
1

Edited by: 
David Gilmer, 

Université de Strasbourg, 
France

Reviewed by: 
Thierry Michon, 

INRA-Université Bordeaux, 
France 

Zhen He, 
Yangzhou University, 

China

*Correspondence: 
Hernan Garcia-Ruiz 

hgarciaruiz2@unl.edu

Specialty section: 
This article was submitted to 

 Virology, 
 a section of the journal 

 Frontiers in Plant Science

Received: 26 March 2019
Accepted: 16 October 2019

Published: 12 November 2019

Citation: 
Nigam D, LaTourrette K, Souza PFN 
and Garcia-Ruiz H (2019) Genome-

Wide Variation in Potyviruses. 
 Front. Plant Sci. 10:1439. 

 doi: 10.3389/fpls.2019.01439
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Potyviruses
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Potyviruses (family Potyviridae, genus Potyvirus) are the result of an initial radiation event 
that occurred 6,600 years ago. The genus currently consists of 167 species that infect 
monocots or dicots, including domesticated and wild plants. Potyviruses are transmitted 
in a non-persistent way by more than 200 species of aphids. As indicated by their wide 
host range, worldwide distribution, and diversity of their vectors, potyviruses have an 
outstanding capacity to adapt to new hosts and environments. However, factors that confer 
adaptability are poorly understood. Viral RNA-dependent RNA polymerases introduce 
nucleotide substitutions that generate genetic diversity. We hypothesized that selection 
imposed by hosts and vectors creates a footprint in areas of the genome involved in host 
adaptation. Here, we profiled genomic and polyprotein variation in all species in the genus 
Potyvirus. Results showed that the potyviral genome is under strong negative selection. 
Accordingly, the genome and polyprotein sequence are remarkably stable. However, 
nucleotide and amino acid substitutions across the potyviral genome are not randomly 
distributed and are not determined by codon usage. Instead, substitutions preferentially 
accumulate in hypervariable areas at homologous locations across potyviruses. At a 
frequency that is higher than that of the rest of the genome, hypervariable areas accumulate 
non-synonymous nucleotide substitutions and sites under positive selection. Our results 
show, for the first time, that there is correlation between host range and the frequency of 
sites under positive selection. Hypervariable areas map to the N terminal part of protein 
P1, N and C terminal parts of helper component proteinase (HC-Pro), the C terminal part 
of protein P3, VPg, the C terminal part of NIb (RNA-dependent RNA polymerase), and the 
N terminal part of the coat protein (CP). Additionally, a hypervariable area at the NIb-CP 
junction showed that there is variability in the sequence of the NIa protease cleavage 
sites. Structural alignment showed that the hypervariable area in the CP maps to the N 
terminal flexible loop and includes the motif required for aphid transmission. Collectively, 
results described here show that potyviruses contain fixed hypervariable areas in key 
parts of the genome which provide mutational robustness and are potentially involved in 
host adaptation.
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iNTrODUcTiON
In viruses, host adaptation is an evolutionary process dependent 
on genetic variation and selection (Obenauer et al., 2006; 
Bedhomme et al., 2012). Viral RNA-dependent RNA polymerases 
responsible for viral RNA replication have no proofreading 
activity and often switch templates. Accordingly, new variants 
are constantly created by introducing nucleotide substitution 
(mutations) and recombination (Steinhauer et al., 1992; Garcia-
Arenal et al., 2001). Purifying selection reduces the abundance 
of non-synonymous substitutions causing deleterious effects and 
favors fixation of those providing adaptive advantages. In contrast, 
synonymous substitutions are more likely to be maintained 
(Garcia-Arenal et al., 2003; Wang et al., 2006). The ratio of non-
synonymous to synonymous substitutions has been used to 
determine virus evolution. In several plant and animal viruses, 
factors that determine virulence, host adaptation, and suppression 
of defense responses are under positive selection (Moury et al., 
2002; Obenauer et al., 2006; Bedhomme et al., 2012).

In the context of genetically diverse hosts and vectors, viruses 
face selection pressure to maintain functionality and identity of 
their nucleic acids and proteins in order to interact with pro-viral 
factors and to evade or suppress antiviral defense (Roossinck, 
2003; Longdon et al., 2014). Host and vector genetic diversity 
and various environmental factors impose heterogeneous 
selective constraints (Garcia-Arenal et al., 2001; Longdon et al., 
2014; Huang et al., 2015). Each combination of host and virus is 
different and, by favoring different variants, selection contributes 
to new host adaptation, new strain or species emergence, and host 
range expansion (Garcia-Arenal et al., 2001; Roossinck, 2003; 
Huang et al., 2015). Under this model, variation in viral genomes 
is determined by external and internal constraints imposed by the 
host, vectors, environmental conditions, and their interactions 
(Garcia-Arenal et al., 2003; Bedhomme et al., 2012).

Potyviruses (family Potyviridae, genus Potyvirus) are 
transmitted by aphids in a non-persistent manner. They form 
flexuous filamentous particles (700 to 750 nm long) that contain 
a single copy of positive sense single strand RNA. Genomic 
RNA is translated into two polyproteins that require proteolytic 
processing to produce ten mature and one fusion protein essential 
for replication and movement: P1 (translation, modulator of 
replication), helper component proteinase HC-Pro (silencing 
suppression and aphid transmission), P3 (virus replication and 
movement), P3N-PIPO (cell-to-cell movement), 6K1 (formation 
of replication vesicles), cytoplasmic inclusion protein (CI, helicase 
involved in virus movement and replication), 6K2 (formation of 
replication vesicles), genome-linked protein VPg (translation, 
virus movement, and replication), NIa-Pro (polyprotein 
processing), NIb (RNA-dependent RNA polymerase), and CP 
(virus movement, virion formation and aphid transmission) 
(Revers and Garcia, 2015; White, 2015; Cui and Wang, 2016).

In potyviruses, genome organization and protein functions 
are highly conserved (Gibbs and Ohshima, 2010; Revers and 
Garcia, 2015). However, variable regions have been identified 
in some species (Johansen et al., 1996; Adams et al., 2005b). 
In plum pox virus (PPV), the N terminal part of P1 is 
hypervariable and modulates virus replication, host defense 

responses, and determines pathogenicity in a host-dependent 
manner (Maliogka et al., 2012; Pasin et al., 2014). In other 
potyviruses, variation contributes to host adaptation, host-
dependent pathogenicity, vector transmissibility, and viral 
accumulation in different hosts (Johansen et al., 1996; Tan et al., 
2005; Moury and Simon, 2011). Thus, understanding potyvirus 
variation may provide novel insights into the mechanisms that 
regulate host adaptation.

Movement of plant material for agricultural purposes 
contributed to the spread and speciation of potyviruses after an 
initial radiation event that occurred 6,600 years ago (Gibbs et al., 
2008). To date, the genus Potyvirus consists of 167 species and 
has an extensive host range that includes domesticated and wild 
plants and both monocots and dicots (Wylie et al., 2017). Host 
range, the number of species that can be infected by a virus, is a 
reflection of virus adaptability (Rodamilans et al., 2018). The wide 
host range and word-wide distribution of potyviruses suggest that 
they have factors that mediate host adaptation. However, factors 
that confer adaptability to potyviruses are poorly understood. We 
hypothesized that selection creates a variation foot print in the 
potyviral genome and can be used to identify viral factors that 
contribute to host adaptation. In this paper, we profiled variation 
in potyviruses using single nucleotide polymorphisms (SNPs), 
nucleotide diversity, and selection analysis. In a complementary 
approach, we use single amino acid polymorphisms (SAPs) 
to profile polyprotein variation. Comparison across species 
showed that the potyviral genome contains hypervariable areas 
at fixed homologous locations. Hypervariable areas preferentially 
accumulate nucleotide substitutions, amino acid substitutions, 
sites under positive selection, and may be determinants of 
host adaptation.

MATeriAlS AND MeThODS
Computation work was performed on high-performance 
computing nodes at the University of Nebraska-Lincoln Holland 
Computing Center (https://hcc.unl.edu/). In-house scripts 
developed for this study are available upon request.

