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Parasitic plants infect a broad range of plant species including economically important 
crops. They survive by absorbing water, minerals, and photosynthates from their hosts. 
To support their way of life, parasitic plants generally establish parasitic organs that allow 
them to attach to their hosts and to efficiently absorb substances from the vascular system 
of the host. Here, we summarize the recent progress in understanding the mechanisms 
underlying the formation of these parasitic organs, focusing on the process depicted in 
the stem holoparasitic genus, Cuscuta. An attachment structure called “holdfast” on the 
stem surface is induced by the light and contact stimuli. Concomitantly with holdfast 
formation, development of an intrusive structure called haustorium initiates in the inner 
cortex of the Cuscuta stem, and it elongates through apoplastic space of the host tissue. 
When haustoria reaches to host vascular tissues, they begin to form vascular conductive 
elements to connect vascular tissue of Cuscuta stem to those of host. Recent studies have 
shown parasite-host interaction in the interfacial cell wall, and regulation of development 
of these parasitic structures in molecular level. We also briefly summarize the role of host 
receptor in the control of compatibility between Cuscuta and hosts, on which occurrence 
of attachment structure depends, and the role of plant-to-plant transfer of long-distance 
signals after the establishment of conductive structure.

Keywords: attachment cells, conductive cells, Cuscuta, haustorium, host factors, intrusive cells, parasitic organs, 
parasitic plants

INTRODUCTION
A group of plants called “parasitic plants” have been reported to consist of 4000 or more species, 
which is equivalent to approximately 1% of flowering plants, and are found all over the world 
(Nickrent, 2002). In many cases, the host range of a parasitic plant is wide, infesting many plant 
species including economically important crops (Lanini and Kogan, 2005). Thus, parasitic plants 
cause serious damage to crop production.

Parasitic plants can be classified into two classes: hemiparasites that retain the ability to perform 
photosynthesis, and holoparasites that have little or no photosynthetic capability. Consequently, 
holoparasites need to live a heterotrophic lifestyle by depriving nutrients and water from host 
plants Heide-Jørgensen, 2008). Parasitic plants belonging to the genus Cuscuta, a member of the 
family Convolvulaceae, infest a broad range of hosts and have been used as a model for the study 
of stem parasitic plants. The genus Cuscuta has been reported to consist of more than 150 species 
(Yuncker, 1932), and belong to the holoparasitic class with degenerated leaves and roots, and, as 
they do not perform photosynthesis, depend entirely on host plants for nutrients and water. To 
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understand Cuscuta at genetic level and to prevent damage to 
crop production, the whole genomes of Cuscuta australis (Sun 
et  al., 2018) and C. campestris (Vogel et al., 2018) have been 
recently sequenced.

After germination, Cuscuta extends a thread-like shoot. 
During shoot extension, the extending stem performs a swinging 
movement to increase the probability of contact with the host 
plant (Tada et al., 1996). It has been reported that Cuscuta 
perceives volatiles emitted from the host and extends toward it 
(Runyon et al., 2006). If Cuscuta cannot find a host plant, it will 
die in about 2 weeks after germination.

After contact with the host, the stem of Cuscuta forms a 
counterclockwise coil around the stem of the host (Figure 1A). 
The coiling behavior has been shown to be induced by the 
cooperative effects of far-red/blue light and tactile stimuli (Lane 
and Kasperbauer, 1965; Tada et al., 1996; Furuhashi et al., 1997). 

Effect of far-red light on the coiling of C. japonica was canceled by 
red light, suggesting the involvement of phytochrome (Furuhashi 
et al., 1997). Coiling and projection of haustoria of C. japonica 
can be induced by placing the stem between two glass plates to 
apply contact pressure under far-red or blue light, but was not 
induced under red- or white light, suggesting the cooperative 
effect of light and tactile stimuli (Tada et al., 1996).

After coiling on the host stem, a series of organogenesis 
occurs to establish a parasitic connection, including formation 
of an adhesive disc-like organ, referred to as a “holdfast” on the 
surface of the Cuscuta stem in contact with the host stem, and the 
development of a “haustorium” that intrudes into the host stem 
and finally makes vascular connection to the xylem vessels and 
phloem sieve tubes of the host (Yoshida et al., 2016). In this review, 
we describe the mechanisms underlying the formation of these 
parasitic organs, and propose hypotheses for the involvement 

