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Weeds in agricultural farms are aggressive growers which compete for nutrition and 
other resources with the crop and reduce production. The increasing use of chemicals to 
control them has inadvertent consequences to the human health and the environment. 
In this work, a novel neural network training method combining semantic graphics for 
data annotation and an advanced encoder–decoder network for (a) automatic crop line 
detection and (b) weed (wild millet) detection in paddy fields is proposed. The detected 
crop lines act as a guiding line for an autonomous weeding robot for inter-row weeding, 
whereas the detection of weeds enables autonomous intra-row weeding. The proposed 
data annotation method, semantic graphics, is intuitive, and the desired targets can be 
annotated easily with minimal labor. Also, the proposed “extended skip network” is an 
improved deep convolutional encoder–decoder neural network for efficient learning of 
semantic graphics. Quantitative evaluations of the proposed method demonstrated an 
increment of 6.29% and 6.14% in mean intersection over union (mIoU), over the baseline 
network on the task of paddy line detection and wild millet detection, respectively. The 
proposed method also leads to a 3.56% increment in mIoU and a significantly higher 
recall compared to a popular bounding box-based object detection approach on the task 
of wild–millet detection.

Keywords: semantic graphics, convolutional neural network, autonomous weeding, crop line extraction, encoder–
decoder network

INTRODUCTION
The resurgence of neural networks in the form of “deep” neural networks (DNNs) (Krizhevsky et al., 
2012) has dramatically improved the performance of various computer vision tasks such as image 
classification (Simonyan and Zisserman, 2014; Szegedy et al., 2015; He et al., 2016; Huang et al., 
2017), object detection and localization (Ren et al., 2015; Redmon et al., 2016; He et al., 2017), and 
semantic segmentation (Long et al., 2015; Ronneberger et al., 2015; Badrinarayanan et al., 2017).

Recently, DNNs have also been used extensively for problems in agriculture. Researchers have 
applied deep learning in agriculture to automate different tasks such as plant recognition (Grinblat 
et al., 2016), crop type classification (Kussul et al., 2017), plant disease classification (Mohanty et al., 
2016; Fuentes et al., 2018), weed identification (Dyrmann et al., 2016; Dyrmann et al., 2017), and land 
cover classification (Kussul et al., 2017; Ienco et al., 2017). Agricultural farm is a semi-constrained 
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environment which is easier than unconstrained natural 
environments for the adoption of DNN. However, application of 
DNN to agriculture has its own challenges because of confusion 
due to low variation between the target classes. Crops and 
weeds are similar in shape, texture, color, and position, which 
results in significant reduction in accuracy of DNN systems 
(Mohanty et   al., 2016; Dyrmann et al., 2016). Furthermore, 
severe overlapping and occlusion, a common phenomenon in 
the farm, also poses serious challenges to the application of DNN 
in agriculture. Among the different areas for the use of DNN in 
agriculture, plant and weed identification has received much 
attention in the literature due to its enormous practical impact. 
This study is focused on the use of DNN in rice fields.

Rice is a widely eaten staple food by billions of people around the 
world. It is considered the lifeline of the Asia-Pacific region where 
90% of the world’s rice is consumed. With increasing population, 
the demand for rice is expected to grow, and the challenge is to 
increase the production of rice using limited land, water, and 
manpower and less use of agrochemicals. One of the factors 
responsible for reduced rice yield is weeds. Weeds are aggressive 
growers which compete for nutrition and other resources and 
thus reduce production. Moreover, weeds serve as hosts to pests 
and diseases that are otherwise harmful for the crop. Various 
weed control methods like hand weeding, mechanical weeding, 
chemical weeding, and biological control are available for weed 
management. Herbicides are used extensively to manage weeds; 
however, their increasing use has inadvertent consequences to 
the human health and the environment. Though mechanical 
weeding saves farmers from the drudgery of hand weeding, it is 
nonetheless labor-intensive. With a decline in interest among the 
younger generation to join agriculture, the available manpower 
for labor is limited. Biological control methods using fish, insects, 
and birds are environmentally friendly and used for effective 
weed management in organic rice cultivation.

With the advancements in robotics, autonomous agricultural 
robots have been widely adopted to increase crop productivity 
and improve labor efficiency. Machine vision-based systems 
have been used in autonomous agricultural robots for weed 
management in row crops like rice and maize (Guerrero et al., 
2017; Ma et al., 2019). Navigation systems are a crucial part 
of such autonomous robots where a guidance line has to be 
computed to guide the robot for weed control. Vision sensor-
based autonomous guidance systems have been widely researched 
for extracting the crop lines to guide the robot (Choi et al., 2015; 
Zhang et al., 2017).