Genomic and Polyprotein Sequences
Complete genome or polyprotein sequences for all potyviral 
species represented in GenBank (http://www.ncbi.nlm.nih.gov/) 
were downloaded on June 28, 2018 using customized scripts 
based on Entrez Programming Utilities (E-utilities; https://
www.ncbi.nlm.nih.gov/books/NBK25500/). For each species, an 
accession describing the complete genome, and coordinates for 
each cistron, was used as reference (Supplementary Table S1) 
(Supplementary Figure S1). Accessions containing less than 95% 
of the reference genome or polyprotein length were discarded. To 
make meaningful statistical comparisons (Shen et al., 2010), only 
species with at least three accessions were included (81 for RNA 
and 82 for protein). Fusion protein P3N-PIPO (partially overlaps 
the P3 open reading frame) was not included in the analyses. 
In-house bioperl and perl scripts were developed to generate a 
consensus sequence for each species and to determine purine (A 
and G) and pyrimidine (C and T) content.
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removal of recombinant Sequences
RDP4 (http://web.cbio.uct.ac.za/~darren/rdp.html) (Martin  et  al., 
2015) was used to determine the presence of recombinant 
nucleotide sequences. Within RDP4, six different methods were 
used to assess the sequences having recombination breakpoints: 
RDP, GENECONV, 3Seq, SiScan, MaxChi and BootScan. Default 
RDP4 settings were used throughout and sequences only with 
the breakpoints having Bonferroni-corrected p-value ≤ 0.05 were 
considered as true recombinants and removed subsequently. 
Accessions containing recombinant sequences were removed and 
were not part of the analyses.

Potyvirus Phylogeny
A tree-based progressive method was used in MAFFT version 7.3 
(Multiple Alignment (https://mafft.cbrc.jp/alignment/software/) 
to generate Multiple Sequence Alignments (MSA) (Abdel Azim 
et al., 2011; Katoh and Standley, 2013). Gaps were deleted from 
the alignment using GapStrip/Squeeze v2.1.0 (http://www.hiv.
lanl.gov/content/sequence/GAPSTREEZE/gap.html). Based on 
the lowest Bayesian Information Criterion (BIC) (Lefort et al., 
2017), the best-fit nucleotide and protein substitution model was 
estimated using Smart Model selection in PhyML. Maximum 
likelihood phylogenetic trees for all potyviruses were estimated in 
PhyML 3.0. Trees were visualized and customized using Figtree 
(http://tree.bio.ed.ac.uk/software/figtree/) (Rambaut, 2009).

Polymorphism Analysis
For each virus species, the genomic or polyprotein sequence 
alignment (.aln) file obtained from MAFFT was used for 
identification of SNPs or SAPs with SNP-sites version 2.4.1 (https://
github.com/sanger-pathogens/snp-sites) (Page et al., 2016). 
The nature and position of each substitution was extracted in a 
variant call format (VCF). Using VCFtools (Danecek et al., 2011), 
SNP and SAP were obtained in a 50-nt or amino acid window 
and normalized to the length of the window. For each virus, a 
variation index was calculated by normalizing total SNPs or SAPs 
to the length of the genome or polyprotein, respectively. For all 
potyviruses with detectable variation, and for the viruses with 
the highest number of SNPs and represented by ten or more 
accessions, a local regression curve was fitted between the number 
of SNPs or SAPs, and the number of accessions using ggplot2 in R. 
The geom_smooth function was applied with the method "loess" 
(Wickham, 2009). In an alternative approach, alignment files in 
nexus format for all genomic sequences were used to determine 
pairwise nucleotide diversity (Pi) in a 50-nt sliding window using 
the Tajima's D test in DnaSP 5.10.1 (Rozas, 2009). To establish a 
variation threshold in both analyses, a 99% confidence interval was 
estimated using the Z-score [X ± (Z*s*√n)] (Hazra, 2017). In this 
equation, X is the mean, Z is the Z value with 99% confidence, s is 
the standard deviation, and n is the number of sequence accessions.

Sequence Variation clusters
SNPs or SAPs were subjected to hierarchical clustering using 
the ClustVis package in R (Wickham et al., 2013). Groups were 

generated by first finding the shortest link among all of the data 
points (species or coordinates) and then combining those points 
into a virus group as a cluster.

Genome-Wide Distribution of 
Substitutions
To visualize variation along the genome or polyprotein, for 
each virus, all available accessions were aligned and identity 
plots generated in Geneious version 8.0 (https://www.geneious.
com/). For selected polymorphic areas, a sequence logo was 
obtained from the same alignment. A 99% confidence interval 
for SNPs, SAPs and Pi was estimated and plotted for each 
potyvirus species. 

Selection Analysis
Full-length coding sequences of the 16 most and 16 least variable 
potyviruses were aligned with MAFFT. Nucleotide ambiguities 
within the sequences were discarded using a custom bash script. 
The resulting alignment file was used to obtain the rate of non-
synonymous and synonymous changes at each site based on 
Single-likelihood ancestor counting (SLAC) and MEME using 
HyPhy (Obenauer et al., 2006). A significance level ≤0.05 and 
>0.95 posterior probability was used for both SLAC and MEME 
(Murrell et al., 2012). Only those sites detected by both methods 
were considered under positive selection. Abundance of positive 
and negative selection was normalized to the number of codons 
per cistron.

host range
Using a custom bash script, GenBank files used in the SNP 
analysis were parsed to get the host range for each viral species. 
For each accession, the name of the host from which the 
sequence was generated was extracted and the frequency of each 
host determined for each virus. A Pearson correlation analysis 
was performed between the host range of each potyvirus and the 
positive selection sites.

Gc content
A bioperl script was used to calculate the GC content using a 
50-nt window (Gao and Zhang, 2006).

Nucleotide and Amino Acid Substitution 
Profiles
SNPs were classified as transitions or transversions (Zhao et al., 
2006). All possible amino acid substitutions were evaluated. A 
custom bash script was developed to calculate their frequency 
from the VCF file. The five most abundant SNPs and SAPs 
types from each virus were used to generate a matrix and color 
assignment for the top four substitutions from each virus. For 
each potyvirus consensus polyprotein, an amino acid profile was 
obtained via COPid web-server (http://crdd.osdd.net/raghava/
copid/help.html) (Kumar et al., 2008).
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codon Usage Bias
CodonW 1.4.4 was used to determine Relative Synonymous 
Codon Usage (RSCU) (Bera et al., 2017) using the consensus 
sequence for each potyvirus. Termination codons, AUG, and 
UGG encoding Met and Trp, respectively were removed from 
dataset because they do not have synonymous codons and 
do not contribute to codon bias. Codons with a RSCU value 
of  >1.6 were considered over-represented, whereas codons 
with a RSCU value of <0.6 were considered underrepresented. 
Codons used at an equivalent level (no bias) have a RSCU value 
of 1 (Wong et al., 2010).

Phylogenetic Analysis and Variation Maps
For selected viruses, all full-length genomic and polyprotein 
sequences available from GenBank were used to generate a 
phylogram in PhyloXML format with MAFFT. GraPhlAn 
(http://segatalab.cibio.unitn.it/tools/graphlan/) (Asnicar et al., 
2015) was used to create an annotated phylogram containing 
layers indicating insertions at the NIb-CP junction, country of 
origin, and host.

coat Protein Structure Model
A three-dimensional model of the CP of the five potyviruses with 
the most variation was generated using Phyre2 (http://www.sbg.
bio.ic.ac.uk/phyre2/html/page.cgi?id=index) under intensive 
mode (Kelley et al., 2015). A custom bash script was used to 
extract the CP amino acid sequence based on the coordinate 
information in GenBank records. Models (in.pdb format) for 
two viruses or isolates were superimposed using Chimera v1.13 
(https://www.cgl.ucsf.edu/chimera/). The TM-Score was used for 
structure alignment measurement.

DAG Motif Prediction and Variation Within 
the Potyvirus coat Protein
A custom bash script was used to calculate the frequency of the 
Asp-Ala-Gly (DAG) motif in the CP. Positive selection sites were 
flagged on the N-terminal, core, and C-terminal part of CP using 
the marker option within the graphic tool available on NCBI. 
Variations in location of DAG motif or in amino acid sequence 
was determined by alignment with Geneious version 8.0.

reSUlTS

Genomic and Polyprotein Sequences
A total of 15,668 genomic RNA and 16,397 polyprotein non-
recombinant sequences for 95 potyviruses were obtained from 
NCBI. A total of 2,198 full-length RNA and 2,200 polyprotein 
accessions were included in the analyses. Potyviral genomic RNA 
varied from 9,300 to 10,800 nt in length, with an average genomic 
and polyprotein length of 9,799 nt and 3,125 amino acids, 
respectively (Supplementary Table S1). The Chargaff 's purine–
pyrimidine equilibrium (Aryal et al., 2012) was not detected. 
Instead, the potyvirus genome is biased towards purines. The 
average purine (G + A, 55.42%) to pyrimidine (U + C, 44.57%) 

ratio (1.24) was significantly higher than 1.0 (p-value ≤ 0.00001) 
(Supplementary Table S2).