FIGURe 1 | (A) Appearance of parasitic site formed between Cuscuta campestris (Cc) and Arabidopsis thaliana (At) from the outside. C. campestris coils around 
the inflorescence stem of Arabidopsis. Scale bar, 1 cm. (B–e) Transverse sections of the three phases of parasitic processes of Cuscuta. Scale bars, 200 μm. 
(B) Adhesive phase. Holdfast (ho) is formed on the host-attaching surface of C. campestris. Prehaustorium develops in the inner cortex of the stem right behind 
holdfast. In the endophyte primordium (ep), digitate cells (dc) and file cells (fc) differentiate and start to elongate. (C) Intrusive phase. Haustorium (ha) intrudes in the 
cortex of the host stem. It sometimes reaches to the pith (pi). (D) Conductive phase. (e) Area in the red square in (D) is magnified. Vascular conductive elements 
(px) are formed in the haustorim. P, parasite; H, host; ha, haustorium; hp, host phloem; hx, host xylem; px, parasite xylem; pi, pith; se, searching hypha; orange 
dotted line, outline of haustorium; red dotted line, outline of parasite xylem. In all panels, 200-μm-thick micro-slicer sections were stained with toluidine blue.
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of putative host factors. Comparison of Cuscuta with other 
well-studied root parasites belonging to Orobanchaceae that 
are taxonomically distant from Cuscuta highlight diversity with 
respect to the structure and function of the parasitic organs. We 
also briefly summarize the role of host receptor in the control of 
compatibility between Cuscuta and hosts, and the role of plant-
to-plant transfer of long-distance signals after the establishment 
of conductive structure.

ORGANOGeNeSIS ASSOCIATeD wITH 
PARASITIC CONNeCTION
The parasitic processes of Cuscuta can be classified into three 
phases; the adhesive, intrusive, and conductive phases (Figures 
1A–E) (Heide-Jørgensen, 2008). In the adhesive phase, a 
specialized adhesive organ called the holdfast is formed in the 
Cuscuta stem in contact with the stem of the host plant. Holdfast 
is formed essentially by the elongation of cells in the epidermal 
and cortical layers of Cuscuta stem, and characterized by the 
presence of secretory cells that secrete adhesive compounds 
(Heide-Jørgensen, 2008). In the intrusive phase, Cuscuta 
develops a specialized intrusive organ called the haustorium. 
When the haustorium reaches the vascular tissues of the host, 
a specific group of haustorial cells differentiate into vascular 
conductive cells and Cuscuta proceeds into the conductive phase. 
In the conductive phase, Cuscuta exchanges various information 
molecules with the host, as well as absorbs water and nutrients.

Adhesive Phase
After coiling (Figure 1A), epidermal cells of the Cuscuta stem 
in contact with the host elongate toward the contacting surface 
of the host epidermis and divide anticlinally to become digitate 
in form (Figure 1B; Vaughn, 2002). Tight adhesion between 
Cuscuta and the host can be achieved by secretion of adhesive 
substances and elongation of cells toward the host surface. The 
divided epidermal cells of Cuscuta campestris (synonymous 
with Cuscuta pentagona, Costea et al., 2015) secrete pectin-
rich adhesive (cement) to make a tight adhesion (Vaughn, 
2002). Homogalacturonan, which constitutes up to 65% of cell 
wall pectin, is synthesized in a methyl-esterified form (Ridley 
et al., 2001). Methyl esters are removed enzymatically by pectin 
methylesterases (PMEs) from homogalacturonan (Micheli, 2001; 
Pelloux et al., 2007). Several studies using Arabidopsis have 
shown that low-esterified pectin is responsible for the organ 
adhesion (Sieber et al., 2000; Sala et al., 2019). In the epidermal 
layer of Cuscuta holdfast, immunolabeling of cell wall using 
antibodies against low-esterified homogalacturonan, such as 
JIM5 and LM19, is relatively stronger than that using antibodies 
against high-esterified homogalacturonan, such as JIM7 and 
LM20 (Vaughn, 2002; Johnsen et al., 2015; Hozumi et al., 2017). 
These result suggested that low-esterified homogalacturonan is 
responsible for the adhesion of Cuscuta to the hosts (Figure 2A).

Arabinogalactan proteins (AGPs) have been reported to 
be found in common in many adhesion-based mechanisms 
(Bowling and Vaughn, 2008; Huang et al., 2016). Implication for 

the involvement of AGPs in Cuscuta adhesion to the host was 
obtained by accumulation of AGP in the surface of the holdfast 
(Figure 2A). Staining with LM2 antibody which recognizes 
carbohydrate moiety of AGPs demonstrate that AGPs accumulate 
in epidermal cells on the surface of holdfasts of Cuscuta reflexa 
(Striberny and Krause, 2015) and C. campestris (Hozumi et al., 
2017). Staining with Yariv reagents and LM6 antibody further 
support AGPs accumulation in epidermal cells of holdfasts of 
C. campestris (Hozumi et al., 2017). Accumulation of AGPs are 
due to the cell type-specific expression of a subset of fasciclin-
like family member genes, CcFLA7, 16 and 17. Accumulation 
of AGP on the contacting surface was also reported for host 
plants (Albert et al., 2006; Striberny and Krause, 2015). Contact 
of Cuscuta reflexa to the surface of tomato stem induces the 
expression of attAGP in tomato (Albert et al., 2006). Expression 
levels of tomato attAGP was positively correlated with the force 
of attachment. This result suggests a positive contribution of 
AGPs to parasite-host attachment (Albert et al., 2006). However, 
exact role of AGP in parasite-host attachment is still unknown.