In this work, we used data from a row-transplanted organic 
rice field in the Republic of Korea where the golden apple snail 
(Pomacea canaliculata) was used for biological control of weeds. 
The golden apple snail is effective in controlling most of the weeds 
except for the wild millet. Wild millet being similar in appearance 
to the rice plant makes it difficult for hand weeding. Towards the 
end goal of an autonomous weeding system for paddy, we present 
a DNN-based system to (a) automatically detect rows of crop 
and (b) detect weed (willet millet) in row-sown (transplanted) 
paddy field. The detected crop lines act as a guiding line for an 
autonomous weeding robot for inter-row weeding, whereas the 
detection of weeds enables autonomous intra-row weeding.

RELATED WORK

Crop Line Detection
Previous works on detecting crop rows using vision-based 
systems primarily detect the position of the crops using different 
handcrafted features like living tissue indicators (Søgaard and 
Olsen, 2003), vegetation index (Bakker et al., 2008; Montalvo 
et al., 2012), morphological features (Choi et al., 2015), and 
extraction of the crop line using different pattern recognition 
and machine learning techniques like distribution of pixel 
values, vanishing point detection, Hough transform, and linear 
regression (Søgaard and Olsen, 2003; Bakker et al., 2008; 
Montalvo et al., 2012; Choi et al., 2015; Jiang et al., 2016).

Methods based on handcrafted features work well under 
controlled conditions; however, they can fail to work in real 
farm conditions, as it is practically infeasible to hand-engineer 
features which capture the extensive diversity found in real farm 
environments. The methods based on color index work well in 
the absence of weeds in between the rows, as the vegetation index 
or living tissue index of weeds is similar to that of crops. The 
presence of weeds and different natural conditions like shades 
or light reflection affects the extraction of binary morphological 
features, which ultimately affects the accuracy of the extracted 
crop line.

Recent advancements in neural networks have demonstrated 
that automatic feature learning using convolutional neural 
networks (CNNs) are more successful than hand-engineered 
features. Methods based on CNNs have produced state-of-the-
art results in different computer vision and pattern recognition 
problems like object detection and classification (Ren et al., 
2015; Redmon et al., 2016; Huang et al., 2017) and semantic 
segmentation (He et al., 2016).

In this work, we use CNN to extract the crop lines. Unlike 
prior works which segment the input into different regions and 
extract the crop lines, we propose to train a CNN to directly 
learn the concept of a crop line using “semantic graphics” as 
shown in Figure 1.

Weed Detection
Recently, DNN-based algorithms for classification of weeds 
and crops have attracted much attention. Two different CNNs 
were used to segment and classify image pixels into crop and 
weeds (Potena et al., 2016). A method based on K-means feature 
learning combined with CNN was used for weed identification 
in soybean seedlings (Tang et al., 2017). A fully CNN was used 
to detect single weed instances in image from winter wheat 
fields with leaf occlusion (Dyrmann et al., 2017). CNN-based 
semantic segmentation approaches to separate crops, weeds, 
and background have also been studied (Milioto et al., 2018; Ma 
et  al., 2019). While semantic segmentation-based approaches are 
helpful for widely spaced crops and weeds, these approaches are 
difficult to adopt in fields with heavy overlap and occlusion owing 
to the difficulty in obtaining per-pixel ground truth annotations. 
Moreover, the difficulty in obtaining ground truth labels is 
compounded for crop and weeds, like rice and wild millet, which 
have similar appearances.
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In this work, we propose to learn “semantic graphics” using 
CNN for the identification of rice and wild millet.

Semantic Graphics
One of the factors enabling the increase in performance of DNNs 
is the availability of a huge amount of data for training. However, 
for supervised training of DNNs, the data has to be annotated 
manually with ground truth. It is expensive and time-consuming 
to prepare large-scale ground truth annotations (Bearman 
et al., 2016), and hence, there is a bottleneck in extending the 
application of DNN to new applications which require the 
network to be trained on custom datasets. Manual annotation 
is particularly time-consuming for semantic segmentation where 
per-pixel annotation is required. Per-pixel semantic labeling is 
also economically not viable without employing methods which 
reduce human labor.

To reduce the dependency on large-scale detailed annotations, 
weakly or semi-supervised learning techniques have been 
explored in the literature. In the weakly supervised setting, the 
training images are annotated only at the image level or sparsely 
annotated at the pixel level, thus requiring less time and effort for 
annotation. Different forms of weak supervision have also been 
explored in the literature such as image-level labels (Pinheiro and 
Collobert, 2015), bounding boxes (Papandreou et al., 2015), and 
point annotations and free-form scribbles (Bearman et al., 2016; 
Lin et al., 2016). However, much of the focus in the literature 
has been towards detecting or segmenting “objects” with a 
well-defined shape, appearance, and boundary. Less attention 
has been paid towards understanding complex scenes that are 
difficult even to annotate correctly due to similar appearance and 
ambiguous boundaries.

