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The need for the olive farm modernization have encouraged the research of more efficient 
crop management strategies through cross-breeding programs to release new olive 
cultivars more suitable for mechanization and use in intensive orchards, with high quality 
production and resistance to biotic and abiotic stresses. The advancement of breeding 
programs are hampered by the lack of efficient phenotyping methods to quickly and 
accurately acquire crop traits such as morphological attributes (tree vigor and vegetative 
growth habits), which are key to identify desirable genotypes as early as possible. In this 
context, an UAV-based high-throughput system for olive breeding program applications 
was developed to extract tree traits in large-scale phenotyping studies under field 
conditions. The system consisted of UAV-flight configurations, in terms of flight altitude 
and image overlaps, and a novel, automatic, and accurate object-based image analysis 
(OBIA) algorithm based on point clouds, which was evaluated in two experimental trials 
in the framework of a table olive breeding program, with the aim to determine the earliest 
date for suitable quantifying of tree architectural traits. Two training systems (intensive 
and hedgerow) were evaluated at two very early stages of tree growth: 15 and 27 months 
after planting. Digital Terrain Models (DTMs) were automatically and accurately generated 
by the algorithm as well as every olive tree identified, independently of the training 
system and tree age. The architectural traits, specially tree height and crown area, were 
estimated with high accuracy in the second flight campaign, i.e. 27 months after planting. 
Differences in the quality of 3D crown reconstruction were found for the growth patterns 
derived from each training system. These key phenotyping traits could be used in several 
olive breeding programs, as well as to address some agronomical goals. In addition, 
this system is cost and time optimized, so that requested architectural traits could be 
provided in the same day as UAV flights. This high-throughput system may solve the 
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InTrODUcTIOn
The olive tree (Olea europaea L.) area amounts to more than 
10 million hectares world-wide, with over 97% of this being 
concentrated in the Mediterranean Basin (FAOSAT, 2017; IOC, 
2017). The olive industry plays a key economic role in this area, 
since it accounts for 96% of the world’s olive production, i.e. 18.5 
million tons approximately. Spain leads the world ranking both 
in production and surface area, followed by Greece, Italy, and 
Turkey (FAOSAT, 2017). In addition, Mediterranean countries 
are the largest consumers of olive oil with a quota about two-
thirds of world consumption (IOC, 2017). Besides being one 
of the most important agro-food chains in the Mediterranean 
Basin, olive growing constitutes a key element of rural society 
as a significant source of income and employment for rural 
populations (Stilliano et al., 2016). Furthermore, olives are 
expanding to many regions outside the Mediterranean Basin 
such as the United States, Australia, China, and South Africa as 
well as other sub-tropical and warm temperate areas, making the 
olive tree the most extensively cultivated fruit crop in the world 
(FAOSAT, 2017). Besides, olive products are very appreciated 
not only as healthy food, but also in medical and cosmetic use 
(Fabbri et al., 2009).

The need for the modernization of olive farms in producing 
countries and its diffusion outside traditional areas of growth 
have led to farm investments to improve the productive 
framework through more efficient crop management strategies, 
such as irrigation, pruning and harvesting mechanization, and 
new training systems (e.g. super-high-density hedgerow). These 
new growing techniques are encouraging the development of 
cross-breeding programs to release new olive cultivars more 
suitable for mechanization and use in intensive orchards, with 
high quality production and resistance to biotic and abiotic 
stresses (Fabbri et al., 2009; Stilliano et al., 2016; Rallo et al., 2018). 
Plant breeding programs have benefited from recent advances in 
genomics and biotechnology by improving genotyping efficiency 
(Rugini et al., 2016), whereas the lack of efficient phenotyping 
methods still represents an important bottleneck in these 
programs (White et al., 2012). Traditional methods to collect 
phenotypic data (i.e. observable morphological traits related to 
growth, development, and physiology) rely on manual or visual 
sampling, which is time-consuming and laborious (Madec et al., 
2017; Yang et al., 2017). Improving the acquisition of crop traits 
such as morphological attributes, flowering time, and yield has 
therefore become the main challenge limiting designing and 
predicting outcomes in breeding programs (Zaman-Allah et al., 
2015). This aspect is particularly crucial for olive breeding due 
to the large genetic variability commonly obtained in seedling 

progenies (Rallo et al., 2018), coupled with the great complexity 
of collecting data on common large olive plots, which requires 
major logistical considerations (Araus and Cairns, 2014).

To overcome the challenge of automated and fast collection of 
phenotypic crop data, high-throughput phenotyping platforms 
have become crucial due to their ability to rapidly phenotype 
large numbers of plots and field trials at a fraction of the cost, 
time, and labor of traditional techniques (White et al., 2012; 
Zaman-Allah et al., 2015; Yang et al., 2017). Among the high-
throughput phenotyping platforms for non-destructive plant 
data collection under field conditions such as autonomous 
ground vehicles (Shafiekhani et al., 2017; Virlet et al., 2017), 
tractor-mounted (Montes et al., 2007), pushed platforms (Bai 
et al., 2016), or cable-driven (Newman et al., 2018); unmanned 
aerial vehicles (UAVs) have been highlighted due to their 
capacity to generate field scale information using a wide range 
of sensors and operating on demand at critical moments and at 
low flight altitude, thus meeting the critical requirements of the 
spatial, spectral, and temporal resolutions of breeding programs 
(Shi et al., 2016; Tattaris et al., 2016; Yang et al., 2017; Ostos 
et al., 2018; Torres-Sánchez et al., 2018a). Nevertheless, little 
information exists on the use of UAVs for olive breeding. In this 
regard, Díaz-Varela et al. (2015) used a camera on board a UAV 
platform to estimate tree height and crown diameter in both 
discontinuous and continuous canopy systems of olive orchards. 
However, early phenotyping of olive trees (i.e., phenotyping 
in the first few years after planting) using UAVs has not been 
addressed. The genotype evaluation in olive cross-breeding 
programs usually follows a multi-step protocol that includes 
the initial evaluation of seedlings and their successive clonally 
propagated selections in field trials (Rallo et al., 2018). Each of 
these field stages (seedlings, pre-selections, advance selections, 
comparative trials) involves a high cost of maintaining a large 
number of trees over the years required for the evaluation of 
the target traits according to the breeding goals. Tree vigor and 
other architectural traits are relevant parameters to be evaluated 
in any of these breeding stages, since early vigor is known to be 
related to the juvenile period length in seedlings (De la Rosa et al., 
2006; Rallo et al., 2008), and vegetative growth habits are key 
to evaluate the suitability of selected genotypes to be cultivated 
under different planting systems, such as superhigh density  
hedges (Hammamia et al., 2012; Rosati et al., 2013). Therefore, 
the ability to quantify these traits through cost-efficient methods 
in young trees would allow the identification of desirable 
genotypes as early as possible, thus saving time, labor, and money 
(Rallo et al., 2018). In addition, the knowledge of tree geometry 
can be used as a valuable tool to design site-specific management 
strategies (De Castro et al., 2018a).

actual bottleneck of plant phenotyping of “linking genotype and phenotype,” considered 
a major challenge for crop research in the 21st century, and bring forward the crucial time 
of decision making for breeders.