To contact tightly to the host surface, divided epidermal cells 
of holdfast elongate toward the host surface (Figures 1B and 2A). 
Outgrowth of the epidermal cells of the holdfast contributes to 
tightening of the adhesion by accommodating the surface of the 
host plant (Vaughn, 2002). The surface of the holdfast, which was 
in a pointed fingerlike extension form, becomes flat or rounded 
(Figure 2A). This malleability of the holdfast epidermis facilitates 
the formation of tight seal with the host surface (Vaughn, 2002). 
Identity of the elongating cell was referred to as a secretary 
trichome which contains a large number of secretary vesicles 
(Vaughn, 2002). Epidermal cells of the Cuscuta holdfast likely 
to share common developmental mechanisms with root hair 
(Ishida et al., 2008) or leaf trichome (Wang et al., 2019), although 
the expression of marker genes for these types of cells have not 
been demonstrated yet.

Initiation of Intrusive Phase
The intrusive phase is characterized by the development of a 
haustorium (Figure 1C). To be accurate, primordia of haustoria 
have already been initiated in the adhesive phase. When Cuscuta 
develops holdfasts after contact to the host’s stem, the precursor of 
mature haustorium, or so-called prehaustorium, is differentiated 
in the cortex near the vascular cylinders right behind the holdfast 
(Figure 1B).

Initiation of the haustorium development appears to be 
a host-independent process. Development of haustoria in 
Cuscuta species can be induced even when Cuscuta coiled 
to non-biological object (Tada et al., 1996; Heide-Jørgensen, 
2008; Hong et al., 2011). Microscopic studies have shown that 
meristem cells of haustorium develop simultaneously with the 
development of holdfast (Lee and Lee, 1989; Lee, 2007; Heide-
Jørgensen, 2008). Initiation of haustorium development requires 
far-red light, and also blue light even though the effect is weaker 
than far-red light (Furuhashi et al., 1995), and by contact stimuli 
concomitantly applied with light (Tada et al., 1996; Furuhashi 
et al., 1997). Red or white light did not induce haustorium, and 
haustorium induction by far-red light can be cancelled by the 
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following red light, suggesting the involvement of phytochrome 
in the regulation of haustorium development (Tada et al., 1996; 
Furuhashi et al., 1997). Cryptochrome is involved in blue light 
perception (Cashmore et al., 1999), and mechanosensitive ion 
channels are likely to be involved in the perception of contact 
stimuli (Hamilton et al., 2015; however, primary receptors for 
these stimuli have not been identified yet in Cuscuta.

Cytokinin has been reported to induce haustorium of 
Cuscuta reflexa in the absence of the host (Ramasubramanian 
et al., 1988), and in the dark (Haidar et al., 1998). These results 
imply that cytokinin may be a downstream signal of light and 
contact stimuli.

Genetic networks involved in the initiation of haustorium 
development have not yet been elucidated. Haustoria of Cuscuta 
develop as lateral protrusion of parasite stems, thus classified as 
“lateral haustoria” (Joel, 2013; Yoshida et al., 2016). Mechanisms 
involved in the formation of lateral organs, such as lateral roots 
and adventitious roots, have been studied in detail in Arabidopsis 
(Hu and Xu, 2016; Liu et al., 2018; Ibáñez et al., 2019; Lee et al., 
2019), which may serve as a reference model for the initiation of 
Cuscuta haustorium.

Development of Haustorium
Initial cells of Cuscuta haustorium are formed in the stem inner 
cortex, which then divide anticlinally and periclinally to give rise 
meristem cells (Lee and Lee, 1989; Lee, 2007). Meristem cells are 
then organized in “endophyte primordium” consisting of two cell 
types; elongate digitate cells and smaller file cells, before intruding 
into the host (Figure 1B; Lee, 2007). These cells become intrusive 
and force their ways through the stem cortex cells in front of 
them, the epidermal layer of its own stem and the epidermal layer 
and the cortex of the host. Cells in between the meristem and 
the stele also divide and form tabular cells, which are added to 
the file cell layer. This morphological observation suggests that 
the intrusive cells of Cuscuta originate from the cortex. This is 
different from the case of Phtheirospermum japonicum, a root 
hemiparasitic plant belonging to Orobancheceae, whose intrusive 
cells have been shown to originate from the root epidermal cells 
(Wakatake et al., 2018) (Figures 3A, B). During intrusive growth 
in the host’s cortex, intrusive cells advance in the apoplastic space 
by pushing the cells. At the front of haustorial intrusive part, the 
elongate digitate cells search for the host’s vascular tissues, and, 
thus are called “searching hyphae” (Figure 1C; Vaughn, 2003).