To simplify the process of annotating such complex scenes, 
we introduce the notion of semantic graphics. Semantic graphics 

is a graphical sketch where a target concept is expressed in the 
form of a figure for easy learning by neural networks. Semantic 
graphics can encode human knowledge directly in intuitive 
graphics which can be annotated with considerable ease even for 
complex scenes. For example, in the image of a line-transplanted 
paddy field shown in Figure 2, the lines of paddy have been 
rendered indistinguishable due to high weed pressure. However, 
humans can easily figure out the actual rows of paddy in the 
image, including in those regions where the actual demarcation 
does not exist due to weeds. One of the meaningful ways to mark 
the rows is by sketching a line as shown at the bottom of Figure 2.

Semantic graphics is different from semantic segmentation as 
pixels belonging to the same semantic region or super-pixel may 
not be necessarily labeled with the same target category. Semantic 
graphics is particularly useful for tasks which are otherwise 
challenging for existing pixel-based semantic segmentation 
methods. For example, the rows of paddy and the wild millet in 
between the rows, as shown in Figure 2, are semantically similar; 
therefore, it is difficult and time-consuming to prepare dense per-
pixel annotation to be used for semantic segmentation. However, 
it is easier to figure out the actual crop rows and represent those 
using semantic graphics. In this work, we demonstrate that 
semantic graphics are an effective way towards training CNNs to 
learn higher-order concepts like the crop line and to differentiate 
between crops and weeds.

Convolutional Encoder–Decoder Network
A convolutional encoder–decoder network is a standard network 
used for tasks requiring dense pixel-wise predictions like 
semantic segmentation (Badrinarayanan et al., 2017), computing 
optical flow and disparity maps (Mayer et al., 2016), and contour 
detection (Yang et al., 2016). The encoder in the network computes 
progressively higher-level abstract features as the receptive fields 

FIGURE 1 | The proposed approach of training deep neural networks to learn the concept of crop line using semantic graphics.
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in the encoder increase with the depth of the encoder. The spatial 
resolution of the feature maps is reduced progressively via a down-
sampling operation, whereas the decoder computes feature maps 
of progressively increasing resolution via un-pooling (Zeiler and 
Fergus, 2014) or up-sampling. The network has the ability not only 
to model features like shape or appearance of different classes but 
also to model long-range spatial relationships. This attribute of 
modeling local and global features makes this architecture suitable 
for learning semantics graphics, as shown in Figure 1.

Different variations of the encoder–decoder network have 
been explored in the literature for improved performance. Skip 
connections (Ronneberger et al., 2015) have been used to recover 
the fine spatial details during reconstruction which get lost due 
to successive down-sampling operations involved in the encoder. 
Addition of larger context information using image-level features 
(Liu et al., 2015), recurrent connections (Pinheiro and Collobert, 
2014; Zheng et al., 2015), and larger convolutional kernels (Peng 
et al., 2017) has also significantly improved the accuracy of semantic 
segmentation. Other methods studied for improving semantic 
segmentation accuracy include hierarchical supervision (Chen et al., 
2016) and iterative concatenation of feature maps (Jégou et al., 2017).

In this work, we design an enhanced encoder–decoder 
network, named “extended skip network” (ESNet), to learn the 
semantic graphics. We demonstrate that the enhanced network 

exhibits significant performance improvement over the baseline 
network on the problem of crop line detection and weed 
detection. We also demonstrate that the proposed method has 
improved performance on the task of weed detection over a 
popular bounding box-based object detection method.

MATERIALS AND METhODS

Dataset
Paddy Line Dataset
The focus of this dataset is to extract the rows of paddy, as shown 
in Figure 2. The detected crop lines will enable the navigation 
of an autonomous agent in the field to accomplish different 
agricultural tasks like mechanical weeding and precision spraying 
of herbicides, pesticides, nutrients, etc. Paddy line dataset was 
prepared to evaluate the proposed method. This dataset consists 
of 350 images of line-transplanted paddy field captured with a 
handheld camera while walking between the rows of the crop. 
The dataset contains different scenarios like unevenly spaced 
rows, weed-infested fields rendering crop rows indistinguishable, 
and missing crops in a row which make the problem of detecting 
rows challenging. The images were captured in three different 
fields at different geographical locations but during the same 

FIGURE 2 | Semantic graphics: (top) images of row-transplanted paddy field. (bottom) Manually marked semantic graphics representing the rows of paddy is 
superimposed on the original images. Even at places where the paddy lines are rendered indistinguishable due to the heavy presence of weeds, humans can easily 
figure out the actual lines and represent those using semantic graphics. (Best viewed in color).
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phonological stage; tillering. Out of the total 350 images, 300 
images were used for training and 50 images were set aside for 
the test. Due to perspective, the rows of rice appear to converge at 
the horizon and are indistinguishable. In this study we consider 
only the near-field view for ease of annotation. The rows of rice 
were annotated with few-pixel-thick lines as shown in Figure 2.