Keywords: remote sensing, unmanned aerial vehicle, table olive, breeding program, training system, tree crown 
area and volume, point cloud
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Geometric traits can be estimated from 3D point clouds or 
Digital Surface Models (DSMs) based on UAV-imagery due to 
the ability of UAVs to fly at low altitudes with high image overlap 
(Torres-Sánchez et al., 2015; Yang et al., 2017; De Castro et al., 
2018b). In the context of woody crops, these 3D models offer 
the rapid and accurate assessment of growth traits in poplar 
(Peña et al., 2018), vineyard (Matese et al., 2017; De Castro et al., 
2018a), almond (Torres-Sánchez et al., 2018b), lychee (Johansen 
et al., 2018), and olive (Díaz-Varela et al., 2015; Torres-Sánchez et 
al., 2015; Jiménez-Brenes et al., 2017). Among these approaches, 
3D point clouds have been highlighted for improving 3D 
reconstruction as they provide more height information (Z-value) 
at each coordinate (X,Y), while DSMs are defined as 2.5D 
datasets as they have only one height value at each 2D coordinate 
(Monserrat and Crosetto, 2008; Torres-Sánchez et al., 2018b). 
However, the large amount of detailed crop data embedded 
in the UAV-based 3D point clouds information requires the 
development and implementation of robust image analyses. In 
this regard, object-based image analysis (OBIA) techniques have 
reached high levels of automation and adaptability to high-data 
images. Furthermore, OBIA overcomes the limitations of pixel-
based methods by segmenting images into groups of adjacent 
pixels with homogenous spectral values, called “objects”, which 
are used as basic elements of the classification analysis where 
spectral, topological, and contextual information are combined, 
thus providing successful automatic classifications in complicated 
agricultural scenarios (Blaschke et al., 2014; Peña et al., 2015; 
López-Granados et al., 2016; De Castro et al., 2018b).

As per the above discussion, a UAV-based high-throughput 
system was developed and tested in experimental trials within 
an olive breeding program with the aim to quantify plant 
architectural traits of very young olive trees. To achieve this goal, 
a full protocol to collect the UAV images and create 3D point clouds 
was described, and a novel and customizable 3D point cloud-
based OBIA was developed to characterize the 3D structure 
of the young plants, measured by tree height, crown area,  

and volume, in the first two years after planting, without any 
user intervention. In addition, the potential applications of 
these estimated olive plant traits for olive breeding programs 
were discussed.

MATErIAlS AnD METHODS

Study Fields
The experiment was carried out in two field trials located in 
Morón de la Frontera, Sevilla (Southern Spain). Both fields were 
planted in October 2015 in the framework of the University of 
Sevilla table olive breeding program, which were drip-irrigated, 
with flat ground and an approximate surface area of 1.20 ha each. 
The two trials were selected to account for differences in training 
systems: the intensive discontinuous canopy (intensive trial) and 
the super high density continuous hedgerow (hedgerow trial). 
The first trial (intensive trial) consisted of trees planted at a 7 × 
5-m spacing (286 trees/ha) in a north–south orientation as single 
trunk open vase forming a discontinuous canopy of scattered 
trees (Figures 1B, D). Twenty-six olive genotypes (10 trees per 
genotype) were included in the intensive trial in a randomized 
design with two trees per elementary plot and five repetitions. In 
the second trial (hedgerow orchard), olive trees were planted in a 
1.75 × 5 m pattern (1143 trees/ha) and trained to a central leader 
system, designed to form a continuous canopy later in crop 
development (Figures 1A, C). The hedgerow trial comprised of 
14 olive genotypes arranged in a randomized design with rows 
of 20 trees per elementary plot and three repetitions (60 trees 
per genotype). The experiment was carried out at two different 
early stages of tree development: 15 months after planting, i.e., 
when the plants completed their first growth cycle in the field; 
and 27 months after planting, after 2 years in the field, which 
corresponded with each flight date. No pruning was performed 
during the experimental period to allow the genotypes following 
their own growth habit.

FIgUrE 1 | General view of the olive field trial studied: (A) hedgerow trial and (B) intensive trial in 2017; and (c) hedgerow trial; and (D) intensive trial in 2018.
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UAV-Based Phenotyping Platform
The remote images were acquired at midday on 16th January 
2017 and 10th January 2018 with a low-cost commercial off-the-
shelf camera, model Sony ILCE-6000 (Sony Corporation, Tokyo, 
Japan) mounted in a quadcopter model MD4-1000 (microdrones 
GmbH, Siegen, Germany), which was modified and calibrated 
to capture information in both NIR and visible light (green and 
red) by removing the internal NIR filter commonly present in the 
visible cameras and adding a 49-mm filter ring to the front nose 
of the lens, all done by the company Mosaicmill (Mosaicmill Oy, 
Vantaa, Finlandia) (Figure 2). This model has a 23.5 × 15.6 mm 
APS-C CMOS sensor, capable of acquiring 24 megapixel (6,000 
× 4,000 pixels) spatial resolution images with 8-bit radiometric 
resolution (for each channel), and is equipped with a 20 mm 
fixed lens. The flights were carried out at the same time as the 
on-ground data were taken to ensure the same meteorological 
conditions, which consisted of sunny days with calm winds. 
Moreover, similar weather conditions were reported between 
flight campaigns.

