The secondary color distribution 
also varies between a large range of patterns, such as moustache, 
eyebrow, crescent, marbled, or spotted which can be expressed 
singularly or in combination (Falconí, 2012; Tapia, 2015). The 
variability in seed coat color may reflect the genetic pressure L. 
mutabilis was subjected to during its domestication, but very little 
is known about the genetic mechanism behind this trait. Some 
authors try to explain this variation hypothesizing the concerted 
effect of different alleles in the control of different colors and at 
different regions of the seed coat. That is, having different genes 
controlling the primary color, the secondary color, the color of 
the hilum and/or its adjacent region and the different patterns of 
distribution of secondary colors (Blanco-Galdos, 1982). Another 
possible explanation for the existence of such diversity in seed 
color and patterns may be the presence of transposable elements, 
as observed in other crops (Li et al., 2012). There appears to be 
a connection between seed color and flower color. Darker seeds 
lead to darker flowers, suggesting that the white color behaves as 
a recessive character (Blanco-Galdos, 1982).

The complexity in seed color represents a great challenge for 
breeders to select pure lines with uniform and heritable colors 
and patterns, and in particular to combine locus for high yield 
and white color. Still, pearly white is in 95% of the cases the most 
common color found in the cultivars sampled for germplasm 
collections of the Andean regions.

Identification of Health-Promoting 
Proteins
Lupinus mutabilis seeds contain a high content of protein, 
ranging from 38 to 45% of DM; yet, the identification of unique 
properties in L. mutabilis proteins opens the door to new 
markets and raises the nutritional and economic value of the 
crop. The major protein classes encountered in legume seeds 
are globulins and albumins, followed by minor fractions of 
prolamin and glutelin (Doxastakis, 2000). Globulins (α-,β-,γ- 
and δ- conglutins) represent about 91–94% of the proteins in 
L. mutabilis, while albumins only ~6.4%(Santos et al., 1997). 
Interest in conglutins has exponentially increased since their 
beneficial nutritional and pharmaceutical properties have been 
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shown, such as cardiovascular health benefits and the use of 
γ- and β-conglutin in the control of insulin resistance and 
diabetes as well as anti-inflammatory molecules (Magni et al., 
2004; Belski et al., 2011; Lima-Cabello et al., 2017). (Foley et al., 
2015) used 16 individual conglutin genes previously identified in 
L. angustifolius to characterize homologous genes in five other 
lupin species, including L. mutabilis. Oddly, transcriptomic 
studies revealed the lowest level of conglutin transcripts for L. 
mutabilis, but the highest percentage of proteins. The expression 
levels for β-conglutin were particularly high (~40%) and for 
γ-conglutin exceptionally low (4%), while the expression levels 
of α- and δ- conglutin (~26% and 30%) were comparable to the 
values encountered in L. albus and L. angustifolius. Previous 
studies have highlighted considerable differences in structure 
and composition of α-conglutin and β-conglutin in L. mutabilis 
as compared to L. albus. In the case of α-conglutin differences 
were observed also within different genotypes of L. mutabilis 
(Inti and Potosi) (Santos et al., 1997), suggesting that these 
proteins may have different functions between and within lupin 
species (Carvajal-Larenas et al., 2016). In contrast, γ-conglutin 
was reported to possess identical composition in all lupin species 
studied and to represent approximately 6% of the total proteins 
in L. mutabilis seeds (Carvajal-Larenas et al., 2016). Regarding 
albumins in L. mutabilis, they were found to be less abundant 
and different in structure when compared to L. albus (Santos 
et al., 1997). Finally, the presence of ferritin (Fe-rich protein) in 
the protein profile of lupin (Strozycki et al., 2007) increases the 
nutritional value of this crop by offering a safe way to increase 
dietary iron intake. The success of its use in the development of 
food products for special nutritional purposes would depend 
on the achievement of ferritin overexpression, which may result 
in easier, cheaper, and more accepted methods for increasing 
dietary iron intake than supplementing and/or fortifying other 
crops (Zielińska-Dawidziak, 2015).