Potyvirus Phylogeny
Viruses depend on host factors at all parts of the infection cycle 
(Garcia-Ruiz, 2018). However, they must suppress or evade 
antiviral immunity initiated by host factors to establish infection 
(Csorba et al., 2015). These interactions result in virus and host 
co-evolution. Additionally, mutations in viral genomes are 
associated with host specificity and with host shifts (Bedhomme 
et al., 2012; Longdon et al., 2014). This model suggest that closely 
related viral species would infect closely related host plants. To test 
this hypothesis, a nucleotide- and a polyprotein-based phylogeny 
were obtained. Families Solanaceae, Poaceae, Fabaceae, and 
Cucurbitaceae were the most frequent (Supplementary Figure 
S2). Both the nucleotide- and the polyprotein-based approaches 
grouped viruses into similar clusters that were associated with 
the botanical family of their hosts. This is consistent with the 
model that potyviruses are co-evolving with and adapting to 
their hosts. Thus, we hypothesized that, during host adaptation, 
selection imposed by the host leaves a foot print in the potyviral 
genome. This model predicts that potyviruses contain areas of 
the genome that determine host adaptation.

Nucleotide and Polyprotein Variation
To measure and map nucleotide variation, genome-wide SNPs 
and nucleotide diversity (Pi) analyses were used. SAPs were 
used to measure and map polyprotein variation. Pi measures 
nucleotide substitutions and corrects for the number of accessions 
(Rozas, 2009). Results show that 61 of the 81 potyviruses exhibit 
higher Pi (Figure 1A) than the genetically stable viruses used 
for comparison: tobacco mosaic virus (TMV), wheat streak 
mosaic virus (WSMV) and maize chlorotic mottle virus (Figure 
1B). SNPs and SAPs were detected in 79 and 76 potyviruses, 
respectively (Figure 1 and Supplementary Table S3). For turnip 
mosaic virus (TuMV) and potato virus Y (PVY), nucleotide 
variation was 0.52 and 0.49, which means that approximately 
50% of the nt positions in the genome are polymorphic.

Polyprotein variation was expressed using a polyprotein 
variation index obtained in a similar way. Results show that 48 of 
the 81 potyviruses exhibit higher polyprotein variation (Figure 
1A) than genetically stable viruses used for comparison (Figure 
1B). Amino acid and nucleotide variation follow a similar pattern 
(Figure 1A).

Our potyviral species dataset is represented by viruses with 
3 to 485 sequence accessions (Figure 1A). If these sequences 
originated from a random sample, it would be logical to expect 
that a higher number of sequences would increase the chances 
of finding polymorphic nucleotide or amino acid sites or new 
hosts. It could also be expected that the difference in accession 
number could potentially impact diversity estimates, positive 
selection sites, and host range. However, the relationship between 
abundance of nucleotide or amino acid polymorphisms and 
the number of sequences available follows a rarefaction curve 
(Chiarucci et al., 2009) modeled by a logarithmic function in 
which the number of polymorphisms reaches a point of saturation 
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FiGUre 1 | Single nucleotide and amino acid polymorphism in potyviruses. Respect to the genome or polyprotein, bars represent the proportion of polymorphic 
sites (number of single nucleotide or amino acid polymorphism/length of the genome or polyprotein). For each species, the number of nucleotide and polyprotein 
accessions are indicated in parenthesis. Species with less than three accessions were not included. (A) Nucleotide and polyprotein variation in potyviruses, as 
determined by nucleotide diversity (Pi), genomic variation index and polyprotein variation index. Bars represent the average and standard error for each species 
and were estimated for the entire genome on a 50-nt or 50-amino acid interval. The blue vertical line represents the mean Pi and a 99% confidence interval for 
all potyviruses with detectable nucleotide variation. (B) Nucleotide and protein variation is three non-potyviruses used for comparison, maize chlorotic mottle 
virus (MCMV) genome and p111, wheat streak mosaic virus (WSMV) genome and polyprotein, and tobacco mosaic virus (TMV) genome and replicase protein. 
(c) Relationship between the number of sequence accessions available and nucleotide or polyprotein sequence variation. Variation and number of accession are as 
indicted in panel (A). (D) Relationship between the number of sequence accessions and number of SNPs for the top 10 viruses with the most variation. Accessions 
available were processed in increments of 10. Parameters of a regression line are indicated for each virus.
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at approximately 150 accessions (Figure 1C and Supplementary 
Figure S3A). For the viruses with the most SNPs and represented 
by 10 or more accessions, SNPs were determined by increments 
of 10 accessions, without replacement. Results show that, for 
individual species, as for the entire group of potyviruses with 
detectable variation, the relationship between abundance 
of nucleotide polymorphisms and the number of sequences 
available follows a rarefaction curve modeled by a logarithmic 
function. Most of the potyviruses are represented by less than 
150 accessions (Figure 1A) and the point of saturation for the 
number of polymorphisms is different for each virus (Figure 1D 
and Supplementary Figure S3B). Thus, instead of random sub-
sampling, we analyzed all sequences available for each potyvirus 
species and estimated genomic variation using Pi to normalize 
for the number of accessions (Rozas, 2009).

hypervariable Areas in the Potyviral 
Genome
Nucleotide substitution may accumulate randomly or be 
concentrated in particular areas of the genome. To distinguish the 
difference, we performed a two-way hierarchical cluster analysis 
of SNPs. Viral species were clustered into low (58 species) and 
abundant (21 species) nucleotide variation groups. The 5' UTR, 
the N terminal part of P1, and the N and C terminal parts of 
HC-Pro formed a cluster with the highest variation. Other areas 
with high variation included the C terminal part of P3, the 
NIb-CP junction, and VPg (Supplementary Figure S4).

To visualize the distribution of nucleotide substitutions, a 
genome-wide map was obtained for each virus. SNPs and Pi 
obtained were plotted with respect to the virus genome. In a 
complementary approach, individual sequences were aligned 
to generate an identity plot (Figures 2–11). Genome-wide 
variation maps were generated for the 16 potyviruses with the 
highest genomic variation index (Supplementary Figure S5). 
Results identified areas containing nucleotide substitutions, 
insertions, or deletions across the genome. Comparison across 
potyviruses showed that, similar to the two-way clustering, 
nucleotide substitutions preferentially accumulate at the 5'UTR, 
the N terminal part of P1, N and C terminal parts of HC-Pro, 
the C terminal part of P3, VPg, C terminal part of NIb, and the 
N terminal part of the CP (Figures 2–11 and Supplementary 
Figure S5). Less variation was observed in the area overlapping 
with P3N-PIPO, a highly-conserved protein essential for 
potyvirus movement (Vijayapalani et al., 2012). These results 
show that the distribution of nucleotide substitutions in the 
potyviral genome is not random.

Polyprotein hypervariable Areas
We performed a two-way hierarchical cluster analysis 
(Supplementary Figure S6), and polyprotein variation maps 
were generated to visualize the distribution of amino acid 
substitutions. P3N-PIPO was not part of the analysis because 
it is a fusion protein that overlaps P3, and P3N-PIPO specific 
coordinates were not provided for most of the accessions. 
Comparison across species showed that amino acid substitutions 
mainly occurred at the N terminal part of P1, the N and C 

terminal parts of HC-Pro, the C terminal part of P3, VPg, the C 
terminal part of NIb and the N terminal part of the CP (Figures 
2–11 and Supplementary Figure S7). These areas were also 
detected by the nucleotide substitution and nucleotide diversity 
analyses described above.

Amino acid substitutions in protein CI and NIa-Pro followed 
contrasting patterns across potyviruses. Some species, such as 
sugarcane mosaic virus (SCMV), showed low variation in CI 
(Figure 2), whereas TuMV (Figure 10), PVY (Figure 11), and 
chilli veinal mottle virus (CVMV), Supplementary Figure S7) 
harbor high variation at the C terminal part of CI. In contrast, 
soybean mosaic virus (SMV, Figure 4) and ZYMV (Figure 8) 
harbor variation at the N terminal part of CI.

NIa-Pro shows higher than the average genomic variation 
in SCMV (Figure 2), PPV (Figure 5), leek yellow stripe virus 
(LYSV), bean common mosaic virus (BCMV), and onion yellow 
dwarf virus (OYDV) (Supplementary Figure S7). For several 
viruses, NIa-Pro accumulates sites under positive selection 
at a frequency higher than randomly expected (Figure 12A). 
However, variation at NIa-Pro did not map to a particular area. 
In LYSV and BCMV, variation is higher in the central part of 
NIa-Pro, whereas in OYDV and PPV, variation is higher at the 
N terminus.