FIGURe 2 | Functions of enzymes and genes associated with the parasitic processes. Panels in the bottom show magnified views of the areas in red squares 
in panels on the top. (A) Putative function of cell wall-modifying enzymes secreted from holdfast in the adhesive phase. Holdfast cells tighten the adhesion by 
pectin-rich cement (ce, blue). It has been shown that holdfast cells of Cuscuta campestris contain numerous secretion vesicles containing the components of 
cell-wall-loosening complexes. Pectin methylesterases (PMEs) are probably secreted to tighten the adhesion of Cuscuta to host. Specific members of genes 
encoding arabinogalactan proteins (AGPs) are expressed in searching hyphae, and accumulate AGP proteins (brown). AGP also have roles in host cell surface 
(orange) in the adhesion of parasite (Albert et al., 2006). (B) Secretion of cell wall-modifying enzymes to the cell walls adjacent to searching hyphae in the intrusive 
phase. Xyloglucan endotransglucosylation (XET) activity of XTH was detected in interface (blue) at the tip of haustoria of C. reflexa (Olsen and Krause, 2017). In C. 
campestris, searching hyphae-specific expression of FASCICLIN-LIKE genes causes the accumulation of AGPs in the interfacial cell walls surrounding searching 
hypha cells (brown) (Hozumi et al., 2017) Exact role of AGPs in the intrusive phase is still unknown. (C) Expression of genes associated with differentiation of 
vascular elements during the transition from intrusive phase to conductive phase in haustorim of Cuscuta japonica. Green, procambium/phloem region, orange, 
xylem precursor (xp), red diagonal lines, mature xylem vessel (mx). WOX4, WUSCHEL RELATED HOMEOBOX 4; CLE41, CLAVATA3/EMBRYO SURROUNDING 
REGION-RELATED 41; GSK3, GLYCOGEN SYNTHASE KINASE 3; BES1, BRI1-EMS-SUPPRESSOR 1; TED7, TRACHEARY ELEMENT DIFFERENTIATION-
RELATED 7; APL, ALTERED PHLOEM DEVELOPMENT; SEOR1, SIEVE ELEMENT OCCLUSION-RELATED 1.
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Intrusive cells grow through apoplastic space by pushing 
host cells aside, rather than by crushing them. Cuscuta 
secretes enzymes to the interfacial cell walls to loosen the cell 
wall and aid the elongation of intrusive cells in the apoplastic 
space. In Cuscuta reflexa, haustorium-specific expression of 
gene encoding a cysteine protease, namely cuscutain, were 
reported (Bleischwitz et al., 2010). In the parasitic interface of 
C. japonica and the host, Glycine max, expression of C. japonica 
genes encoding cell wall degrading- and modifying- enzymes, 
such as PME, pectate lyase, polygalacturonase, and xyloglucan 
endotransglucosylase/hydrolase (XTH) were up-regulated 
(Ikeue et al., 2015). In the far-red light-induced haustoria of 
C. reflexa and C. gronovii, two XTH genes have shown to be 
up-regulated (Olsen et al., 2016b). One of the two enzymatic 
activities of XTH, xyloglucan endotransglucosylation (XET), 
were secreted from haustoria, and localized at the host-
parasite border of the endophytically growing haustoria of 
C. reflexa, C. campestris and C. platyloba (Olsen and Krause, 
2017). Because XET activity of XTH grafts the reducing end 
of the cleaved xyloglucan onto an acceptor xyloglucan chain 
(Rose et al., 2002; Olsen et al., 2016a), these results indicate 
that Cuscuta XTHs play a role in invading growth of haustoria 
(Figure 2B).

In addition to cell wall modifying enzymes, searching hyphae 
of C. campestris and C. japonica, which develop on the haustorial 
tip, accumulate AGPs in the cell surface (Figure 2B). In 
C. campestris, hyphal AGP accumulation is accompanied by the 
expression of hyphae-specific FASCICLIN-LIKE family members 
(Hozumi et al., 2017). However, roles of hyphal AGP in intrusive 
growth is still unclear.