The images were down-sampled to a uniform size of 600 × 600 
pixels to reduce computation time and memory requirement. 
Though this dataset has less number of training images, extensive 
data augmentation was carried out during training by scaling 
the original image by a factor sampled randomly in the range 
[0.5, 1.5], rotating the image by an angle sampled randomly 
from [−15, 15] degrees, mirroring the image randomly along 
the vertical axis, randomly distorting the image brightness and 
saturation, and generating random crops of size 512 × 512.

Paddy–Millet Dataset
Paddy and wild millet are similar in appearance; therefore, they 
are difficult to discriminate. Wild millet are aggressive growers 
which compete for resources and therefore have to be weeded 
out for better yield of paddy. The goal is to identify and localize 
the “weed” wild millet present among the paddy so that an 
autonomous agricultural robot can eliminate the “weed” while 
keeping the crop intact.

A dataset, namely, paddy–millet dataset, consisting of 760 
images of row-transplanted paddy field captured with a handheld 
camera while walking between rows of the crop, as shown in 
Figure 3, was prepared for the experiments. Out of the total 760 
images, 660 images were used for training and 100 images were 
set aside for testing. Semantic graphics was used to annotate the 
ground truth data and the base of the respective plant categories; 
namely, paddy and wild millet were the target key-points to be 
detected. These key-points were annotated with solid circles, and 
all unmarked pixels were considered as background. The key-
points near the camera viewpoint were annotated with bigger 
radius circles which could extend well beyond the boundary 
of the key-point whereas the key-points farther away from the 
viewpoint were annotated with progressively smaller circles. The 
semantic graphics used to annotate this dataset can represent 
multiple higher-level meanings such as category of the plant, 

location of the key-point, and their distance from a viewpoint. 
However, only the plant category and location of the key-point 
are considered in this work.

Each high-resolution image was down-sampled to a uniform 
size of 288 × 288 pixels to reduce computation time and memory 
requirement. The data were augmented by mirroring the images 
randomly along the vertical axis and generating random crops of 
size 256 × 256 during training.

Architecture of Extended Skip Network
An enhanced fully convolutional encoder–decoder network, 
called “enhanced skip network” (ESNet), as shown in Figure 
4A, is proposed for end-to-end learning of semantic graphics. 
The network consists of a contracting encoder and an 
expanding decoder. The detailed network architecture is given 
as Supplementary Material. The encoder consists of multiple 
VGGNet-like (Simonyan and Zisserman, 2014) blocks, where 
each block consists of multiple 3 × 3 convolution followed by 
batch normalization (Ioffe and Szegedy, 2015) and a nonlinear 
activation. Each VGG-style block in the encoder, except the last 
block, is followed by max pooling to reduce the spatial resolution 
of the feature maps. These blocks are followed by two convolution 
blocks (with large kernels) → batch normalization → nonlinear 
activation blocks, which are used at the tail of the encoder to 
capture a wider context. To reduce the computation overhead, 
these large convolutions are computed using separable kernels 
(Jin et al., 2014). The rectified linear unit (ReLU)is used as the 
nonlinear activation throughout the network.

The decoder is similar in architecture to the encoder but 
with fewer feature maps for optimized computation and 
memory requirements. Each block in the decoder is also a 
repeating structure of up-sampling, followed by multiple 3 × 3 
deconvolution, batch normalization, and nonlinear activation 
operations. The number of feature maps at each level in the 
decoder is kept constant except for the output layer where it 
is equal to the number of target classes. The network contains 
extended skip connections where the feature maps from the 
encoder are concatenated to the corresponding feature maps 
in the decoder. The extended skip module consists of a bank of 

FIGURE 3 | Semantic graphics for paddy–millet dataset. (A) Image of a paddy field with wild millet. (B) Semantic graphics annotation. The color-filled circles 
used to annotate the base of the plants indicate multiple meanings such as category of the plant, location of the key-point, and their distance from a viewpoint. 
(C) Annotation superimposed on the source image. (Best viewed in color)
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FIGURE 4 | ESNet: The proposed extended skip network for end-to-end learning of semantic graphics (A). Diagram representing the output feature maps at each 
stage of the network (B). Extended skip module: If Cin is the number of channels in the input, the output after 1 × 1 convolution has the same number of feature 
maps as the input, whereas to keep the computational complexity minimal, the number of feature maps at the output after other multi-scale filter banks is kept 
constant at 12. Hence, the total number of output feature maps of the skip module is (Cin + 12). (C) The combined operations (up-sampling, concatenation, and 
convolution with fixed number of output feature maps) involved while merging feature maps from the extended skip module with the decoder. For simplicity, this 
detailed structure is not shown in (A).
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multi-scale filters as shown in Figure 4B. The output feature maps 
of the extended skip module are merged with the corresponding 
feature maps of the decoder as shown in Figure 4C.