The genome-wide and polyprotein-wide analyses described 
above showed that nucleotide and amino acid substitution 
are not randomly distributed in potyviruses. Independently, 
nucleotide diversity, nucleotide and amino acid substitution 
analyses showed that substitutions accumulate at a frequency 
higher than average (p-value ≤ 0.01) at the N terminal part of 
P1, the N and C terminal parts of HC-Pro, the C terminal part of 
P3, VPg, the C terminal part of NIb, and the N terminal part of 
the CP (Figures 2–11 and Supplementary Figures S5 and S7). 
We refer to these areas as hypervariable.

Potyviral Proteins Under Positive Selection
In viruses, sites under positive selection provide an evolutionary 
advantage, support adaptation to new hosts, and contribute to an 
increased host range (Schneider and Roossinck, 2001; Obenauer 
et al., 2006; Bedhomme et al., 2012). If hypervariable areas in 
potyviruses are related to host adaptation, positive selection sites 
will preferentially accumulate in the same cistrons. We tested this 
hypothesis using SLAC and MEME (Supplementary Table S4).

Positive and negative selection sites were determined for 
the sixteen potyviruses with the highest (Figure 12) and lowest 
(Figure 13) variation index in nucleotide and amino acid 
sequence. Thirteen of the top sixteen viruses exhibited higher 
than average nucleotide variation for all potyviruses. In contrast, 
all sixteen least variable viruses exhibited lower than the average 
nucleotide variation (Figure 1A). The sixteen least variable 
viruses had ~0.4 lower number of sites under positive or negative 
selection compared to the sixteen most variable viruses (Figures 
12A, B and 13A, B).

Per cistron, the abundance of sites under negative selection 
was approximately 10-fold (Figures 12B, C and Supplementary 
Table S4) and 14-fold higher (Figures 13B, C) than sites under 
positive selection for the sixteen most and least variable viruses, 
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FiGUre 2 | Nucleotide and polyprotein variation in sugarcane mosaic virus. Accessions available were aligned to generate an identity plot. Coordinates are based 
on accession JX188385.1. (A) Genome-wide nucleotide variation. Single nucleotide polymorphisms (SNP) were estimated and normalized in a 50-nt window. 
The 5' and 3' UTR were included. Nucleotide diversity (Pi) and dN/dS ratio were estimated for the open reading frame in a 50-nt window or at each codon, 
respectively. The average and a 99% confidence interval are represented by a horizontal gray line. Arrow heads point to the NIb-CP junction. (B) Polyprotein 
variation. Single amino acid polymorphisms (SAP) in the polyprotein were estimated and normalized in a 50-amino acid window. The average and a 99% 
confidence interval are represented by a horizontal gray line. (c) Variation at the NIb-CP junction. The sequence logo includes the consensus. A red arrowhead 
points to the NIa-Pro cleavage site. The DAG motif is marked with a red bracket. Variation zones are numbered. (D) Phylogram. The phylogenetic tree in the 
center was generated using GraPhlAn using the full-length polyprotein sequences. Rings indicate the host, country of origin, and variation zones. A red mark 
indicates insertion at a variation zone.
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respectively. However, per cistron, the accumulation of sites 
under positive or negative selection followed similar patterns. 
Accordingly, these differences are not determined by the number 
of accessions.

The majority of sites in the potyviral genome are under 
negative selection (Figures 12 and 13). A small number of 
sites under positive selection were identified (dN/dS ratio > 5, 
p-value ≤0.05 ; Supplementary Figure S8). After normalizing 
for the length of each cistron, the number of sites under positive 
selection was higher than the expected randomly in P1, P3, CP, 
and NIa. In all other cistrons, the number of sites under positive 
selection was lower than would be expected randomly (Figures 
12A and 13A). Cistrons containing hypervariable areas in the 
potyviral genome also harbored the highest frequency of sites 
under positive selection. P1 contained the highest number of 
positive selection sites. In contrast, CI had the fewest number 
of sites under positive selection (Figures 12A and 13A). This 
implies that P1 is the most genetically variable cistron, while CI 
is the most stable cistron. In the CP, the number of sites under 
positive selection was higher than expected only for the 16 most 
variable potyviruses (Figures 12A and 13A).

Sites Under Positive Selection and 
host range
Different host species impose heterogeneous selective constraints 
and select for genetic variants with a competitive advantage 
(Longdon et al., 2014; Huang et al., 2015). This model predicts 
that viruses with a wide host range have more sites under 
positive selection than viruses with a narrow host range. To 
test this hypothesis, we plotted the number of host plants and 
the number of sites under positive selection for the sixteen 
most variable viruses and for the sixteen viruses with the least 
detectable variation. Both variables were also plotted against the 
number of accessions. A linear correlation was obtained between 
the number of sites under positive selection and host range 
(Figures 12D and 13D). No correlation was observed between 
the number of sites under negative selection and host range 
(Figure 13E and Supplementary Figure S14). Collectively and 
individually, the sixteen most variable potyviruses had a linear 
correlation between the number of accessions and the number 
of sites under positive selection and the number of accessions 
and the host range (Figure 12E). The exception was WMV 
because the number of sites under positive selection reached a 
saturation point.

Nucleotide Substitution Are Biased 
Towards Transitions
Twelve nucleotide substitutions are possible and can be divided 
into transitions (purine to purine or pyrimidine to pyrimidine 
changes) and transversions (purine to pyrimidine changes). If 
the occurrence is random, transversions (A↔C, A↔U, G↔C, 
and G↔U) should occur twice as often as transitions (A↔G and 
U↔C), (Lyons and Lauring, 2017). Thus, transitions (each at 
8.3%) and transversions (each at 8.3%) are expected to account 
for 33.2% and 66.8% of the nucleotide substitutions, respectively. 
For the 79 potyviral species, transitions and transversions 

accounted for 71% and 29% of the nucleotide substitutions, 
respectively (Supplementary Figure S9A). The transversion 
frequency was 2.3-fold lower (p-value ≤ 0.00001) and the 
frequency of transitions was 2.1-fold higher (p-value ≤0.00001) 
than would be expected randomly. A to G (19.0%) and T to C 
(18.7%) transitions were the most frequent. Substitutions in the 
opposite direction, C to T (16.9%) and G to A (16.8%), were less 
frequent (Supplementary Figure S9). Thus, A to G, and T to 
C transitions were 2.3-fold higher (p-value ≤ 0.0001) than C to 
T and G to A substitutions. Although nucleotide substitutions 
may occur randomly, they do not accumulate in a random way. 
Instead selection results in a net gain in GC content and suggest 
that nucleotide substitutions preferentially accumulate in areas 
with low GC content. Variation detected in available sequences 
represent only nucleotide substitutions that result in functional 
changes, possibly conferring a selective advantage.

We performed a two-way GC content analysis to determine the 
relationship between nucleotide substitutions and GC content. 
Areas with high or low GC content are not conserved across 
potyvirus genomes. Clusters formed by viral species and by areas 
of the genome (Supplementary Figure S10) did not correlate 
with SNP clusters nor with hypervariable areas (Supplementary 
Figure S4). To eliminate the effect of low variation, the analysis 
was limited to the 21 species with high genomic variation. 
Distribution and abundance of nucleotide substitutions did 
not correlate with GC content. For potyviruses, nucleotide 
substitutions are biased towards transitions and result in a net gain 
in GC content. However, GC content does not determine their 
distribution in the genome. This is consistent with the model that 
nucleotide composition and translational selection do not explain 
codon usage in plant viruses (Cardinale et al., 2013).

Amino Acid Substitutions Are Not 
Determined by codon Usage
Viral proteins are multifunctional, functional diversity is 
mediated by structural flexibility, and amino acids promote either 
order or disorder in proteins (Campen et al., 2008; Rantalainen 
et al., 2011). Using the consensus sequence of each species, 
we determined relative synonymous Codon Usage (RSCU) in 
the 79 potyvirus species containing nucleotide substitutions 
(Supplementary Table S5). For the 38 most abundant codons, 
26 end in A/G (fourteen end in A and 12 end in G) and the 
remaining twelve end in U/C. To determine if codon usage is 
related to the genomic distribution of nucleotide substitutions, 
we performed a two-way cluster analysis. Three clusters were 
observed (Supplementary Figure S11). Over-represented codons 
ending in A or G formed a large cluster. The 38 underrepresented 
codons ending in C or U formed another cluster. The final cluster 
was formed by those between the first two. In the polyprotein 
analysis, SCMV, PPV and bean yellow mosaic virus (BYMV) 
formed a cluster (Supplementary Figure S6). Codon usage 
placed these viruses in different clusters (Supplementary Figure 
S11). Contrasting clusters were observed for other species. 
Accordingly, potyviruses maintain preference for codons ending 
in A or G while codons ending in C or U occur at low frequency, 
and amino acid substitutions are not related to codon usage.
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Amino Acid Substitution Profile
We determined the amino acid content and profiled amino 
acid substitutions to examine the effect of genomic variation on 
polyprotein variation. The most abundant amino acids were Leu 
(8.8%), Lys (7.2%), Val (6.7%), Glu (6.7%), Ser (6.6%), Ala (6.4%), 
Thr (6.1%), Ile (6.0%), Gly (5.9%), Asp (5.3%), Arg (5.3%). Each 
other amino acid accounted for less than 5% (Supplementary 
Table S6 and Supplementary Figure S12A). The four most 
frequent amino acid substitutions were Lys to Arg, Arg to Lys, 
Val to Ile and Ile to Val. They accounted for 71% of the events 
(Supplementary Figure S12B). Lys to Arg were more abundant 
than Arg to Lys substitutions (1.6 fold, Supplementary Figure 
S12C). In contrast, Val to Ile were equally abundant as Ile to Val 
substitutions. Arginine promotes disorder in proteins (Campen 
et al., 2008). In contrast, Tryptophan promotes protein stability 
(Campen et al., 2008) and was the least abundant amino acid 
(Supplementary Figure S12A). Thus, in potyviruses, amino acid 
substitutions favor arginine enrichment and disorder in proteins.