Exploiting the High Nutritional value of L. 
mutabilis Oil
L. mutabilis seeds are also an important source of oil. The oil 
content of this species (~18%) is the highest within lupins and 
the only one comparable to soybean (20%). Moreover, its fatty 
acid composition is nutritionally superior to that of soybean: 
both have a similar ratio of saturated/unsaturated fatty acids 
(17–18%), but L. mutabilis has a lower amount of linolenic acid, 
thus avoiding the need for industrial removal of this acid as 
soybean and L. albus do, and its oil stability is naturally higher 
(Schoeneberger et al., 1982). In addition L. mutabilis oil does not 
have any toxic erucic acid found in other lupin species, and when 
compared to other edible oils presents a higher or similar quality, 
being inferior only to olive oil (Martins et al., 2016) (Table 2). 
Improvement of oil production via breeding could further 
enhance the economic suitability of this crop by making it dual-
purpose for protein and oil, in a manner similar to the soybean 
(Lucas et al., 2015).

Oil content and composition are influenced by both genetic 
and environmental factors, and previous studies have identified 
a large environmental component. One study by (Williams, 

1979) has reported higher oil content in late-flowering and late-
maturing varieties and identified a highly significant correlation 
between oil content and the length of interval between flowering 
and pod maturity. Negative correlations between protein and oil 
content are also reported in the literature (r = −0.71; r = −0.77) 
(Perez et  al., 1984; Jacobsen and Mujica, 2006; Clements et al., 
2008). The identification of accessions in which oil and protein 
content are not (or less) inversely related could make it possible 
to combine high levels of both components in the seeds through 
selective breeding (Romer and John-Deesbach, 1986). An 
opportunity could come from the fiber component of lupin seeds, 
mainly β-galactan chains in the form of thickened cell walls of the 
endosperm (Al-Kaisey and Wilkie, 1992). Since catabolism of both 
carbohydrates and lipids generally represents the main source of 
germination energy, it is possible to assume that oil content might 
be increased via breeding at the expense of β-galactan content.

RELEvANT RESOURCES FOR FUTURE 
BREEDING OF L. MUTABILIS

Germplasm Collections to Exploit  
Natural Diversity
The Andean region, center of origin and domestication of L. 
mutabilis, represents the main hotspot of diversity for this species. 
Germplasm collections were started in 1974 by Dr. Oscar Blanco 
at the University of Cusco (Peru) and soon extended to Bolivia 
and Ecuador. At present, South American institutions hold more 
than 3,000 genotypes of Andean Lupin. The largest and most 
relevant germplasm collections of L. mutabilis are held in the 
gene banks of Peru, Ecuador, and Bolivia, but smaller collections 
are also present in Chile, Argentina, Colombia, Australia, 
Russia, Poland, Germany, Spain, Hungary, United Kingdom, 
and Portugal. Yet, reports suggest much of the diversity remains 
uncollected (Jacobsen and Mujica, 2008). The presence of a 
considerable variation across germplasm is shown by different 
phenotypic traits, such as a wide range of growing periods, 
branching patterns, color and shape of grains and flowers, and 
flowering times. Both Inter Simple Sequence Repeats (ISSR) and 
Simple Sequenced Repeat (SSR) markers have revealed a wide 
genetic diversity among L. mutabilis lines (Chirinos-Arias et al., 
2015; Galek et al., 2017). In some cases, the variation illustrated 
by the analysis of genetic distance did not match the differences 
defined by morphological markers, suggesting that molecular 
markers other than ISSR and SSR may be more useful (Galek 
et al., 2017).

Molecular and Genetic Tools Available
At present, the availability of molecular resources for breeding of 
L. mutabilis remains scarce. The majority of molecular studies have 
so far focused on understanding L. mutabilis phylogeny. Initially, 
isozyme numbers revealed an affinity of L. mutabilis to the Old 
World species closer than that of any other North American species 
studied (Wolko and Weeden, 1990). Later, the use of conserved 
chloroplast genes and internal transcribed spaces (ITS) highlighted 
the presence of an Andean group within the New World species 
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(Käss and Wink, 1997; Ainouche and Bayer, 1999; Wink et al., 
1999). Only recently, the advent of nextRADseq technology has 
elucidated the area and timing of L. mutabilis domestication 
(Atchison et al., 2016). Protein-based approaches have been carried 
out to determine seed storage protein composition in L. mutabilis 
and its differences between species and lines (Santos et al., 1997). 
Lately DNA based markers such as RFLP, AFLP, ISSR, and RAPD 
have been used to assess genetic diversity between Lupinus species 
and have revealed a high intraspecific variation within L. mutabilis 
populations (Olczak et al., 2001; Talhinhas et al., 2003; Zoga et al., 
2008). A total of 113 SSR primers and 118 polymorphic InDel from 
L. luteus have been successfully used to characterize L. mutabilis 
genetically (Parra-González et al., 2012; Osorio et al., 2018).