The UAV can either be manually operated by radio control 
(1,000 m control range) or execute user-defined flight routes 
autonomously by using its Global Navigation Satellite System 
(GNSS) receiver and its waypoint navigation system. The UAV is 
battery powered and can load any sensor weighing up to 1.25 kg. 
The camera was mounted in the UAV facing downward for nadir 
capture, and the UAV routes were designed to take images at 50 m 
flight altitude, resulting in a spatial resolution of 1 cm pixel size, 
and with forward and side overlaps of 93% and 60%, respectively, 
which are large enough to achieve the 3D reconstruction of olive 
orchards, according to previous research (Torres-Sánchez et 
al., 2015; Torres-Sánchez et al., 2018a). Every yearly campaign 
consisted on a unique 15-min flight for both field trials that 
covered a surface of 5 ha. The flight operations fulfilled the list 
of requirements established by the Spanish National Agency of 

Aerial Security including the pilot license, safety regulations, and 
limited flight distance (AESA, 2017).

Point cloud generation
A 3D point cloud was generated by using the Agisoft PhotoScan 
Professional Edition software (Agisoft LLC, St. Petersburg, Russia) 
version 1.4.4 build 6848. The process was fully automatic, with the 
exception of the manual localization of six ground control points 
in the corners and in the center of each field trial with a Trimble 
R4 (Trimble, Sunnyvale, CA, USA) to georeference the 3D point 
cloud. The GPS worked in the Real Time Kinematic (RTK) 
model linked to a reference station of the GNSS RAP network at 
the Institute for Statistics and Cartography of Andalusia (IECA), 
Spain. This GNSS-RTK system provided real time-corrections 
that resulted in an accuracy of 0.02 m in planimetry and 0.03 
m in altimetry. The whole automatic process involved two main 
stages: 1) aligning images, and 2) building field geometry. First, 
the camera position for each image and common points in the 
overlapping images were located and matched, which facilitated 
the fitting of camera calibration parameters. Next, the point 
cloud was built based on the estimated camera positions and the 
images themselves by applying the Structure from Motion (SfM) 
technique (Figure 3). Thus, every point consisted of x, y, and z 
coordinates, where z represents the altitude, i.e., the height above 
sea level. The point cloud files were saved in the “.las” format, 
a common public file format that allows the exchange of 3D 
point cloud data. More details about the software processing 
parameters are given in De Castro et al. (2018a).

OBIA Algorithm
The OBIA algorithm for the identification and characterization 
of the olive seedling was developed with Cognition Network 
programming language in the eCognition Developer 9.3 software 

FIgUrE 2 | The MD4-1000 UAV flying over the intensive trial in the second studied date (January 2018).
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(Trimble GeoSpatial, Munich, Germany). The algorithm is fully 
automatic, it therefore requires no user intervention, and was 
composed of a sequence of phases (Figure 4), using only the 3D 
point cloud as input, as follows:

1. Digital Terrain Model (DTM) generation: A chessboard 
segmentation algorithm was used to segment the point 
cloud in squares of 2 m side size based on the studied olive 
tree dimension and the planting patterns (Figure 4A). Each 
square was then assigned a height value corresponding to 
the average of 15% of the lowest height points to create the 
DTM layer (Figure 4A), i.e., a graphical representation of the 

terrain height without any objects like plants and buildings, as 
based on previous studies (Torres-Sánchez et al., 2018b).

2. Tree point cloud creation: First, the height above the terrain of 
every point composing the cloud was obtained based on the 
DTM. Next, the 0.3 m value was used as the suitable threshold 
to accurately identify tree points and therefore create the tree 
point cloud (Figure 4B). This threshold was based on the tree 
size in the stage studied and the lack of cover crops. The height 
threshold is an easily implemented and accurate tool used for 
olive detection, either from the UAV photogrammetric point 
cloud (Fernández et al., 2016) or terrestrial laser scanner 
point cloud (Escolà et al., 2017).

FIgUrE 3 | (A) General View of the Intensive Field Trial-2018; and (B) Partial View of the Corresponding 3D Point Cloud Produced by the Photogrammetric 
Processing of the Remote Images Taken With the UAV Platform.
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3. Tree crown delineation: After tree point identification, a grid 
of 0.1 m size was overlaid on the terrain and every projected 
square with the presence of a tree point was classified as tree, 
which were then merged to compound each individual tree 
crown. This parameter was fixed to 0.1 m to be well suited 
for tree reconstruction using UAV imagery (Torres-Sánchez 
et al., 2018b).

4. Point cloud slicing: Once the tree point cloud was divided into 
2D-squares following the x,y axes, the tree point cloud was 
then segmented into slices from bottom to top along the Z 
axis according to intervals of 0.1 m (Figure 4D) resulting in 
3D-grids (voxels) with 0.1 m side. Therefore, the point cloud 
was included into a tridimensional regular grid composed by 
small volumetric units (voxels) to be processed. Next, a new 
image layer called “Voxels” with a resolution of 0.1 m, similar 
to the voxel size, was created at the ground level, where each 
pixel stored the number of voxels above (i.e. voxels with the 
same x,y coordinates at different heights) containing points 
of the olive crown. The voxel size was set at 0.1 m according 
to Phattaralerphong and Sinoquet (2005), who reported that 
the optimal voxel sizes for crown volume estimates ranged 
from 10 to 40 cm. The size of the voxel has previously been 
related to the accuracy of the crown volume estimate (Park 
et al., 2010; Li et al., 2013; Zang et al., 2017), the larger the 
voxel size, the greater the estimation accuracy. However, 
oversized voxels lead to the creation of few voxels resulting 
in statistically insignificant descriptions of canopy features. 
Thus, taking into account the small size of the olive trees, 0.1 
m was selected as the optimal voxel size.

  The voxel-based methodology is considered one of the more 
advanced techniques for accurately reproduced the tree 
(Hosoi and Omasa, 2006), where the voxel is the smallest 
information unit element of a three-dimensional matrix. This 
methodology allows process the coordinates of each voxel, 

analyze 3D-models as digital images and consider points 
measured from successive shots as a single voxel without 
oversampling (Fernández-Sarría et al., 2013), making voxel-
based methodology one of the most useful methods in point 
cloud analysis. It has been successfully used in tree point 
cloud analysis generated by LiDAR (Hosoi and Omasa, 2006; 
Fernández-Sarría et al., 2013; Underwood et al., 2016) and 
photogrammetric techniques (Gatziolis et al., 2015; Dandois 
et al., 2017; Torres-Sánchez et al., 2018b).