Variation At the Nib-cP Junction
Our two-way cluster analysis of nucleotide and polyprotein 
variation (Supplementary Figures S4 and S6) showed 
hypervariation at the NIb-CP junction. Our genome-wide and 
polyprotein-wide variation analyses identified a hypervariable 
area at the NIb-CP junction in the sixteen potyviruses with the 
most nucleotide diversity (Figures 2–11). This is consistent with 
the high proportion of sites under positive selection in the CP 
(Figure 12A).

After P1, the NIb-CP junction harbors the most variation for 
the most variable potyviruses (Figures 2–11). This observation 
is in agreement with a recent study showing that based on 
variation at the NIb-CP junction SCMV in Kenya consists 
of at least three strains. Variation maps to four discrete areas 
containing insertions, deletions, and nucleotide substitutions. 
Zone I is located within the last 33 amino acids of NIb, 
upstream of the NIa cleavage site. Zones II to IV are within the 
first 52 amino acids at the N terminal part of the CP (Figure 
2C). Variation at the NIb-CP junction could be related to 
host, geographical origin, or both. To test this model, a SCMV 
phylogenetic tree was generated using the 91 genomic sequences 
from GenBank and six accessions from Kenya (Wamaitha et al., 
2018). This data set represented ten countries and three hosts. 
Phylogeny, variation at the NIb-CP junction, geographical 
origin, and host were plotted in the same figure. Accessions 
from maize and sugarcane formed separate clusters regardless of 
the geographical origin. Accessions from sugarcane contained 
insertions in zones I and II. These insertions were not detected 
in accessions from maize, which contain insertions in zones 
I and IV regardless of the geographical origin (Figure 2D). 
Accordingly, variation at NIb-CP correlated with the host, 
regardless of the geographical origin.

Similar models were obtained for other potyviruses (Figures 
3–11). Insertions or deletions at the N terminal part of the CP 
were identified in dasheen mosaic virus (DMV) (Figure 3C), 
SMV (Figure 4C), PPV (Figure 5C), PRSV (Figure 6C), and 
watermelon mosaic virus (WMV) (Figure 7C). Nucleotide 

substitutions at the NIb-CP junction were detected in other viruses 
(Figures 8–11). Accessions with insertion or deletions clustered 
separately and variation at the NIb-CP junction correlated 
with the host and country of origin for SMV (Figure 4C), PPV 
(Figure 5C), PRSV (Figure 6C), and WMV  (Figure  7C). In 
DMV (Figure 3C), ZYMV (Figure 8C), BYMV (Figure 9C), 
TuMV (Figure 10C), and PVY (Figure 11C). Collectively, these 
results show that hypervariation at the NIb-CP junction is a 
general feature of potyviruses.

coat Protein Variation
Variation at the N terminus of the CP may affect protein 
organization and topology. To test this hypothesis, the CP of three 
diverse SMCV isolates was subjected to a structural alignment. 
The Ohio isolate (AFQ35988.1 from maize) was used as reference 
and compared to a maize isolate from China (AGE32037.1) and 
Mexico (ADG23201.1). The WSMV CP was used as a control. The 
model showed that the CP forms a core domain, an N-terminal 
flexible loop, and a C terminal flexible loop (Figure 14A). Similar 
models were obtained for other potyviruses (Figure 14). The core 
domain aligned across species and isolates. However, the N and 
C terminal loops were variable. The hypervariable area of the CP 
mapped to N terminal loop outside of the core domain. In our 
analysis (Figures 14 and 15), the N-terminal part contained the 
highest proportion of nucleotide substitutions as well as the Asp-
Ala-Gly (DAG) motif required for aphid transmission (Lopez-
Moya et al., 1999).

The largest number of sites under positive selection in the CP 
was obtained for BYMV, PPV, LYSV, and WMV (Figure 12A). 
In BYMV, 10 of 14 sites under positive selection mapped to the 
core domain. In all other viruses analyzed, the hypervariable area 
and most of the sites under positive selection mapped to the N 
terminal loop (Figures 15A, B). After normalizing for the length 
of each region, the variable N and C terminal loops harbor more 
variation and the core less variation than would be expected to 
occur through random chance (p-value ≤0.005) (Figure 15B).

The N and C terminal variable loops may interact with host 
or vector factors and participate in host adaptation, vector 
transmission, or both. Consistent with this model, our analysis 
identified a hypervariable area at the N terminal part of WSMV 
(Figure 14A and Supplementary Figure S13). Interestingly, 
mutants lacking amino acids that form part of the hypervariable 
area cause more severe symptoms than the wild type virus 
(Tatineni et al., 2017). Furthermore, our analysis identified a 
hypervariable area at the N terminal part of the PVY CP (Figure 
11A). This area contains two sites under positive selection that 
affect virus accumulation in tobacco and potato. One of these 
sites also affects aphid transmission (Moury and Simon, 2011).

Variation at the Motif required for Aphid 
Transmission
Mutational analyses with several potyviruses showed that the 
CP contains a DAG motif which, along with surrounding amino 
acids, interacts with HC-Pro to mediate aphid transmission 
(Lopez-Moya et al., 1999; Dombrovsky et al., 2005). Although 
the DAG motif is believed to be highly conserved (Harrison 
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and Robinson, 1988; Atreya et al., 1995), aphid transmission is 
mediated by a combination of amino acids in the N terminus 
not only by the DAG motif (Dombrovsky et al., 2005). We 
profiled the amino acid composition and location of the DAG 
motif in the 16 most variable potyviruses. Results show that 

there is variation in both amino acid composition and distance 
from the N terminus. The most frequent deviations from DAG 
were NAG and NVG (Figure 15C). Emphasizing this result, 
the BYMV CP did not contain a DAG motif. In SCMV, 77 of 
the 91 accessions analyzed contain two DAG motifs, one at 

FiGUre 3 | Nucleotide and polyprotein variation in dasheen mosaic virus. Genome organization is shown to scale using accession JX083210 as reference. Labels 
are as in Figure 2.
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position 5 (proximal) and one at position 80 (distal) from the 
N terminus. Out of the other 14 accessions, 9 have variation 
in the position of the distal DAG motif and one had variation 
in the position of both motifs. Three accessions contained 
only the proximal and one accession contained only the distal 
DAG motif (Figure 15D). Accordingly, the DAG motif is not 
universally conserved. There is variation both in sequence 
and location.

DiScUSSiON
Potyviruses represent one-quarter of known plant RNA viruses 
(Gibbs et al., 2008; Gibbs and Ohshima, 2010). Currently, 2,026 
plant species from 556 genera and 81 botanical families, distributed 
world-wide, are susceptible to potyviruses (Rivett et al., 1996). 
Potyviruses are transmitted in a non-persistent way by more than 
200 species of aphids (Shukla et al., 1994; Gibbs et al., 2008). This is 

FiGUre 4 | Nucleotide and polyprotein variation in soybean mosaic virus. Genome organization is shown to scale using accession KY986929 as reference. Labels 
are as in Figure 2.
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an indication that potyviruses have an outstanding capacity to adapt 
to new hosts, vectors, and environments. In this study, genome-wide 
and polyprotein-wide variation analyses showed that the potyviral 
genome contains hypervariable areas that preferentially accumulate 
nucleotide substitutions, sites under positive selection (Figures 
2–11, 12A, and 13A), promote disorder in proteins and may be 
determinants of host adaptation (Supplementary Figure S15).

evolutionary constraints on Potyviruses
Host and vector factors, the environment, and their interactions 
impose external evolutionary constraints (Lopez-Moya et al., 
1999; Wylie et al., 2002; Huang et al., 2015; Willemsen et al., 2016).