Relative to other legumes, little genomic information is available 
for L. mutabilis. To date, even the number of ESTs sequenced and 
submitted to the genomic databases remains very low (~65), 
and it mainly refers to molecular targets in ribosomal RNA (IGS 
and ITS) and other sequences used for taxonomic purposes [i.e. 
rps16 gene, submitted by (Keller et al., 2017)]. However, new 
developments in genomic technologies now provide a realistic 
opportunity to overcome the scarcity of genomic information 
and to hasten the identification of traits of interest. Over the last 
15 years the limitations of approaches based on the identification 
of QTLs derived from biparental crosses have shifted the focus 
towards association mapping in large panels of diverse genotypes. 
Genotype-by-sequencing (GBS) techniques can now provide 
thousands of single nucleotide polymorphism (SNP) markers at 
a much lower cost than earlier techniques, and they can be used 
to perform genotyping studies such as Genome Wide Association 
Studies (GWAS). In these studies natural populations hold the 
potential to replace recombinant populations in gene mapping 
and marker-trait associations (Iqbal et al., 2012). With regard to 
L. mutabilis, GWAS could represent a possible approach to exploit 
the genetic resources of entire germplasm collections at once, while 
saving time and resources, exploiting multiple recombination 
events, and considering the whole allele diversity. This kind of 
approach may serve as a foundation study and help to identify and 
establish valuable genetic markers for genomic selections, which 
will ultimately allow informed choices for further selection of 
breeding material and QTL analysis.

A wider selection of tools is available for L. angustifolius and 
L. albus, which have been more extensively studied in the past 
years. Genetic maps, BAC libraries, transcriptome and proteome 
assemblies, QTLs and molecular markers for traits such as low 
alkaloids, flowering time, and anthracnose disease resistance 
have been developed for these species and can potentially be 
exploited for L. mutabilis improvement (reviewed in Wolko et 
al., 2011; Abraham et al., 2019). Furthermore, the recent release 
of a high-quality genome draft for L. angustifolius (951 Mb; 2n = 
40), and a high-quality chromosome-scale genome assembly for 
L. albus (451 Mb; 2n = 50) represent a big support for the future 
whole-genome analysis of other lupin species, such as L. mutabilis 
(Hane et al., 2017; Hufnagel et al., 2018). Similar 2C nuclear 
DNA contents were estimated in L. mutabilis (1.90 pg) and L. 
angustifolius (1.89 pg), suggesting that there might be a higher 
affinity between these two species (Naganowska et al., 2003).

APPLICATIONS AND POTENTIAL USES 
OF L. MUTABILIS: MUCH MORE THAN 
PROTEINS

L. mutabilis emerges as a human health food and food additive, 
but its potential applications go far beyond food and target the 
utilization of the whole plant. L. mutabilis seeds represent an 
important and versatile source of proteins. Once debittered, the 
seeds can be directly consumed as a snack, or as an ingredient 
of many products and meals. In the Andean region they are 
traditionally used in soups, stew and salads or as raw material for 
preparing flour, milk, and margarine (Falconí, 2012). Like soybean, 
lupins also have important applications as food ingredients in 
many products: lupin flour, protein concentrate, and protein 
isolate display physical and functional properties which are very 
valuable to the food and chemical sector (Carvajal-Larenas et al., 
2016). These derivatives can be used as base for meat alternative 
or replacers, as an egg replacement, as a bread improver, as an 
emulsifier and to increase the nutrient content of many products. 
After protein extraction, the large amount of dietary fiber still 
available (up to 40% of seed mass in L. angustifolius) can find 
application as prebiotic and human food ingredient in the 
production of fiber-enriched baked goods (Clark and Johnson, 
2002; Smith et al., 2006). The oil, characterized by a high nutritional 
value, also represents an attractive product for both nutraceutical 
and cosmetic purposes. Furthermore, pharmaceutics uses have 
also been described. L. mutabilis intake has been proven to reduce 
blood glucose and insulin levels, representing a valid alternative 
for treating hyperglycemic diseases (Fornasini et al., 2012). In the 
medical field, QAs also have an important role due to multiple 
properties such as anti-arrhythmic, anti-inflammatory, diuretic 
and hypotensive effects among others (Bunsupa et al., 2012). In 
addition QAs can also find application in agriculture as a bio-
stimulant increasing growth and yield of other crops (Przybylak et 
al., 2005), as antibacterial agents (Romeo et al., 2018) or as biocidal 
agents replacing synthetic toxins (Bermúdez-Torres et al., 2009). 
Similarly a Blad-containing oligomer (BCO), a bioactive subunit 
of a polypeptide oligomer termed Blad (Banda de Lupinus albus 
doce) isolated in young cotyledons of Lupin spp. as a breakdown 
product of β-conglutin catabolism, has been recently introduced 
in the market as a novel fungicide against both human and 
phytopathogenic fungi, confirming the multiplicity of resources 
offered by this plant. BCO also acts as plant bio stimulant and 
exhibits bactericide activity especially towards Gram+ bacteria 
(Carreira et al., 2018). Beyond this, L. mutabilis can also be used 
as a fodder species. In the Andean area debittered seeds are used 
to feed pigs, sheep, and poultry (Cremer, 1983). However, the 
optimal use of the plants for feed purposes would be as a green-
fodder or silage, as debittered seeds are more profitable for food 
applications. Uses as silage or hay for livestock feed are mentioned 
in the literature, but its composition and nutritional value remain 
unstudied (Sherasia et al., 2017). Similar to other legumes, L. 
mutabilis is also able to assimilate atmospheric nitrogen and 
leave appreciable amounts in the soil as post-harvest residues of 
up to 400 kg ha−1 N (Brücher, 1989; Adomas et al., 2015). Yet, it 
could prove more profitable to turn L. mutabilis biomass residues 
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into bio-based products and energy sources, due to the boost in 
biomass demands in Europe.