  Due to the difficulty in obtaining information inside the tree 
crown of the UAV-photogrammetric approach, the squares 
surrounded by the crown limit were classified as tree crown, 
and those voxels taken into account in the process.

5. Olive tree characterization: For every olive tree, the volume 
occupied by the crown was automatically quantified in each 
pixel of the “Voxels layer” by multiplying the number stored, 
i.e. voxels containing olive crown points, and the voxel 
volume (0.1 × 0.1 × 0.1 m3). Similarly, Underwood et al. 
(2016) calculated the crown volume in almond orchards using 
terrestrial LiDAR point clouds. Furthermore, the maximum 
height of each olive was calculated by subtracting the highest 
height value of the pixels that composed the olive crown to 
the DTM. Then, the rest of the geometric features (width, 
length, and projected area) were automatically calculated for 
every crown tree object delimited in a previous step (Tree 
crown delineation) of the process. Finally, the geometric 
features of each olive, as well the identification and location, 
were automatically exported as vector (e.g., shapefile format) 
and table (e.g., Excel or ASCII format) files.

The algorithm was fully automatic and common for both 
planting patterns and training systems, with only one exception 
in the Tree crown delineation phase for the super high density 
continuous hedgerow (hedgerow trial) on the second date. In this 

FIgUrE 4 | Graphical examples of the Object Based Image Analysis (OBIA) procedure outputs for identification and characterization of the olive seedling: (A) 3D 
point cloud for a square of 2 m side size, DTM is represented in pink color; (B) tree point cloud; (c) 2D representation, following the x,y axes, of the tree point cloud; 
(D) sliced tree point cloud along Z axis; (E) points belonging to the point cloud included in the selected slice portion.
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training system, the tree exhibited adjacent canopies, starting the 
formation of a continuous canopy, i.e., a hedgerow trial, making 
it difficult to isolate the individual crown (Figure 1C). Thus, to 
solve this limitation, the location of every tree exported on the 
first date was used to identify each olive tree on the second date, so 
any square classified as “Tree” with its center at a distance of 1 m 
from the center of a tree was considered as part of that same tree. 
This 1 m-value was set taking into account the distance between 
trees. If no UAV image was available prior to the interception of 
the crowns, this issue could be solved by employing the planting 
pattern (distance between trees) or a grid with the position (x,y 
coordinates) of each tree.

Segmentation and slicing tasks are difficult, time consuming, 
and mostly performed by a human operator (Woo et al., 2002), 
thus the automation of these process in an OBIA algorithm 
enables objectivity and makes the olive characterization process 
time-efficient, reliable, and more accurate, removing errors from 
a subjective manual process.

Validation
DTM Generation
The point cloud-based DTM created for each training system and 
date was compared to the official DTMs extracted from the IECA 
(Andalusian Institute for Statistics and Cartography, Spain), 
a public body that guarantees the organization, coordination, 
rationality, and efficiency of cartographic production in 
Andalusia (IECA, 2018). This official information is generally 
updated every 10–15 years and does not have enough high 
resolution in all areas of the region.

The validation of the DTM was carried out on the basis of a 
20 m grid over the studied fields by using ArcGIS 10.0 (ESRI, 
Redlands, CA, USA), resulting in 28 and 24 validation data points 
for the intensive and hedgerow training systems, respectively 
(Figure 5A). The distribution and quantity of the validation 
points made it possible to analyze the height variability in these 
field conditions. Then, the official IECA-DTM-based heights were 
compared to those estimated by the OBIA algorithm, and the 

coefficient of determination (R2) derived from a linear regression 
model was calculated using JMP software (SAS, Cary, NC, USA).

Olive Tree Identification and Geometric Traits 
Validation
Individual olive trees were visually identified in the mosaicked 
and compared to the image classification process outputs, i.e. the 
individual tree point cloud, and the coincidence was measured 
by calculating the counting accuracy (Eq. 1)

 
Counting accuracy

OBIA identified olive trees
   

       =
VVisual observed olive trees     

×100
 

(1)

For tree geometric features validation, manually ground-
based measurements of trees were taken in each field trial and 
date coinciding with the image acquisition (Figure 5B). Three 
geometric traits, namely tree height, crown area, and volume, 
were evaluated by comparing the OBIA estimated value and the 
on-ground observed values (true data). In the case of intensive 
trials, all traits were measured in each individual tree (244 trees); 
in the case of hedgerow trials, the tree height was also surveyed in 
all individuals (806 trees), and due to time and labor limitations, 
the canopy features were measured at 4 individual trees per 
elementary plot (164 trees). The validation trees were identified 
in the field and located their position in the mosaicked images.

The height of the tree, as measured up to the apex of the top of 
the tree, was taken with a telescopic ruler. In addition, the height 
and crown diameters (maximum projected horizontal width and 
its perpendicular) were acquired using a tape, and the crown area 
and volume were estimated assuming a circle (Eq. 1) and a cone-
shaped (Eq. 2) form, respectively, applying validated methods 
(Eq. 2 and Eq. 3) for olive tree geometric measurements (Pastor, 
2005), as follows:

 
Field crown area D D    = +





π 1 2
2

4  
(2)

FIgUrE 5 | Experimental set for validation: (A) point grid for DSM validation in both the hedgerow and the intensive trial; (B) manual measurements of olive crown 
width. The individuals in this manuscript have given written informed consent to publish these case details.
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where D1 is the is the widest length of the plant canopy through 
its center, and D2 is the canopy width perpendicular to D1.

Field crown volume
Field crown area Measured ca

   
     = × nnopy height 

3
 (3)

Then, the on-ground measures were compared to the OBIA-
estimated values in order to assess the efficacy of the OBIA 
algorithm to estimate the olive traits of the very young plants. 
The coefficient of determination (R2) derived from a linear 
regression model was calculated using JMP software (SAS, Cary, 
NC, USA). The coefficient of determination (R2) is the proportion 
of the variance in the dependent variable that is predictable from 
the independent variable (Mendenhall et al., 2009), whereas the 
root mean square error (RMSE) is the standard deviation of the 
residuals, i.e. prediction errors (Barnston 1992). Additionally, 
the bias statistic was also calculated for the height comparison 
(Eq. 4), which measures the difference between the expected 
value of the estimator and the actual value of the parameter 
being estimated and evaluates its tendency to overestimate or 
underestimate that parameter (Lehmann 1951).