Essential functions, such as RNA replication, virion 
formation, and movement are accomplished by viral factors 
working in synchrony with host factors. These complexes 

FiGUre 5 | Nucleotide and polyprotein variation in plum pox virus. Genome organization is shown to scale using accession MF370984.1 as reference. Labels are 
as in Figure 2.
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often require interactions between viral proteins, viral RNA, or 
both (Wan et al., 2015; Li et al., 2016). Emphasizing this point, 
multiple interactions have been described between potyviral 
proteins (Jiang and Laliberte, 2011; Revers and Garcia, 2015). 
Thus, functionality of viral RNA, proteins, and their interactions 
impose internal evolutionary constraints.

The endopeptidases P1, HC-Pro, and NIa-Pro process the 
polyproteins formed by translation of potyviral RNA (Revers and 
Garcia, 2015). P1 and HC-Pro catalyze their own separation from 
the polyprotein, and the remaining seven proteolytic sites are 
processed by NIa-Pro. Cleavage sites between individual proteins 
are specific for each protease and are not interchangeable (Adams 

FiGUre 6 | Nucleotide and polyprotein variation in papaya ringspot virus. Genome organization is shown to scale using accession KP462721.1 as reference. 
Labels are as in Figure 2.
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et al., 2005a). Accordingly, the NIa-Pro catalytic domain and 
cleavage sites must maintain their identity, imposing an internal 
constrain on variation.

Variation at Nia-Pro cleavage Sites
Fourteen of the sixteen potyviruses with the most diversity 
harbor variation at the NIa-Pro cleavage site between NIb and 

CP. Consistent with this observation, variation was detected 
in the NIa-Pro cleavage sites of sweet potato mild mottle virus 
(Adams et al., 2005a), and SCMV from Kenya (Wamaitha et al., 
2018). Accordingly, variation at this cleavage site might be a 
general feature of potyviruses. Variation at the NIb-CP junction 
could be an indication that polypeptide flexibility and flexible 
disorder (Tokuriki et al., 2009) are required for exposing the 
NIb-CP cleavage site to NIa-Pro and to the multiple functions 

FiGUre 7 | Nucleotide and polyprotein variation in watermelon mosaic virus. Genome organization is shown to scale using accession KX926428.1 as reference. 
Labels are as in Figure 2.
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of the CP. It may also suggest that the NIb-CP junction confers 
mutational robustness that allows generation of the diversity 
required for variants with a competitive advantage to be selected 
and promote virus adaptation. Additionally, the number of sites 
under positive selection in NIa-Pro is higher than expected 
randomly (Figure 12A), suggesting that the NIa-Pro catalytic 
domain is variable.

hypervariable Areas in the Potyviral 
Genome
Nucleotide substitutions preferentially accumulate at the 5'UTR, 
the N terminal part of P1, N and C terminal parts of HC-Pro, 
the C terminal part of P3, VPg, the C terminal part of NIb, 
and the N terminal part of the CP. The same cistrons were 
identified as hypervariable through SAP analysis (Figures 2–11, 

FiGUre 8 | Nucleotide and polyprotein variation in zucchini yellow mosaic virus. Genome organization is shown to scale using accession KX499498.1 as reference. 
Labels are as in Figure 2.
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Supplementary Figures S5 and S7). These observations are in 
agreement with a previous study showing that P1 and P3 exhibit 
higher variation than other proteins (Adams et al., 2005b).

In addition to SNPs and SAPs, the frequency of sites under 
negative or positive selection is not uniform across the potyviral 
genome (Figures 2–11, Supplementary Figure S8). However, 
genomic and polyprotein variation were consistent in the 
sixteen most variable (5 to 485 accessions) and the sixteen least 

variable (3 to 24 accession) potyviral groups (Figures 12 and13). 
Negative selection sites were 10- to 14-fold more abundant than 
positive selection sites, indicating that the potyviral genome is 
under strong negative selection (Figures 12 and 13). The largest 
proportion of sites under negative selection was found in CI 
(Figures 12 and 13). Thus, CI is the most genetically stable cistron 
in the potyviral genome, as reported previously (Adams et al., 
2005b). P1, P3, NIa-Pro, VPg and CP were the most variable and 

FiGUre 9 | Nucleotide and polyprotein variation in bean yellow mosaic virus. Genome organization is shown to scale using accession NC_003492.1 as reference. 
Labels are as in Figure 2.
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contained the highest proportion of sites under positive selection 
(Figures 12 and 13).

Abundance of sites under positive and negative selection 
classified potyviral proteins into two groups. 6K1, CI, 6K2, and 

NIb have the lowest frequency of sites under positive selection 
and the highest frequency of sites under negative selection 
(Figures 12A–C and 13A–C). These proteins participate in the 
formation and movement of virus replication complexes, which 

FiGUre 10 | Nucleotide and polyprotein variation in turnip mosaic virus. Genome organization is shown to scale using accession AF169561.2 as reference. Labels 
are as in Figure 2.
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require interaction with cellular membranes (Wan et al., 2015). In 
contrast, proteins with the highest frequency of positive selection 
sites and the lowest frequency of negative selection sites (P1, P3, 
NIa, and CP) participate in translation, polyprotein processing, 
virion formation, and vector transmission (Wei et al., 2010; 
Rantalainen et al., 2011; Ivanov et al., 2014). These functions 

require interactions with the cellular translational machinery 
(Ivanov et al., 2014; Pasin et al., 2014). Both HC-Pro and VPg 
contain hypervariable areas (Figures 2–11), are multifunctional 
proteins, interact with the cellular translational machinery, and 
require host factors to effectively suppress gene silencing (Ivanov 
et al., 2016; Cheng and Wang, 2017).

FiGUre 11 | Nucleotide and polyprotein variation in potato virus Y. Genome organization is shown to scale using accession MG591487.1 as reference. Labels are 
as in Figure 2.
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FiGUre 12 | Frequency of sites under positive or negative selection per cistron and their relation with host range in the top 16 viruses with the most variation. 
Only positive selection sites identified with both SLAC and MEME were counted. Sites under negative selection were detected with SLAC. Virus species 
are color coded. (A) Number of sites under positive selection compared to the expected randomly (sites per cistron/total for the open reading frame, and 
normalized to the length of the cistron). * indicates significant differences with p-value ≤0.001 as calculated by the Chi-square test. (B) Per virus and per 
cistron, sites under positive selection normalized to the number of codons. (c) Sites under negative selection per cistron and per virus, normalized to the 
number of codons. (D) Relationship between sites under positive selection and host range. (e) Relationship between number of accession and number of 
hosts. The left panel includes all viruses in panel (D). The panel on the left shows number of accessions in increments of 10. For each species, parameters of a 
regression line are indicated.
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The genetic diversity of host and vector interaction partners 
may explain the differences in the positive and negative 
selection site accumulation. Specifically, these differences may 
be between proteins involved in formation and movement 
of virus replication complexes versus proteins involved 
in translation, virion formation, vector transmission, and 
silencing suppression.

P1 Variation
Potyviral P1 protein participates in translation and is a modulator 
of RNA replication (Revers and Garcia, 2015). In PPV, the N 
terminal part of P1 is hypervariable, disordered, dispensable for 
virus replication, implicated in adaptation to new hosts, host 
defense responses, and host-dependent pathogenicity (Valli 
et al., 2007; Rohozkova and Navratil, 2011; Maliogka et al., 2012; 

FiGUre 13 | Frequency of sites under positive or negative selection per cistron and their relation with host range in the 16 viruses with the lowest detectable 
nucleotide and polyprotein variation. Labels are as in Figure 12.
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Pasin et al., 2014). It is also a symptom determinant (Pasin et al., 
2014). Our analysis showed that potyviral P1 is the most variable 
cistron, contains the highest proportion of sites under positive 
selection, and variation maps to the N terminal part (Figure 14). 
These observations suggest that potyviral P1 is a determinant of 
host adaptation.

hc-Pro Variation
RNA silencing suppressors promote virus susceptibility by 
interfering with antiviral defense, show high sequence diversity, 
and contain residues under positive selection (Murray et al., 
2013). HC-Pro is an essential gene silencing suppressor in 
potyviruses (Garcia-Ruiz et al., 2010; Revers and Garcia, 2015). 