FUTURE PROSPECTS

Compared to many other pulses which dominate our agriculture 
(i.e. pea, lentil, faba bean), the domestication history of L. mutabilis 
appears very short and fragmented between Europe, South 
America and Australia. Even though global holdings of L. mutabilis 
represent a plethora of genetic resources, this source remains under-
utilized and very often inaccessible. In addition, the lack of refined 
biotechnological methods in genetics, molecular cytogenetics 
or tissue culture, has limited the possibility of exploiting natural 
variability and performing distant crosses and haploidization 
of breeding material. The repeated use of a limited set of genetic 
resources in hybridization programs and the limited pre-breeding 
efforts account for a narrow genetic basis. Base broadening 
through mutation and hybridization—the main methods used so 
far—is a very slow process, taking many years before pure lines 
can be achieved. The coupled use of germplasm resources and 
modern approaches to broaden the genetic basis could now aid the 
introgression of desirable adaptive traits for specific environments, 
which are essential to develop L. mutabilis into a valuable crop 
outside the Andes. The selection of genotypes adapted to specific 
latitudes and day lengths appear fundamental for farmers both in 
the Andes and in other parts of the world. Indeterminate growth 
habit and alkaloid content still represent a main limitation, but 
sweet lines and determinate forms with early maturation have 
been generated (Galek et al., 2007) (Table 3). A major effort is now 
required to fix these traits and breed them into stable variety for 
agricultural purposes. Breeding targets and strategies proposed 
in this review are summarized in (Table 4). Currently, promising 
L. mutabilis lines are being screened throughout Europe aiming 
at the development of varieties adapted to European farming 
conditions within the next 10 years. Future work should focus 
on the development of bitter/sweet lines and on the promotion 
of different end-uses for proteins, oil and alkaloids which can 

contribute to increase the value of the crop in the near future. In this 
regard, studies combing genetic and multi-environment dataset 
will be important to unravel the genetic control of valuable traits. 
Further implementation of genomic selection and marker-assisted 
selection, will play a key role in speeding up breeding processes.

In spite of limitations, there remains enormous potential for the 
introduction of L. mutabilis as a protein crop. Its cultivation constitutes 
an important opportunity to provide a substantial source of protein 
through low input farming, both in the Andes and elsewhere in the 
world. In this regard, the potential of enhancing marginal lands 
production while contributing to the diversification of the protein 
market, righteously places L. mutabilis in the European agricultural 
system. Hence, L. mutabilis plays a major role on the protein 
transition scene, where plant based proteins will gradually replace 
animal proteins. Pivotal to achieving this aim are breeding programs 
focused on ensuring economic viability and consumer acceptance 
of the crop. Germplasm resources should be used together with 
conventional and molecular tools to unlock the genetic potential of 
L. mutabilis and secure it as a promising (new) protein crop. Finally, 
L. mutabilis represents a source of important traits for introduction 
into major lupin species or other legumes to aid their adaptation in 
a rapidly changing climate. Further research on this species can also 
provide valuable insights into important processes like protein and 
oil production in seeds or regulation of alkaloid content.
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