The proposed ESNet is inspired from and exploits the elements 
of three different DNNs in a single network, namely, (a) skip 
layers to recover fine spatial details (Ronneberger et al., 2015), (b) 
larger convolutional kernels to incorporate a wider image context 
(Peng et al., 2017), and (c) multi-scale filter bank or “inception” 
module (Szegedy et al., 2015). However, unlike Ronneberger 
et al. (2015), whose study used skip layers that are fixed identity 
connections (copy and concatenate), we propose to make the 
architecture more general by learning these connections using 
multi-scale convolution. Large convolutional kernels (Peng 
et al., 2017) are used to increase the effective receptive field of 
the network for learning semantic graphics. However, the large 
kernels are used only at the tail of the encoder and the skip layers.

Finally, the large convolutional kernels in the skip layers are 
arranged in a multi-scale filter bank module (Szegedy et al., 
2015),as shown in Figure 4B, to incorporate the required input 
context during learning without having to empirically find 
an appropriate kernel size. This module provides multi-scale 
features which are more efficient for learning semantic graphics 
than selecting a single-scale context, as will be shown in the 
results presented in Section Ablation Experiments.

Training Parameters and Evaluation 
Metrics
The proposed approach is evaluated on the two problems, paddy 
line detection and wild millet detection, by training the models 
from scratch. The DNN models for both the tasks are trained by 
minimizing the pixel-wise cross-entropy loss given as

 
CELoss y L

c

L

i c
i

N

i
= − ∈∈

==
∑∑1 1

11
N

p y L
c
log [ ]  (1)

where N is the total number of pixels, L is the number of semantic 
categories, 1y Li c∈  is a binary indicator function if category c is the 
ground truth label for the ith observation, and p[y L ]i c∈  is the 
predicted probability of the model for that category.

The network shown in Figure 4 was used for learning the 
semantic lines. The details of the network are included as 
Supplementary Material. The network was initialized using 
Xavier initialization (Glorot and Bengio, 2010) and trained on 
mini-batches of five using the Adam method (Kingma and Ba, 
2014) with an exponential decaying learning rate of 10−4 for a 
total of 100 epochs, with all the training images being processed 
per epoch. As the paddy lines and background pixels are highly 
imbalanced in each mini-batch, the loss for the two categories 
is weighted by the class proportion of pixels computed on the 
training set. The paddy–millet dataset was trained on mini-
batches of size 10, with a learning rate of 10−4 and a decay factor 
of 0.94 after successive 10,000 iterations. The network was trained 
for a total of 60,000 iterations.

The performance of the trained model for both the datasets 
are evaluated using an intersection-over-union (IoU) metric,

 
IoU = T P

T P
∩
∪  (2)

where T is the target and P is the predicted category. In addition 
to the IoU metric, the precision and recall values for wild millet 
detection and the average pixel deviation of the predicted line 
from the ground truth for paddy line detection are also reported. 
The experiments were conducted in TensorFlow (Abadi et al., 
2016) using an NVIDIA Titan-X graphics processing unit (GPU).

Comparison Models
The proposed ESNet is compared to other commonly used 
CNN architectures which produce image-like outputs like the 
UNet (Ronneberger et al., 2015), FCN8 (Long et al., 2015), and 
DeepLabV3 (Chen et al., 2017). The problem of paddy and wild 
millet detection can be addressed as a bounding box-based object 
detection and localization approach of Faster-RCNN (Ren et al., 
2015) also. Therefore, the proposed network is compared with 
Faster-RCNN on the task of paddy and wild millet detection. We 
also implement a basic encoder–decoder network (EDNet) with 
a comparatively large number of parameters for comparison on 
the paddy–millet dataset. The details of the networks used in this 
study are included as Supplementary Material.