FiGUre 14 | Schematic representation of the coat protein structural model. For potyviruses with the most amino acid variation, models were generated and 
superimposed using Phyre2 and Chimera v1.13, respectively. Wheat streak mosaic (WSMV; NC_001886) was used as a control. The coat protein folds into a central core, 
an N terminal and a C terminal variable loops. TM score and RMSD for each of the analyzed pairs were 0.49 ± 0.60 and 2.0 ± 2.4, respectively. Positive selection sites 
and the DAG motif are indicated. (A) Model for the Ohio isolate (AFQ35988.1) of SCMV compared to WSMV. (B) Representative SCMV isolates from China (AGE32037.1) 
and Mexico (ADG23201.1). (c) Bean yellow mosaic virus (NP_612218.1) and watermelon mosaic virus (ABD59007.1). (D) TuMV (NP_062866.2) and PPV (AFJ74692.1).
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The N and C terminal parts of HC-Pro are hypervariable (Figures 
2–4). However, the number of sites under positive selection is 
lower than would be expected randomly (Figures 12 and 13). 
Substitutions in HC-Pro affect silencing suppression activity 
and pathogenicity (Torres-Barcelo et al., 2008). Thus, the low 
number of sites under positive selection could be explained by 
the inactivating effect of mutations in the central region, which 
is essential for silencing suppression (Garcia-Ruiz et al., 2010).

P3 Variation
In SMV, a single amino acid change in P3 resulted in increased 
pathogenicity in soybean cultivars (Wen et al., 2011). In our 
analysis, the C terminal part of P3 is hypervariable, and P3 is the 
cistron with the second highest number of sites under positive 
selection (Figures 12A, B). This suggests that P3 is a determinant 
of pathogenicity and host adaptation.

VPg Variation
Potyviral VPg is intrinsically disordered, a property that mediates 
functional diversity and interactions with multiple partners 
(Hebrard et al., 2009; Jiang and Laliberte, 2011; Rantalainen 
et al., 2011; Cheng and Wang, 2017). This is consistent with VPg 
participation in viral RNA translation, silencing suppression, 
RNA replication, cell-to-cell and systemic virus movement 
(Revers and Garcia, 2015; Cheng and Wang, 2017). Each of 
these roles is mediated by different host factors (Cheng and 
Wang, 2017). For PVY VPg, structural flexibility is associated 
with host adaptation (Charon et al., 2018). Our analysis found 
that, for several species, including SCMV, WMV and PVY, VPg 
is hypervariable and accumulates more sites under positive 
selection than randomly expected (Figures 12A and 13A). These 
observations suggest a role for potyviral VPg in host adaptation.

Nib Variation
NIb codes for the RNA-dependent-RNA polymerase responsible 
for RNA replication (Revers and Garcia, 2015). Variation in 
NIb localizes to the C terminal part near the junction with the 
CP. However, for the entire cistron, the number of sites under 
positive selection was less than would be expected randomly 
(Figures 12A and 13A). Thus, NIb is under strong negative 
selection. However, variation at the NIb-CP junction might be 
related to efficiency of polyprotein processing by NIa-Pro.

cP Variation
The CP participates in virion formation, cell-to-cell movement, 
and systemic movement (Ivanov et al., 2014). The N terminal end 
of the CP contains a conserved DAG motif, which interacts with 
HC-Pro to mediate aphid transmission (Lopez-Moya et al., 1999; 
Dombrovsky et al., 2005). Aphid transmissibility in potyviruses is 
lost after repeated mechanical passages (Wylie et al., 2002; Kehoe 
et al., 2014). Accordingly, there is selection pressure to conserve 
protein-protein interactions that mediate aphid transmissibility 
for any particular plant-virus-vector combination (Wylie et al., 
2002). This model does not account for the possibility of a 
virus being delivered by a vector on a different host, nor for the 

possibility of different virus vectors. We propose that genetic 
flexibility in the CP and in the aphid-transmission motif are 
necessary to maintain functionality in genetically diverse hosts 
and vectors (Supplementary Figure S15).

Structural modeling (Figure 14), biochemical analysis (Shukla 
et al., 1988), tritium bombardment (Baratova et al., 2001), and 
physicochemical characterization (Ksenofontov et al., 2013) 
suggest that both the DAG motif and the hypervariable area map 
to the N terminal flexible loop. The biochemical analysis showed 
that the N- and a C-terminal parts of the CP are exposed on the 
surface of the virions and that a core protects the viral RNA. The 
exposed N-terminus consists of 30 to 69 amino acids, the exposed 
C terminal 17 to 20 amino acids, and the core 216 to 218 amino 
acids (Shukla et al., 1988). The core domain is required for RNA 
encapsidation and virion formation (Revers and Garcia, 2015; 
Zamora et al., 2017). Cryo-electron microscopy analysis of the 
WMV CP showed that the N and C termini forms flexible arms 
and a core domain rich in alpha helices (Zamora et al., 2017).

Furthermore, the DAG motif is not universally conserved. 
There is variation in amino acid sequence and in location of 
the DAG motif (Figures 15C, D). In eleven of fifteen other 
viruses analyzed, NAG, NVG or DTG frequently replaced 
the DAG motif (Figure 15C). BYMV lacks a DAG motif 
and contains a NAG or a KAG motif instead. Interestingly, 
BYMV exhibits high genetic variation (Figures 1 and 9), 
has a wide host range that includes 200 plant species in 14 
families, and is transmitted by over 50 aphid species (Kehoe 
et al., 2014). Consistent with these results, several potyviruses 
that are transmitted by aphids do not contain a DAG motif 
(Johansen et al., 1996; Wylie et   al., 2002). Vector specificity 
may be explained by structural complementation between 
the N terminus of the CP and the hinge domain in HC-Pro 
(Dombrovsky et al., 2005). Consistent with the flexible disorder 
observed in some RNA virus proteins (Tokuriki et al., 2009), 
these observations suggest a correlation between variation in 
CP, aphid-transmission, and virus-vector specificity.

Essential CP functions likely require interaction with 
different host or vector factors (Garcia-Ruiz, 2018). Flexible 
disorder (Tokuriki et al., 2009) may contribute to the multiple 
functions of the CP in a genetically diverse array of vectors and 
hosts. Variation at the N terminal part of PPV CP determines 
host-dependent pathogenicity (Carbonell et al., 2013), and sites 
under positive selection at the N terminal part of the PVY CP 
affect fitness in tobacco and potato (Moury and Simon, 2011). 
Characterization of PVA supports a model in which the CP 
harbors disorder structures, while the virion structure is stable. 
CP disorder may be needed for multiple biological functions 
(Baratova et al., 2001; Ksenofontov et al., 2013). Furthermore, 
systemic movement of tobacco etch virus (TEV), lettuce mosaic 
virus (LMV), and some isolates of PPV is restricted by RTM1, 
RTM2, and RTM3 (Decroocq et al., 2009), which are expressed 
in the phloem sieve elements and interact with the viral CP 
(Chisholm et al., 2001). Interestingly, TEV resistance braking 
isolates emerged though mutations in the N-terminus of the CP 
(Decroocq et al., 2009). Collectively, these observations support 
a role for the hypervariable area at the N terminus of the CP in 
host adaptation.
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hypervariable Areas as Determinants of 
host Adaptation
Intrinsically disordered proteins are over represented in viruses 
and participate in processes that require interactions between 

host and viral proteins (Borkosky et al., 2017). Disorder in 
proteins provides multiple advantages such as interacting with 
and adapting to multiple conformations when binding with 
different partners, which allows participation in signaling 

FiGUre 15 | Variation in the coat protein and DAG motif. (A) Frequency of sites under positive selection in the N terminal loop, core domain, and C terminal loop 
for the top 16 most variable viruses. Three isolates of SCMV are represented. Sites under positive selection in each part of the coat protein were determined as in 
Figure 6 and mapped using NCBI graphic format. (B) Abundance of sites under positive selection relative to the number of codons in each part of the coat protein. 
Bars represent average (± standard error) of the species indicated in panel (A). *indicates significant differences with p-value ≤ 0.001 as determined by the Chi-square 
test. (c) Frequency of the DAG motif and distance from the N terminus. Numbers in parenthesis indicate accessions with the DAG motif and the total number of 
accessions. The frequency of other abundant motifs is indicated. (D) Abundance and variation in location of the proximal and distal DAG motifs in the SCMV.
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or regulatory events (Babu, 2016; Borkosky et al., 2017). 
Consistent with this model, proteins P1, VPg, and the CP are 
structurally disordered (Charon et al., 2016), interact with 
multiple host factors (Shi et al., 2007; Pasin et al., 2014; Cheng 
and Wang, 2017), and, in some potyviruses, P1, P3, VPg, and CP 
contribute to host adaptation (Revers and Garcia, 2015; Charon 
et al., 2018). Our analysis showed that P1, P3, VPg, and the CP 
contain hypervariable areas and sites under positive selection 
(Figure 12A), and suggest that genetic flexibility in key parts of 
the potyviral genome is necessary to maintain functionality in 
genetically diverse hosts and vectors, an in diverse environments. 
We propose that fixed hypervariable areas in the potyviral 
genome are determinants of host adaptation (Supplementary 
Figure S15).