Transition From Intrusive Phase to 
Conductive Phase
Once searching hyphae reach the host’s vascular tissues, 
the invasion process is almost complete. Searching hyphae 
acquire identities as xylem- and phloem-conductive elements 
(Figures 1D, E; Vaughn, 2006; Shimizu et al., 2018), which 
is concomitantly associated by the differentiation of vascular 
conducting elements in the center of haustorium (Figure 2C). 
Cells that have a procambium-attribute, from which vascular 
elements are differentiated, have emerged before contact with 
the host’s vascular elements. Cells with a procambium-attribute 
can be identified by the expression of WUSCHEL RELATED 
HOMEOBOX 4 (WOX4) (Hirakawa et al., 2010). Expression of 
C. japonica WOX4, CjWOX4, was detected in the central region 
of the basal haustorium, and in cells surrounding the precursor 
cells which later differentiate into xylem vessels (Figure 2C; 
Shimizu et al., 2018).

Differentiation of searching hyphae into xylem starts near the 
tip. Searching hyphae penetrate into host xylem vessels through 
the pits, and starts a series of changes to differentiate xylem vessels 
(Vaughn, 2006). Xylem differentiation in haustoria of C. japonica 
include many processes in common with those elucidated in 
vascular tissues of model plants (Ito et al., 2006; Hirakawa et al., 
2008). Before the onset of xylem differentiation, high expression 
of C. japonica CLAVATA3/EMBRYO SURROUNDING REGION-
RELATED 41 (CjCLE41), and CLE41 peptide is likely to be 
secreted to repress the differentiation of the procambium-like 
cells into tracheary elements. Expression of CjCLE41 begins to 
decrease upon the onset of xylem differentiation, which probably 
down-regulates the kinase activity of GLYCOGEN SYNTHASE 

FIGURe 3 | Schematic illustration of the structures of haustoria of Cuscuta campestris and Phtheirospermum japonicum. (A) Cuscuta campestris, a holoparasitic 
plant belonging to Convolvulaceae, develops lateral haustoria. (B) Phtheirospermum japonicum, a hemiparasitic plant belonging to Orobanchaceae, develops lateral 
haustoria. Holdfast of C. campestris and haustorial hair of P. japonicum are likely to be analogous that develop from epidermal cells and contribute to the adhesion 
of parasite to host. Intrusive cells of C. campestris, searching hyphae, develop from digitate cells which have been differentiated from the cortex or endodermal cells 
of the stem. On the other hand, intrusive cells of P. japonicum are shown to be differentiated from the epidermal cells.
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KINASE 3 (GSK3) protein. Down-regulation of GSK3 releases 
the expression of BRI1-EMS-SUPPRESSOR 1 (CjBES1) from the 
deactivated state. Consequently, activated CjBES1 expression 
induces the xylem differentiation processes (Shimizu et al., 2018). 
Expression of the gene specific to developing xylem vessels, 
TRACHEARY ELEMENT DIFFERENTIATION-RELATED 
7 (CjTED7), is under the detection limit before the onset of 
xylem differentiation, whereas up-regulated with xylem vessel 
formation (Shimizu et al., 2018).

Compared to xylem, differentiation of phloem in haustoria 
has been rather controversial and appears to differ from species 
to species. In C. japonica, marker genes of phloem companion 
cell, ALTERED PHLOEM DEVELOPMENT (CjAPL; Bonke 
et al., 2003), and of developing sieve elements, SIEVE ELEMENT 
OCCLUSION-RELATED 1 (CjSEOR1; Knoblauch et al., 2014), 
were detected in the intruding haustoria (Figure 2C; Shimizu 
et al., 2018). Substances from the host’s sieve tube to Cuscuta 
translocate in distinct arrays of conductive cells (Birschwilks et al., 
2006; Shimizu et al., 2018), indicating that phloem conductive 
cells develop in haustoria and are symplastically separated from 
surrounding cells. However, in situ hybridization for CjCLE41, 
whose Arabidopsis ortholog was expressed in phloem cells 
and adjacent pericycles (Hirakawa et al., 2008), demonstrated 
that it is expressed in cells overlapping with the region where 
CjWOX4 is expressed (Shimizu et al., 2018). This incomplete 
compartmentalization implies immaturity of haustorial phloem 
relative to that in the conventional vascular bundles.

Differentiation processes of vascular cells in Cuscuta 
haustoria contain common and different processes compared 
to those in other parasitic plants. In Phtheirospermum 
japonicum, expression of procambium-specific genes, PjWOX4, 
HOMEOBOX PROTEIN 8 (PjHB8) and PjHB1, were detected 
before the formation of xylem vessels, (Wakatake et al., 2018). 