In the Faster-RCNN setting, the paddy–millet dataset was 
annotated by replacing the semantic graphics with minimum 
bounding boxes and the problem was solved as a detection 
and localization problem. The IoU was then computed on the 
predicted bounding boxes [proposals with class scores p > 0.8 
with a non-maximum suppression (NMS) threshold of 0.2] 
and the ground truth annotation. For a fair comparison with 
the semantic graphics method, the IoU was computed after 
substituting each bounding box with a maximal circle that 
fit the box. The detection accuracy was also evaluated using 
precision and recall values. Any prediction whose center lay 
within a distance of d_thresh (= 15) pixels from the center of its 
corresponding ground truth was deemed correct (true positive). 
The VGG16 (Simonyan and Zisserman, 2014) model pre-trained 
on ImageNet (Deng et al., 2009) was used to initialize the Faster-
RCNN and EDNet and fine-tuned on the paddy–millet dataset.

Post-Processing: Dominant Semantic Line 
Extraction
The proposed method of detecting crop lines outputs semantic 
lines for every visible row of paddy. However, for practical 
purposes, it is often sufficient and meaningful to detect only a 
few dominant rows, for example, the host rows and a few of its 
neighbors. Therefore, a simplified random sample consensus 
(RANSAC) (Fischler and Bolles, 1981) like post-processing step 
is employed to extract only the four dominant rows. The output 
semantic graphics is binarized, and the line segments are sorted 
according to their length. The longest line segment is chosen as 
a seed, and a straight line is fit to this segment. All the points 
within a distance of d_thresh (= 15) pixels are assigned as inliers 
to the initial line, and a new estimate of the line is computed. The 
resultant line after the second iteration is the first dominant line.
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After the first line is detected, all the pixels that are inliers to this 
line and any other line segments with more than 50% pixel inliers to 
this line are excluded from processing the remaining dominant line 
segments. The next longest line segment in the binarized output is 
then chosen as the second seed, and the above procedure is repeated 
until the required number of dominant lines are extracted.

The accuracy of the extracted dominant lines is computed 
using mean pixel deviation (mpd) from the ground truth line. 
The mpd is computed as the average of the row-wise difference 
between the predicted line and its corresponding ground truth. 
Let (xp, y) be a point on the predicted line and (xg, y) be its 
corresponding point on the ground truth line; then the row-wise 
pixel deviation (pd) is given as pd = |xp − xg|. Then mpd is the 
mean of pd computed across all the lines in the test set.

RESULTS AND DISCUSSION

Crop Line Detection
The quantitative results of the proposed network, ESNet, along 
with the results of UNet, FCN8, and DeepLabV3 on the paddy 
line test set are presented in Table 1. From Table 1, we see that 
the proposed network achieves the highest mean intersection 
over union (mIoU, 62.73%) among all the models considered 
in this study. The mIoU of the proposed method is 6.29%, 
4.56%, and 2.38% higher than that of UNet, DeepLabV3, and 
FCN8, respectively.

However, the mIoU of the detected semantic lines is less than 
the mIoU reported on the task of semantic segmentation using 
similar networks. This is because, unlike the per-pixel ground 
truth labels used in semantic segmentation, the annotations 
used for semantic lines are abstract and can be subjective; i.e., 
annotation of the same line of crop by two human annotators 
can differ significantly with little overlap between the two. 
This subjective nature of annotation affects network training 
and test accuracy. The quantitative analysis on the effect of the 
subjective nature of annotating semantic graphics is a subject of 
our future research.

From Table 1, we see that the proposed method is slow during 
inference. Even on a Titan-X GPU, the method runs at 10 fps. 
This is due to the large-sized kernels used in the network. The 
bulky Titan-X GPU may not be an optimal choice for use in field 
robots, and lightweight and more power-efficient GPUs like the 
Jetson TX2 are more practical. We can expect a considerable 
slowdown in inference time using the Jetson TX2. However, 
for a carefully designed system, we can limit the field of view 
of the vision sensor and restrict the region of interest (ROI) to 
gain inference speed. From our experiments, it was observed 
that the proposed network can process 5 fps for an input ROI 
of 192 × 256. This inference time is expected to be sufficient for 
any practical application of a slow-moving robot like a tractor 
running in a flooded rice field.

Some qualitative results on the paddy line test set are presented 
in Figure 5. While the proposed method is able to successfully 
detect paddy line in well-separated crop rows (first and fifth 
rows), the crop rows are delineated in high-weed-pressure areas 

also (second, third, and fourth rows). We also see that the line 
detection accuracy is higher for rows near the principal axis of 
the camera lens, whereas it is low for rows lying further away. 
Training the network on a larger dataset is expected to increase 
the accuracy of the detected lines throughout the image.

However, as explained in Section Post processing: Dominant 
Semantic Lines Extraction , for the practical purpose of navigating 
the field, it is often not necessary to detect crop rows lying 
further away from the principal axis. Some qualitative results 
of the extracted dominant lines are presented in Figure  5D. 
The  detected dominant lines are in close agreement with the 
ground truth line, which is also evident from the mpd values 
presented in Table 2. Though the difference in mIoU of UNet 
and ESNet is high, no significant difference in mpd is observed 
between these two networks. The random sample consensus 
(RANSAC)-based post-processing compensates for the low 
mIoU of UNet.