 
Bias y x

x
m m

m
= − ×100%

 
(4)

where xm is the mean height value of all field-measured trees, and 
ym represents the mean detected OBIA height.

rESUlTS

Point cloud and DTM generation
High density point clouds were generated due to the large image 
overlap, based on the flight configuration, and the high spatial 
resolution of the UAV-imagery (Figure 6). The number of points 
in the cloud ranged from 4,136 points/m2 in the intensive trial 

in 2017 to 4,782 points/m2 in the hedgerow orchard in 2018 
(Table 1). No major differences in point density were found 
between the training systems. However, the number of points 
was greater on the second flight date due to the larger size of the 
trees at the second flight date, i.e., 27 months after planting, as the 
ground point density remained constant. This greater number 
of points suggests that a higher accuracy in geometric features 
estimation could be reached, as there is a strong underlying 
control of the 3D reconstruction quality based on point cloud 
density (Dandois et al., 2015).

As for the DTM, the algorithm generated it automatically and 
accurately from the point clouds achieving very high correlation 
with the official IECA-DTM for both intensive (R2 = 0.90) and 
hedgerow trials (R2 = 0.95), independently of the year and tree age. 
These results proved the suitability of the UAV-flight configuration 
to create appropriate point clouds as well as the performance of 
the OBIA algorithm for proper DTM generation. Some of the 
validation points for the hedgerow trial were dismissed in the 
comparison with the IECA-DTM as an anomalous area was found 
in this official DTM, making these validation points unusable.

Olive Tree Detection
The OBIA algorithm successfully identified the olive trees, 
obtaining accuracy values higher than 93% in all of the studied 
cases (Table  2), with independence of the training system and 
olive age, which demonstrated the OBIA-algorithm’s robustness 
for tree detection at these early stages of growth. Furthermore, 
higher accuracy values were achieved in the later year of the 

FIgUrE 6 | Field photograph and tree point cloud for an olive tree composing the intensive trial in the consecutive years of data collection: (A) January 2017—15 
months after planting; (B) January 2018—27 months after planting.

TABlE 1 | Point density for each flight date and training systems.

Flight dates Training systems Point density 
(points/m2)

First year after planting Intensive 4,136

January 2017 Hedgerow 4,152

Second year after planting Intensive 4,441

January 2018 Hedgerow 4,782
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study, i.e. 27 months after olive tree planting, reaching maximum 
precision or very close values, with results of 100% and 98.8% for 
intensive and hedgerow, respectively. This fact points out that, 
although it was possible to accurately create the tree point cloud 
and detect the olive trees at any of the studied olive ages, olive 
tree characterization could be affected by the plant age at these 
early stages.

Olive Tree characterization
Height of Olive Tree
A summary of the field height measurements and those estimated 
by OBIA for the matched trees in both studied dates and trials 
at field level is shown in Table 3. Height data for both training 
systems were analyzed by performing an analysis of variance 
(ANOVA) at the 0.05 level of significance by a Tukey Honestly 
Significant Difference (HSD) range test using JMP software (JMP 
12, SAS Institute Inc., Campus Drive, Cary, NC, USA 27513) 
(Table 3). Significant differences in height data between hedgerow 
and intensive systems were observed in all comparisons, with the 
exception of the OBIA estimated outputs at the first date. This fact 
suggests that manual measurements were able to detect differences 
in height growth caused by the training system on both dates, 
where the algorithm could only do so on the second date.

Analysis of variance of both measured and estimated height 
data between dates were also performed (data not shown) and 
significant differences were obtained in all of them, thus showing 
that both approaches (manual and estimated) detected the annual 
height growth. According to the field height measurements, 
height annual growth for intensive and hedgerow trials was 
50.6% and 50.7%, respectively.

Based on the results shown in Table 3, the OBIA-estimated 
minimum values were lower than the field measurements, 
especially in 2017 due to the small size of some of the trees. The 
height estimates showed wider ranges of variation than the field 
measurements in all cases; although these differences were much 
smaller for the experiments in 2018. A similar trend was found 
for the average height, also obtaining greater agreement between 
the true and estimated measurements for the 2018 data. Thus, 
the height estimates were strongly influenced by the age of the 
olive plant at these growth stages, as stated above. It should be 
noted that the olive trees in the second year, i.e. 27 months after 
planting, were 3D reconstructed with a higher quality, as they 
showed values similar to those field measurements, suggesting 
that from this age, the estimation of this breeding trial at the 
individual tree level might be feasible.

Figure 7 shows the accuracy and graphical comparisons of 
the measured versus OBIA-estimated height at the individual 
tree level as affected by the pattern system and the olive tree 
age. As expected from the above results, correlations obtained 
for images taken in the first studied date (15 months after 
planting) were slightly lower than those reported for the second 
date (27 months after planting), i.e. after a growth cycle. At that 
first flight campaign, olive trees in an intensive pattern system 
achieved acceptable correlation values (R2 = 0.61), higher values 
than those reported by Díaz-Varela et al. (2015) using UAV 
imagery reconstruction based on DSM (R2 = 0.53) for height tree 
calculation of olive 5 years and 7 years after planting, i.e. with a 
larger size, which points out the feasibility of the our developed 
point-cloud based OBIA algorithm for the estimation of olive 
tree height in this growing system at the early age of 15 months 
after planting. No accurate results were obtained for hedgerow 
pattern at this first growth age.

Referring to the second flight campaign, low nRMSE (defined 
as the ratio of RMSE and the average value measured) values of 
6.4 for intensive and 5.8 for hedgerow and R2 values around 0.80 
were reported for both training systems. Similarly, De Castro et al. 
(2018a) reached a very high correlation (R2 = 0.78) in plant height 
estimation using UAV imagery and the OBIA approach in adult 
vineyards. Therefore, our results indicated that the OBIA algorithm 
accurately estimated the olive height at 27 months after planting, 
independent of the training system.

TABlE 2 | Accuracy attained by the OBIA algorithm in the olive tree detection.