This demonstrates that the development of procambium-like 
cells precedes the differentiation of haustorial vascular cells, as 
seen in C. japonica. On the other hand, organization of haustorial 
vascular cells appears to be different from that of C. japonica. 
Although the presence of xylem vessels are apparent, absence 
of AtAPL promoter activity, which is expressed in phloem, in 
haustoria suggest that phloem does not develops in P. japonicum 
haustoria (Spallek et al., 2017; Wakatake et al., 2018). Similarly, 
immaturity of the phloem is also shown in the haustoria of root 
holoparasitic plant, Phelipanche aegyptiaca, which also belongs 
to Orobanchaceae (Ekawa and Aoki, 2017). On the other hand, 
formation of mature sieve elements in haustoria has been reported 
for Orobanche crenata and O. cumana (Dörr and Kollmann, 
1995; Krupp et al., 2019). These results, together with haustorial 
development of Cuscuta described in this section, suggest that 
development of procambium-like cells and haustorial xylem 
vessels are observed in common, on the other hand, development 
of phloem is different between different parasitic plants species. 
Mechanisms that bring diversity to phloem development have 
not been elucidated yet.

Conductive Phase
Cuscuta becomes a strong sink after the establishment of the 
haustorial bridge and competes with sink organs of the host itself 
for assimilates. Searching hypha cells that contact to host xylem 
vessels invade vessels through the pits in the cell wall (Heide-
Jørgensen, 2008). Then, the ends of hypha cell wall become thin 
and perforated, finally forms an open connection with host xylem 
vessels (Figure 4A). Vaughn (2006) mentioned that the nature of 
the opening between host xylem and hyphal xylem appears to be 
dependent on the angle and orientation of hyphae with respect 
to host xylem. The open connection allows the translocation of 

FIGURe 4 | (A) Open connection (arrowheads) between xylem vessels of parasite (px) and host (hx) in the parasitic interface of Cuscuta japonica (Cj) with Glycine 
max (Gm). Scale bar, 50 μm. A 20-μm-thick paraffin-embedded section was stained with phloroglucinol. (B) Transfer of 5-carboxytetramethylrhodamine (TMR) 
10-kDa dextran (red) from host xylem vessel to haustorial xylem vessels, and then to Cuscuta stem xylem. White dotted line; outline of haustorium, yellow dotted 
line; outline of attachment boundary between Cuscuta and host Arabidopsis. CC, Cuscuta campestris; AT, Arabidopsis thaliana; px, parasite xylem vessel; hax, 
haustorial xylem vessel; hx, host xylem vessel. Scale bar, 200 μm.
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xylem-mobile dyes, for example, fluorescently labeled 10-kDa 
dextran (Figure 4B).

The nature of phloem connection has been controversial. 
Ultrastructural studies demonstrated that phloem continuity 
is achieved by a contacting searching hyphae which split in 
finger-formed elongation, and the plasmodesmata and sieve 
pores are absent between the searching hypha and host sieve 
tube, suggesting an apoplastic transfer of xylem solutes via 
transfer-type cells (Heide-Jørgensen, 2008). On the other 
hand, Cuscuta has been known as a vector for transmission of 
virus and phytoplasma (Hosford, 1967; Heintz, 1989), and the 
transport requires a symplastic connection. Finally, evidence 
for the presence of symplastic connection was given by the 
translocation of GFP from sieve tubes of hosts to Cuscuta 
(Haupt et al., 2001). Various phloem-mobile compounds, 
including sucrose, amino acids, plant hormones, and 
xenobiotics have been shown to translocate from the host to 
parasite (Birschwilks et al., 2006). The transport rate does not 
show any selectivity with respect to the compounds, suggesting 
that phloem-mobile compounds are transported through an 
open symplastic connection.

Flow of water from hosts via xylem to Cuscuta is probably 
driven by the gradient of water potential between the host and 
the parasite. In Orobanchaceae, Orobanche cernua accumulates 
a higher level of potassium than the host (Hibberd et al., 1999), 
and Striga hermonthica and Phelipanche ramosa accumulates 
mannitol (Robert et al., 1999). On the other hand, the direction 
of transport via phloem can occur from the parasite to host, 
and, thus, is bi-directional. The bi-directional nature of phloem 
transport lays foundations for mutual control between the 
parasite and the host.

INTeRACTION wITH HOST

Host Receptor for Immune Response 
Against Cuscuta
Cuscuta spp. have a broad host range, but there are a few plants 
that are resistant to Cuscuta (Kaiser et al., 2015). Interestingly, 
cultivated tomato species, Solanum lycopersicum, is resistant to 
Cuscuta reflexa (Ihl et al., 1988; Albert et al., 2004; Runyon 
et al., 2010; Kaiser et al., 2015), while a wild relative of tomato, 
Solanum pennellii, is susceptible (Hegenauer et al., 2016; 
Krause et al., 2018). At the end of the attachment phase, 
epidermal cells of resistant S. lycopersicum die following 
a hypersensitive-type response, and hypodermal cells are 
modified to protect intrusion from haustoria (Ihl et al., 1988). 
Cuscuta factor (CuF), a 2-kDa peptide with O-esterified 
modification, was identified to trigger defense response of the 
host plant including production of reactive oxygen species and 
ethylene (Hegenauer et al., 2016). Analysis of introgression 
lines of S. lycopersicum × S. pennellii (Eshed and Zamir, 1995) 
lead to the identification of a gene for tomato receptor of CuF, 
CuRe1, which encodes a leucine-rich repeat receptor like 
protein (LRR-RLP) (S. lycopersicum allele, Solyc08g016270) 
(Hegenauer et al., 2016). Stable introduction of S. lycopersicum 
CuRe1 into susceptible S. pennellii, and N. benthamiana 