Variation in the Number of Sequences 
Analyzed
The relationship between the abundance of SNPs or SAPs and 
the number of accessions analyzed follows a rarefaction curve 
(Chiarucci et al., 2009) and can be explained by a logarithmic 
function with polymorphisms reaching a saturation point 
(Figures 1C, D and Supplementary Figure S3). Genomic 
and polyprotein variation indexes are not adjusted for the 
number of accessions. However, the nucleotide diversity (Pi) 
index (Figure 1A), uses a correction factor for the number 
of accessions (Rozas, 2009). For each virus species, genome-
wide distribution of SNPs, nucleotide diversity, and SAPs, all 
independently point to common hypervariable areas (Figures 
2–11 and Supplementary Figures S5 and S7). Accordingly, 
the distribution of hypervariable areas in the potyviral 
genome is unlikely to be biased by the number of accessions. 
This is illustrated by the comparison between DMV (Figure 
3) and TuMV (Figure 10). For DMV and TuMV, genomic 
variation was profiled using 7 and 483 nucleotide accessions, 
respectively (Figure 1A). For both viruses, hypervariable areas 
were identified at the N-terminal part of P1 and at the NIb-CP 
junction (Figures 3A and 10A). Additionally, both areas were 
also identified as hypervariable using 7 or 485 polyprotein 
sequences (Figures 3B and 10B).

In the sixteen most (Figure 12A) and sixteen least 
variable viruses (Figure 13A), sites under positive selection 
accumulated to higher frequency in P1, P3, and CP, while 
CI accumulated the lowest frequency. These two groups of 
viruses, have contrasting number of accessions (Figure 1A). 
Accordingly, the distribution of sites under positive selection 
in the potyviral genome is unlikely to be biased by the number 
of accessions.

Consistent with a rarefaction curve, a saturation pattern in 
nucleotide substitutions is reached for potyviruses in general 
(Figure 1C and Supplementary Figure S3A) and, specifically, for 
each of the most variable species (Figure 1D and Supplementary 
Figure S3B). In contrast, a linear correlation was observed 
between the number of sites under positive selection and host 
range, and between the number of accessions, sites under 
positive selection, and host range for the top 16 most variable 

potyviruses (Figures 12D, E). For TuMV, the number of hosts 
increased linearly from 10 to 438 accessions (Figure 12E), while 
the number of SNPs reached a saturation point at 50 accessions 
(Figure 1D). A similar pattern was observed for other viruses 
(Figures 1D and 12E).

In the most variable viruses a linear correlation was observed 
between the number of sites under positive selection and 
number of accessions (Figure 12E) and between the number 
of hosts and the number of accessions (Figure 12D). These 
viruses are represented by contrasting number of accessions 
and were analyzed individually. Accordingly, the relationship 
between the number of sites under positive selection, number 
of hosts, and number of accessions is unlikely to be biased by 
the number of accessions.

A model in which variation occurs in hypervariable areas 
and heterogeneous hosts impose diverse selection pressure, 
predicts that nucleotide substitutions will reach a saturation 
point, while the number of hosts, and sites under positive 
selection will increase with the number of accessions. 
Theoretically, a single nucleotide position in the genome can 
only account for one SNP. A codon can account for three 
SNPs and for one site under positive selection. However, a 
codon allows for multiple synonymous and non-synonymous 
substitutions. The dN/dS ratio used to identify sites under 
positive selection was estimated at each codon in the 
polyprotein open reading frame and requires multiple variants 
to reach a significance threshold (Rozas, 2009). Accordingly, 
adding more accessions may increase the number of hosts and 
the number of sites under positive selection without adding 
SNPs. These features of the model might link the number 
of hosts and the number of sites under positive selection in 
viruses with heterogeneous hosts, as observed here (Figure 
12E). In contrasts, no link might be established when 
accessions come from the same hosts, as observed for WSMV 
(Supplementary Figure S13D) or when viruses are not under 
positive selection pressure.

These observations suggest that best way to identify the 
relationship between hosts and sites under positive selection 
is by using viruses with the highest number of accessions, 
the widest host range, and the highest genomic variation, as 
presented in Figure 12. Hypervariable areas identified in this 
study provide the foundation for the biological identification 
and characterization of viral, host, and vector factors that 
mediate host adaptation in potyviruses.

A Model for host Adaptation
Viruses co-evolve with their hosts and vectors in diverse 
environments. Accordingly, for any particular plant-virus-
vector combination, viruses face selection pressure to conserve 
RNA and protein functions that mediate aphid transmissibility, 
replication and movement (Wylie et al., 2002). While hosts 
select for variants adapted to replication and movement, vectors 
select based on transmission efficiency before or after virus 
adaptation to a particular host (Supplementary Figure S15). 
Vector transmission before host adaptation may result in virus 
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spread to diverse hosts. After host adaptation has been achieved, 
vector transmission could be restricted to a plant species and 
closely related relatives. Thus, genetic flexibility in key parts of 
the genome is necessary to maintain functionality in genetically 
diverse hosts, vectors, and environments. Tolerance for mutations 
at hypervariable areas may provide robustness necessary for 
the generation of selection diversity to identify variants with a 
competitive advantage. Repeated cycles of replication in a plant, 
vector transmission, and the corresponding selection may lead 
to host adaptation. In this model, hypervariation occurs in the 
cistrons that are viral determinants of host adaptation and vector 
transmission (Supplementary Figure S15).

This model may apply to other viruses. The five conserved 
cistrons of citrus tristeza virus are involved in replication 
and virion assembly. In contrast, the three variable cistrons 
are involved in host adaption and are determinants of host 
range (Tatineni et al., 2011). WSMV exhibits variation and 
tolerates deletions at the N terminal part of the CP. WSMV 
mutants lacking part of the N terminal have an expanded host 
range and cause more severe symptoms compared to wild 
type (Tatineni et al., 2017). In our analysis, the dispensable N 
terminal part was identified as hypervariable (Supplementary 
Figure S13). VPg and CP contain residues under positive 
selection in wheat yellow mosaic virus, (Sun et al., 2013), and 
in rice yellow mottle virus, and positive selection sites within 
P1 modulate the RNA silencing suppression activity (Sereme 
et al., 2014).

implications for Potyvirus Diagnostics and 
Plant Breeding
Potyviruses are detected through protein-dependent or RNA-
dependent assays. Antibodies raised against virions are routinely 
used in ELISA tests or western blotting. Based on the assumption 
that the CP is stable, RT-PCR primers are often designed to 
target the N terminal part of the CP (Mahuku et al., 2015). 
For detecting SCMV in several African countries, ELISA and 
RT-PCR procedures have provided inconsistent results even in 
symptomatic tissue (Wamaitha et al., 2018).

Results described here provide an explanation and suggest 
an alternative. Antibodies were developed against, and primers 
were designed based on the Ohio isolate. However, in Kenya, 
SCMV consists of at least three genetic variants. Only one of 
them is similar to the Ohio isolate (Wamaitha et al., 2018). Thus, 
variation in the N terminal part of the CP was the reason for the 
erratic diagnosis of SCMV in Kenya.

For polyclonal antibodies raised against potyviruses, the 
epitope is derived from the N terminus (Shukla et al., 1988). Our 
results show that the N terminal part of the CP is hypervariable. 
Accordingly, an antibody raised against, and primers designed 
based on a particular isolate, are not likely to detect a genetic 
variant of the same or different strain. In contrast to CP, CI is 
the most genetically stable cistron in potyviruses (Figure 12A) 
(Adams et al., 2005b) so is therefore a better target to design 
RT-PCR primers for diagnostic purposes.

Large efforts are underway to develop maize cultivars tolerant 
or resistant to SCMV or maize lethal necrosis (Gowda et  al., 
2015). Given the fact that potyviruses harbor hypervariable areas 
and host plants select for the fittest variants, it is safe to predict 
that tolerance and resistance to SCMV or maize lethal necrosis 
will be broken by new strains. Those strains may not be as fit 
for hosts other than maize. Plant breeding efforts need to take 
into account the capacity of viruses to mutate and which areas 
are most likely to change. Perhaps, a geographical or temporal 
combination of susceptible and resistant cultivars or crops could 
be implemented to slow or prevent the emergence of resistance-
breaking strains.
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