Months 
after 
planting

Training 
systems

Field trees OBIA 
detected 

trees

Accuracy 
(%)

15 Hedgerow 806 764 94.8
Intensive 244 228 93.4

27 Hedgerow 804 794 98.8
Intensive 243 243 100

TABlE 3 | Summary of the field measured height and OBIA-estimated height for the matched trees at field scale.

Months after 
planting

Training 
systems*

Minimum Maximum range Average Standard 
deviation

Field data
15

Hedgerow 0.59 2.26 1.67 1.67a§ 0.37

Intensive 0.70 2.30 1.60 1.56b 0.28

27
Hedgerow 1.15 3.25 2.10 2.51a 0.30

Intensive 1.25 2.95 1.70 2.34b 0.31

OBIA data
15

Hedgerow 0.00 2.78 2.78 1.33a 0.55

Intensive 0.34 2.28 1.95 1.30a 0.39

27
Hedgerow 0.89 3.04 2.15 2.29a 0.32

Intensive 1.25 3.09 1.84 2.22b 0.34

*764 and 228 trees for hedgerow and intensive trials, respectively in 2017; and 794 and 243 trees for hedgerow and intensive trials, respectively in 2018. 
§ For each column and months after planting mean values followed by different letter are statistically different at p = 0.05 (analysis of variance (ANOVA) by a Tukey 
Honestly Significant Difference (HSD) range test).
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For both studied dates and growing systems, the comparison 
of the regression line with the 1:1 line and the negative bias 
indicated that the automatic OBIA algorithm underestimated 
the tree height parameter, especially on the first date that 
showed bias values higher than 16.7% for both patterns. The 
respective bias values for the second campaign images ranged 
from −5.1% to −8.8%, results comparable to those reached in 
the crown base height estimation of individual conifer trees in 
a forest scenario of 3.4% (Luo et al., 2018). Moreover, it should 
be pointed out that the underestimation was smaller for the 
intensive open vase orchard.

Olive Crown Parameters
Results of the validation work of the crown parameters, which 
consisted of comparing the OBIA estimated values to the 
calculated field data, are shown in Figures 8 and 9 for areas and 
volumes, respectively. Much better correlations were achieved for 
both parameters in the 2018 data, i.e. the second flight campaign, 

thus following the same trend as the tree height. Similarly, the 
OBIA procedure also tended to a subtle underestimation of the 
crown parameters.

Analyzing the 2017 crown parameters results (Figures 8A and 
9A), both area and volume fits had low R2 with slight variations 
between the two crop systems, for example, R2 = 0.48 for the area 
parameter in both systems, and medium relative errors around 
21%. In the case of the second campaign (Figures 8B and 9B), the 
correlations were strengthened reaching higher determination 
coefficients, e.g. R2 values of 0.63 and 0.79 for the area comparison 
in the hedgerow system and volume in the intensive orchard, 
respectively. Minor errors were also reported for crown area 
comparison that ranged from 12.7% and 14.8%. And further, the 
points got much closer to the 1:1 line distribution, although they 
indicated a tendency to underestimate the results, as most of the 
points were below the 1:1 line. The better findings could be due to 
the bigger size of the tree at that date. In the analysis by training 
system in that latter campaign, a better fit of the OBIA estimated 

FIgUrE 7 | Point cloud-OBIA estimated height vs. measured olive height divided by training system and tree age. The relative root mean square error (nRMSE) and 
coefficient of determination (R2) derived from the regression fit are included for every scenario (p 0.0001). The red solid line is the fitted linear function and the blue 
dashed line represents the 1:1 line.
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values to the manual truth data for canopy area and volume were 
achieved in the intensive orchard, which reported R2 of 0.79 and 
0.80, respectively.

However, the determination coefficients for both crown 
parameters in the hedgerow orchards were slightly lower than 
those reported for the intensive one, e.g., R2 = 0.63 for area 
estimation (Figure 8B).

In summary, OBIA crown estimates of the olive trees in the 
first flight year were lower than those of the second year, i.e., 27 
months after plantation, when the olive trees appear to reach a 

suitable size to be reconstructed using the point cloud-based 
OBIA algorithm developed. No clear differences in olive crown 
reconstruction were shown between both pattern systems using 
images at 15 months after olive plantation. Although the OBIA 
algorithm allowed the 3D reconstruction of the whole tree or 
hedgerow crown in the second year (Figure 6), better results 
were achieved in both the area and volume parameters for 
intensive orchards. In addition, the results showed a better fit for 
the canopy area than for the volume in all of the analyzed cases, 
reaching higher R2 values.

FIgUrE 8 | Graphical comparisons of Point cloud-OBIA estimated and field estimated crown area by training system in: (A) January 2017, 15 months after olive 
plantation; (B) January 2018, 27 months after olive plantation. The normalized root mean square error (nRMSE) and coefficient of determination (R2) derived from the 
regression fit are included for every scenario (p 0.0001). nRMSE was computed as the percentage of the average of measured values of tree variables. The red solid 
line is the fitted linear function and the blue dashed line represents the 1:1 line.
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DIScUSSIOn
The objective of this research was to develop an UAV-based 
high-throughput system for olive breeding program applications, 
which consisted of UAV-flight configurations, in terms of flight 
altitude and image overlaps, and a novel, automatic, and accurate 
OBIA algorithm development. The system was evaluated in 
two experimental trials in the framework of the University of 
Sevilla table olive breeding program, with the aim to determine 

the earliest date for the suitable and precocious quantifying of 
architectural traits in large numbers of individuals under field 
conditions. Thus, two training systems were evaluated at two 
very early tree growth stages: 15 and 27 months after planting.

The flight configuration led to the generation of high density 
point clouds with around 4,500 points/m2 and the automatic 
and accurate DTM generation by means of the OBIA algorithm. 
In addition to the flight altitude and image overlap, which are 
defined in the flight configurations, the number of points are also 

FIgUrE 9 | Graphic comparisons of Point cloud-OBIA estimated and field estimated crown volume by pattern system in: (A) January 2017, 15 months after olive 
plantation; (B) January 2018, 27 months after olive plantation. The normalized root mean square error (nRMSE) and coefficient of determination (R2) derived from the 
regression fit are included for every scenario (p 0.0001). nRMSE was computed as the percentage of the average of measured values of tree variables. The red solid 
line is the fitted linear function and the blue dashed line represents the 1:1 line.
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strongly affected by the sensor spatial resolution (Dandois et al., 
2015). In that sense, Torres-Sánchez et al. (2018b) obtained point 
clouds with half the density using the same flight configuration as 
in our experiment, but with a camera sensor size of 4,032 × 3,024 
pixels, i.e. half the spatial resolution that the camera used in our 
study, which was quantified sufficient for the accurate detection 
of almond trees and the estimation of geometric characteristics. 
Therefore, both the sensor and flight configuration used in our 
research were considered suitable for DTM generation.