Wild Millet Detection
The quantitative results of the proposed method on the paddy–
millet dataset along with results of Faster-RCNN, EDNet, UNet, 
FCN8, and DeepLabV3 are presented in Table 3. From our 
experiments, it was observed that initializing Faster-RCNN 
and EDNet with VGG16 weights pre-trained on ImageNet and 
fine-tuning only the last few layers resulted in low-accuracy 
networks. However, a significant increase in mIoU was observed 
when all the layers were fine-tuned. The lower accuracy of the 
networks with few layers fine-tuned is due to the difference in 
the type of classes used in the pre-trained VGG16 model. The 
generic “object” features extracted by the pre-trained VGG16 
are not optimal to discriminate between the categories used for 
this dataset.

Though EDNet has a fraction of the parameters, it exhibits 
an mIoU higher than that of Faster-RCNN. This shows that 
the proposed method can be used to solve the problem of 
discriminating paddy and wild millet with higher accuracy, fewer 
parameters, and a simple end-to-end training compared to the 
existing bounding box approach of object detection. From Table 3, 
we see that the proposed ESNet leads to a 0.44% increment in mIoU 
with significantly less number of parameters than did EDNet. We 
also see that the mIoU of ESNet is 22.17%, 6.14%, and 2.42% higher 
than that of DeepLabV3, UNet, and FCN8, respectively.

TABLE 1 | Comparison of different networks on the paddy line dataset. 

Method #parameters 
(million)

mIoU (%) fps (512 × 512 
pixels, Titan-X GPU)

UNet ~2.14 56.44 21.28
FCN8 ~38.16 60.35 21.60
DeepLabV3 ~4.14 58.17 31.30
ESNet (proposed) ~5.74 62.73 10.97

ESNet, enhanced skip network; GPU, graphics processing unit; mIoU, mean 
intersection over union. The performance is quantified using mIoU. For Methods, 
bold is used to highlight the proposed method, whereas bold numbers are used to 
highlight the best results.
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Though Faster-RCNN has the highest precision, it has poor 
recall values. On the other hand, ESNet has balanced precision 
and recall values. From an application perspective, though 
Faster-RCNN is less likely to mistake a rice plant as millet, it is 

more likely to leave a significant number of weeds in the field 
undetected. However, ESNet detects most of the millets present 
in the field and is also less likely to mistake rice for millet.

Some qualitative results on the paddy–millet dataset 
are presented in Figure 6. While ESNet detects most of the 
millets in the field, it also produces some false positives 
(second and third rows). Some failure cases (third and fourth 
rows) are also observed where there is overlap between the 
two classes. Training the network with a larger dataset is 
expected to increase the accuracy of the system and reduce 
the number of failure cases. Though no post-processing has 
been implemented in the current study, these failure cases can 
also be reduced by using morphology-based post-processing 
operations like erosion and filtering.

ABLATION EXPERIMENTS
The effectiveness of the proposed ESNet is evaluated by 
comparing it with different ablated versions. The paddy line 
test set is used for evaluation, and the results are presented 
in Table 4. From Table 4, we see that the addition of large 
convolutional kernels, at the tail of the encoder of UNet to 
capture a wider image context, improves the mIoU by 3.29%. 
Further, replacing the UNet-style fixed skip connections with 
the proposed multi-scale filter bank leads to an additional 3% 
improvement in mIoU.

The motive behind using the multi-scale filters in the skip 
layers was to incorporate multi-scale features for reconstructing 
the output without having to rigidly set the convolutional kernel 
size. To verify this intuition, the multi-scale filter bank module 
is replaced with single-scale filters of size k × k. Different values 
of k ranging from 7 to 15 were evaluated, and the results are 
presented in Table 5.

From Table 5, we see that the network with k = 7 shows 
the best performance among the different single-scale filters 
evaluated. It can be observed that there is no straightforward 
relationship between the size of the kernel and network 
performance. From Tables 4 and 5, we see that the network 
with the proposed multi-scale filter bank outperforms all 
other networks with single-scale filters. The increased network 
capacity of the proposed filter bank may have led to increased 

FIGURE 5 | Qualitative results of learning semantic lines using the proposed 
extended skip network on the paddy line dataset. (A) Test images, (B) 
corresponding outputs of the proposed network, (C) output superimposed 
on test image, and (D) extracted dominant paddy lines along with the ground 
truth lines (dotted). (Best viewed in color).

TABLE 2 | Comparison of different networks on the paddy line dataset. 