confers responsiveness to the CuF and increased resistance to 
C. reflexa (Hegenauer et al., 2016). These results suggest that 
defense response, likely pattern-triggered immunity (PTI) 
response, of incompatible tomato species could be induced 
by the perception of the CuF by the receptor CuRe1, although 
either the molecular identity of CuF or direct binding of CuF 
to CuRe1 have not been demonstrated yet (Hegenauer et al., 
2016). The presence of additional CuRe1-like receptors is also 
suggested, and the identification of their ligand will pave the 
way to investigate parasite-host recognition and its relation to 
plant immunity (Fürst et al., 2016).

Involvement of Host Factors for Parasitic 
Organ Development
Host-derived signal substances, or “host factors,” control the 
organ development processes of parasites. A well-known example 
of the host factors are strigolactones, that are exuded from host 
root, that trigger germination of seeds of Orobancaceae plants 
(for reviews, see Xie et al., 2010; Lumba et al., 2017). In the case 
of Cuscuta, volatiles emitted from the host is known to mediate 
host location by Cuscuta (Runyon et al., 2006). On the other 
hand, haustoria can be induced in a host-independent manner 
(Furuhashi et al., 1995; Tada et al., 1996). Although haustorium 
initiation can occur host independently, the latter steps, such 
as elongation of searching hyphae and their differentiation to 
conductive cells, may require host factors (Figure 5).

First, elongation of searching hyphae should be initiated by 
host factors. The rationale for this is that, although elongation 
of endophyte primodium of Cuscuta initiated by attaching to 
non-biological substances, such as acryl rod and bamboo stick, 
develops file cells and digitate cells, they do not show further 
elongation or development of searching haypha cells (Heide-
Jørgensen, 2008; Hong et al., 2011). Host factors involved in this 
elongation process have not yet been identified.

Second, host factors may be involved in the differentiation 
of searching hypha cells into xylem and phloem conductive 
elements (Vaughn, 2006; Krupp et al., 2019). Upon contacting 
xylem vessels or phloem sieve tubes of the host, the hyphal cells 
of haustorium starts to differentiate into respective conductive 
elements, implying that hyphal cells recognize the type of host 
conductive elements they hit in order to differentiate into the 
correct elements. Although it is not clear whether this process 
happens in all cases or not, establishing the right connection 
between right elements must be essential for the survival of 
parasitic plants. This raises questions; what the cues of hyphal 
differentiation are, and whether hyphal cells have multipotency 
or not. Further study is needed to answer these questions.

We mention that host factors inducing haustorium, or 
“haustorium inducing factors (HIFs)” are well characterized 
for Orobancaceae root parasitic plants. Cytokinin (Goyet et al., 
2017), 2,6-dimethoxy-1,4-benzoquinone (DMBQ) (Lynn et al., 
1981) and lignin-related compounds (Cui et al., 2018) have been 
shown to have HIF activity. Orobancaceae root parasitic plants 
may also require host factor(s) for the elongation of intrusive cells 
because the elongation does not happen when prehaustorium is 
induced solely by HIFs (Estabrook and Yoder, 1998).
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PARASITIC PLANTS MODULATe ORGANS 
OF THe HOST?
We so far focused on the organ formation in parasitic plants. On 
the contrary, modulation of organ morphology by the parasite 
also occurs in the host plants. Parasitization often causes the 
swelling of host tissues, which is called “hypertrophy” (Heide-
Jørgensen, 2008). In the recent study on the parasitic complex 
of Phtheirospermum japonicum and the host Arabidopsis, 
thickening of Arabidopsis roots is reported to be induced by the 
cytokinin produced in P. japonicum (Spallek et al., 2017).

In the host plants parasitized by Cuscuta, induction of new 
vascular elements in the host was previously reported (Dawson 
et al., 1994). However, in Impatiens balsaminea parasitized by 
Cuscuta pentagona, little or no new growth of host vascular 
elements were observed (Vaughn, 2006). In Glycine max 
parasitized by Cuscuta japonica, changes in the expression levels 
were observed for genes responsible for vascular development 
and cell proliferation, although apparent increase of cell number 
was not observed in the area adjacent to the invading haustoria 
(Ikeue et al., 2015). Further study needs to clarify whether 
invasion of Cuscuta affects the morphology of host organ or not.