The accuracy of the DTM, directly affected by point cloud 
densities, is a critical issue for 3D tree characterization, as 
reported by Dandois et al. (2015) and Torres-Sánchez et al. 
(2018a) in woody crops, and the basis for the calculation of 
height-related trials (Dandois and Ellis, 2010), so the higher the 
quality in the DTM generation, the more precise the tree height 
estimation. In addition, the olive trees were also successfully 
identified by the OBIA algorithm from the DTMs, independent 
of the pattern system and olive age. The fact that no differences 
in tree detection and DTM generation were found between both 
training systems suggests that the growth patterns derived from 
each system were not significantly different at those tree ages 
for these specific goals, proving the robustness of this algorithm 
in those scenarios. Moreover, the accurate and automatic DTM 
created by the OBIA algorithm could be used not only as the first 
step in the procedure of quantifying breeding olive traits at early 
stages, but also as a valuable tool for generating accurate DTMs 
in agricultural studies, since the official DTMs extracted from 
the IECA are not always up-to-date, do not have enough spatial 
resolution in some areas of the region or accounts with faulty 
points, as previously reported. In addition, the automatic tree 
detection process, especially of small plants, could be a useful 
tool for some agricultural demanding tasks, for example, to 
count individual plants in nurseries due to their large fields and 
logistical considerations (De Castro et al., 2018c).

The OBIA algorithm was developed to generate agronomical 
traits considered key targets in olive phenotyping studies such 
as tree height, area, and volume of the crown, so that breeders 
can use those architectural traits to select the best genotypes 
according to desired objectives. For the olive tree height, the 
estimates were affected by tree size, and directly related to tree age, 
achieving much better accuracies for bigger olives, i.e., 27 months 
after planting. At that tree age, the tree height trait acquisition is 
feasible regardless of the evaluated training systems. However, 
only trees growing in the intensive system could be moderately 
reconstructed in the case of olive plants 15 months after planting, 
which may be because this system encourages free growth 
without any dominance directed from the height of the last tie 
(Figure 1A), making the trees reach less height, but in a uniform 
way in all the points of the crown (Innovagri, 2018). On the other 
hand, the hedgerow pattern employs a central axis formation 
system that promotes the growth of the terminal bud that acts 
as a guide, as opposed to the lateral shoots (Figure 1B), thus 
prioritizing height growth (Innovagri, 2018). These differences in 
growth due to training system become more accentuated in the 
early years. In fact, the growth pattern had a significant influence 
on the underestimation of the height trial, which was especially 
marked for the hedgerow pattern in 2017 as the generated point 

cloud did not detect the narrow apexes in the top of the olive 
trees due to this structure of the olive trees, which in contrast, 
were considered in the on-ground validation measurements. 
These findings are in agreement with those of Díaz-Varela et al. 
(2015) in an olive orchard of individual olive trees 5 and 7 years 
after plantation, and Peña et al. (2018) in a 1-year-old poplar 
plantation, in which the undervalues were assigned to the rough 
reconstruction of the final apex. Similarly, Kattenborn et  al. 
(2014) found a general underestimation in the height trait of 
palm trees using UAV-based photogrammetric point clouds and 
stated that extend height deviations are indispensable, making 
difficult the sub-decimeter accuracy, which might be attributed 
to uncertainties in the reference data acquisition.

Similar considerations about automatic estimations were 
found for olive crown parameters: underestimation of the OBIA 
values; and much better correlations in the second studied date 
due to the greater crown size by the growth of the trees during the 
12 months after the first campaign (Figure 1 and Table 2), and for 
intensive orchards because of the more favorable growth pattern 
for measurements, as stated above. The underestimation of tree 
area and volume is common in automatic process, since the tree 
canopies are manually estimated by applying a conventional 
geometric equation that considers tree crown projection as circle 
forms and the tree crowns as cone-shaped forms while the actual 
trees have a more complex internal structure, with branches and 
void space within, which is captured by the algorithms using 
point clouds (Underwood et al., 2016). Thus, the assumption 
of a geometric shape for the crown, the complexity of taking 
on-ground tree measurements and the operator expertise may 
compromise the validity of field data (Torres-Sánchez et al., 2015; 
Sola-Guirado et al., 2017). These assumptions produce inexact 
on-ground estimations, while 3-D architecture derived from the 
point cloud-based OBIA algorithm reconstructed the irregular 
shape of the tree crown, achieving better estimations of the olive 
trials than those estimated from the on-ground measurements 
(Torres-Sánchez et al., 2015). In any case, similar trends and 
magnitudes between OBIA-estimated and field data were found, 
for example, the trees identified as bigger on the ground were 
also quantified as a larger area by the OBIA algorithm in 2018 
(Figure 8B), and vice versa. This fact points out the suitability 
of the OBIA-based measurements for phenotyping trials, as it 
improves the traditionally considered errors of field estimates.