Method Mean pixel deviation Deviation [−max, max]

UNet 3.39 [−27, 48]
ESNet (proposed) 2.89 [−24, 24]

ESNet, enhanced skip network. The performance is quantified using mean pixel 
deviation of the predicted line from the ground truth line. For Methods, bold is used to 
highlight the proposed method, whereas bold numbers are used to highlight the best results.

TABLE 3 | Comparison of different variants of Faster-RCNN and the proposed method on the paddy–millet dataset. 

Method #parameters 
(million)

Paddy Millet mIoU (%) Precision (%) 
(d_thresh = 15)

Recall (%) 
(d_thresh = 15)

F1 score

Paddy Millet Paddy Millet Paddy Millet

Faster-RCNN ~136 50.07 46.37 48.22 95.42 94.69 74.87 68.58 83.90 79.54
EDNet ~15.27 57.15 45.52 51.34 90.0 86.29 92.30 68.59 92.19 76.42
UNet ~2.14 48.65 42.62 45.64 91.86 84.37 81.02 69.23 86.10 76.05
FCN8 ~38.16 53.30 45.40 49.36 89.29 77.07 89.74 77.56 89.51 77.31
DeepLabV3 ~4.14 15.93 43.27 29.61 51.58 95.69 33.33 57.05 40.49 71.48
ESNet 
(proposed)

~5.74 56.53 47.02 51.78 87.80 84.56 92.30 80.76 89.99 82.16

EDNet, encoder–decoder network; ESNet, enhanced skip network; mIoU, mean intersection over union. The performance is quantified using intersection over union 
(IoU), precision, and recall. For Methods, bold is used to highlight the proposed method, whereas bold numbers are used to highlight the best results.
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accuracy. However, from Table 5, we see that increasing 
the network capacity by simply increasing the number of 
parameters does not necessarily improve the accuracy. The 
proposed structure allows the learning algorithm to choose 
either single-scale features or a combination of multi-scale 
features, whichever are efficient, and leads to better accuracy.

CONCLUSION
In this study, we proposed a convolutional encoder–decoder 
network-based system to (a) extract the crop line and (b) 
differentiate between weeds and crops, in row-transplanted paddy 
fields. Different from the conventional methods of training DNNs, 

FIGURE 6 | Qualitative results of learning semantic graphics using the proposed convolutional encoder-decoder network on paddy–millet dataset. (Best viewed in color).

Frontiers in Plant Science | www.frontiersin.org October 2019 | Volume 10 | Article 1404

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Learning Semantic GraphicsAdhikari et al.

11

a novel method of training DNN using “semantic graphics” was 
proposed. Semantic graphics was introduced to annotate the 
target functional key-points, semantic regions, or other higher-
level concepts which are otherwise challenging to annotate using 
existing bounding box-based or dense per-pixel-based approaches. 
An enhanced convolutional encoder–decoder network was then 
trained to directly learn the concept of crop line and discriminate 
between weeds and crop using semantic graphics.

Results demonstrating enhanced performance of the proposed 
method on the paddy line detection problem compared to other 
existing networks were presented. Experiments demonstrating 
enhanced performance of the proposed method on detecting paddy 
and wild millet compared to the more commonly used bounding 
box-based object detection approach were also presented.

The proposed crop line detection system can be easily extended 
to extract the rows of different types of crops. While the traditional 
handcrafted feature-based crop row extraction methods can fail 
to generalize well in real farm environments, the proposed crop 
line extraction system exhibits robust performance in real farm 
environments as demonstrated by the results. Though only wild 
millet detection is considered in this study, the proposed method 

can be extended easily to detect any other species of weeds. The 
crop lines extracted by the proposed method are accurate and can 
act as a reliable guiding line for an autonomous robot for inter-
row weeding, whereas the detection of individual plants and 
weeds enables autonomous intra-row weeding. A combination of 
these two approaches for inter-row and intra-row weeding can be 
used to realize a comprehensive autonomous weeding system.

In the future, we plan to use the semantic graphics-based crop 
row detection method for vision-based control of an autonomous 
tractor for unmanned inter-row weeding in paddy and extend 
the system for intra-row weeding.
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TABLE 4 | Ablation experiments to evaluate the effectiveness of the proposed 
extended skip connections.

Method Baseline Skip 
layer 

(fixed)

Large 
conv

Skip layer 
(multi-scale 

filters)

Paddy 
line IoU 

(%)

UNet √ √ 56.44
UNet_WC √ √ √ 59.73
ESNet √ √ √ 62.73

ESNet, enhanced skip network; IoU, intersection over union.

TABLE 5 | Performance comparison using different scales of filter in the 
skip layer.

K 7 9 11 13 15

IoU (%) 60.68 58.25 59.22 60.43 59.26

IoU, intersection over union.
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