TRANSFeR OF LONG-DISTANCe SIGNALS 
AFTeR CONDUCTIve PHASe

RNA Movement
Translocation of mRNAs and small RNAs between Cuscuta and 
the host plant have been shown (Alakonya et al., 2012; LeBlanc 
et al., 2013) and selectivity of the mobility or uptake of RNA 

has also been suggested (LeBlanc et al., 2013). A recent study 
using high-throughput RNA sequencing technology revealed 
that mRNAs representing more than 8000 genes of the parasite 
Cuscuta campestris and those representing more than 9000 genes 
of the host Arabidopsis move to the parasitic partner (Kim et al., 
2014). Although an unexpectedly large number of RNAs were 
shown to move from plant to plant, biological relevance and 
necessity of the movement of mRNAs in the establishment of 
parasitic relationship are still unclear.

Trans-species movement of small RNAs (sRNA) has been 
documented for artificially induced short interfering RNA. Trans-
silencing of a target gene was employed to demonstrate the role 
of SHOOT MERISTEMLESS-LIKE 1 in haustorium development 
in C. campestris (Alakonya et al., 2012). Recently, induction of 
microRNA (miRNA) was demonstrated in C. campestris in 
the parasitic interface with the host Arabidopsis (Shahid et al., 
2018). The miRNAs target transcripts encoding defense-related 
proteins, such as AtSEOR1, BOTRYTIS-INDUCED KINASE 
1 (AtBIK1), and members of the TRANSPORT INHIBITOR 
RESPONSE 1 (AtTIR1)/AUXIN SIGNALING F-BOX 2 and 3 
(AtAFB2/AtAFB3) family, and accumulation of these transcripts 
were reduced during parasitization. Although direct evidence 
for the enhancement of vigor of the parasite has not yet been 
obtained, the biomass of C. campestris on Arabidopsis loss-of-
function mutants, seor1 and afb3-4, increased, suggesting that 
repression of these defense-related genes by miRNAs from the 
parasite may have biological significance (Shahid et al., 2018).

Trans-species movement of mRNA likely recruit the 
mechanisms for long-distance movement via phloem. Although 
experimental mRNA mobility can be explained by abundance 
and half-life of transcripts (Calderwood et al., 2016), presence 

FIGURe 5 | Involvement of host factors (HFs) in the elongation and differentiation of searching hyphae. (Left) HF inducing elongation of searching hyphae (left) has 
been hypothesized because digitate cells or file cells of C. campestris initiated in a host-independent manner do not show further development of searching hyphae 
without host. (Right) HF has been implied in the differentiation of searching hypha cells into xylem (red lines) and phloem conductive elements (blue), because upon 
contacting xylem vessels or phloem sieve tubes of the host, the hyphal cells starts to differentiate into respective conductive elements. These HFs have not been 
identified yet.
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of sequence motifs such as tRNA-like motifs have been reported 
selective long-distance movement of mRNA through graft union 
(Thieme et al., 2015; Zhang et al., 2016). It will be of interest 
whether the same motifs are functional in the trans-specific 
movement or not. The mechanisms involved in sRNA transfer 
needs to be elucidated as well.

Signals in Response to Herbivory Feeding
Responses to herbivory-feeding in one host plant can transfer 
to the second host plant connected by the bridging Cuscuta 
australis (Hettenhausen et al., 2017), indicating the feeding 
signals transfer from host to parasite on the first host, and the 
other way round on the second host. Feeding by green pea aphid, 
Myzus persicae, induces a local response to C. australis, and the 
signal moves to the soybean host and induces the expression 
of the herbivory response (Zhuang et al., 2018). These results 
demonstrate that Cuscuta can transmit and receive the systemic 
signal for herbivory response, although the systemic signal has 
not been identified yet.

CONCLUSION AND FUTURe 
PeRSPeCTIveS
Elucidation of cellular and molecular processes involved in 
the formation of parasitic organs of Cuscuta has unveiled 
mechanisms hidden in the parasitic interface tissues. Cuscuta 

probably recruits genetic networks shared by other vascular 
plants, such as the genetic network for protrusive outgrowth 
of the epidermal cells and for formation of vascular tissues. 
They use the set of genes in a non-canonical way, though, as 
seen in the patterning of procambium, xylem, and phloem 
cells in haustorium. In addition to the formation of parasitic 
organs, trans-species trafficking of macromolecules, such as 
RNAs, through parasitic interface suggests a possibility of 
bi-directional control of biological processes between host 
and parasite. Understanding of Cuscuta will suggest parallels 
with other multi-organism processes, such as grafting, 
nematode infection, and formation of insect galls (Melnyk 
and Meyerowitz, 2015; Viera and Gleason, 2019). Comparative 
analyses of these processes will reveal the fundamental roles 
of extracellular and intracellular communication in multi-
organism complexes. 
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