In olives 15 months after planting, neither the area nor the 
volume could be accurately estimated, showing that the tree 
point cloud was not dense enough to reconstruct the crown 
architecture at that growth stage (Figure 6). This matter could be 
solved by modifying the flight configuration either by reducing 
the flight altitude or using a higher resolution sensor so that 
the number of points are increased. In addition, this solution 
could resolve the underestimation of the traits from the OBIA 
algorithm, since a higher point density might lead to a better 
detection of tree apexes and part of the lateral branching, which 
caused the underestimation of crown parameters. However, 
the flight altitude has also strong implications in the flight 
duration, area covered by each image, time-consumption, 
image processing, spectral resolution, and cost (De Castro et al., 
2015a). In this sense, flights at low altitude would increase the 
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spatial resolution, i.e., more dense point cloud as well as the time 
and cost of the process (Gómez-Candón et al., 2014). Thus, an 
optimal combination of image overlap, sensor, and flight altitude 
is essential to optimize fieldwork for breeding applications in 
large-scale plant phenotyping studies. Therefore, a balance must 
be sought between the cost of refining the flight configuration and 
the earlier date to obtain the agronomic trait, i.e., the age of the 
plant, according to the desired target. Alternatively, the inclusion 
of oblique images in the analysis has shown potential to improve 
the DTM (James and Robson, 2014), although they have been 
mainly used for building damage assessment (Dong and Shan, 
2013; Vetrivel et al., 2015) or quarry topography reconstruction 
(Rossi et al., 2017). Much less information exists on the use of 
oblique images for vegetation reconstruction that has been 
limited to forest trees after leaf fall (Fritz et al., 2013). Thus, a 
combination of nadir and oblique images could be tested in 
further research to check if this approach can improve the crown 
architecture reconstruction in agricultural vegetation. Apart 
from that, the underestimation issue could be solved applying an 
estimation corrector related to the tree characterization, age, and 
pattern system.

A higher level of agreement was reached in the second year, i.e. 
27 months after planting, on the estimates of crown parameters, 
reaching a very high correlation and minor errors in both 
training system, and a slightly lower determination coefficient for 
volume in the hedgerow orchards, which could be attributed to 
inexact on-ground estimations, as stated above. Using a similar 
approach, i.e. UAV imagery and OBIA technology, Torres-
Sánchez et al. (2015) estimated crown parameters with successful 
results both in single-tree and in hedgerow plantations, reporting 
R2 values of 0.94 and 0.65 for area and volume estimations, 
respectively, which proved that this technological combination is 
very suitable to obtain automatic and accurate agronomic traits. 
However, those experiments were carried out in adult trees, where 
actual crown volume ranged from 16 to 40 m3, making it a less 
complex scenario than that of olive trees shortly after planting. 
Comparatively, using that combination, weaker correlations (R2 
= 0.58 and nRMSE = 18.83% for individual trees and R2 = 0.22 
and nRMSE = 12.96% for hedgerow systems) were reached in 
crown diameter estimation when younger trees were analyzed 
(Díaz-Varela et al., 2015), which denotes an inverse relationship 
between both variables. Therefore, the accuracies obtained in this 
paper are considered highly satisfactory, since the experiments 
were carried out in the challenging initial growth stage of young 
olive trees.

In addition to its accuracy, this OBIA procedure was 
fully automatic, without any user intervention, making the 
quantification of the breeding trials time-efficient, reliable, and 
more accurate, removing errors from a manual intervention 
above explained (Jiménez-Brenes et al., 2017; De Castro 
et  al., 2018b). In a previous research, Fernández et al. (2016) 
attempted to automatically detect olive using UAV-based point 
clouds, however, user intervention for manual point selection 
was required due to the difficulties they found in automatic 
identification, which led to a semi-automatic process that 
consumes time and resources, and could include a subjective 
element (De Castro et al., 2018b). Moreover, no field validation 

was performed by Fernández et al. (2016), so the use of a UAV-
based point clouds methodology remained non-validated for 
olive trees. In this context, some authors have detected olive trees 
using UAV reporting classification accuracies over 90% (Torres-
Sánchez et al., 2015; Jiménez-Brenes et al., 2017), although those 
studies were conducted under a DSM-based OBIA approach 
in adult olive trees. Therefore, our results are considered very 
successful as the automatic tree detection was carried out in very 
young olive orchards. Moreover, the time involved in the entire 
process took less than 5 h for the intensive orchard including 
244 olive trees, which consisted of a 5 min flight; the point cloud 
generation, which took about 4 h; and running the algorithm, 
which was around 30 min. Thus, by using UAV-images in 
combination with the point-cloud based OBIA algorithm, an 
accurate DTM, number, and coordinates of each tree and their 
agronomic trials (height, area, volume) could be provided in the 
same day as UAV flights to breeders and farmers requesting plant 
architecture traits.

Rapid methods for identification and assessment of plant 
traits are considered a major challenge for crop research in the 
21st century (White et al., 2012). The high-throughput system 
developed in this research can provide breeders demanded 
architectural traits as rapid as less than 5 h after flights. Moreover, 
this high-throughput system is able to 3D reconstruct olive trees 
around 1 year after plantation and calculates breeding traits 
as soon as 1 year or 2 years after plantation, depending on the 
trial and training system. Olive architectural traits are highly 
relevant in the evaluation of each breeding process stage: from 
the seedlings stage (De la Rosa et al., 2006; Rallo et al., 2008; 
Hammamia et al., 2012) to the advanced selections trials (Rallo 
et al., 2018), and are key to evaluate the adaptation of olive 
cultivars to new highly technified growing systems such as the 
super-high density hedgerows (Rosati et al., 2013; Rallo et al., 
2014; Morales-Sillero et al., 2014). Furthermore, our UAV-based 
high-throughput system is cost and time optimized for large-
scale plant phenotyping studies, so that the rapid, accurate, and 
timely outputs of this system could supply crucial information 
for the rapid selection of genotypes addressing, e.g., lower input 
demand, improved olive quality, the capacity to face threats such 
as Xylella fastidiosa or Verticillium dahliae, and climate change, 
among others (El Riachy et al., 2012; Fiorani and Schurr, 2013; 
Rallo et al., 2016).

Besides the breeding applications, this accurate and rapid 
obtainable information of plant traits and tree position in large 
fields could be useful to design precision agriculture strategies at 
orchard scale, such as fertilization, irrigation, designing of pruning 
tasks (Escolà et al., 2017; Peña et al., 2018; De Castro et al., 2018a), as 
well as site-specific canopy treatments at variable rate application 
adapted to the necessities and size of trees, which could result in 
savings herbicide of up to 70% (Solanelles et al., 2006). Nursery 
management could be also benefited from this technological 
system (De Castro et al., 2018c). Additionally, as the height tree 
and crown architecture estimation has been assessed in several 
training systems and growth stages, this technology could be 
used to evaluate the tree adaptation to different environmental 
conditions and/or growing systems (Díaz-Varela et al., 2015). In 
addition, the canopy monitoring throughout the growing cycle, 
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together with the spectral information also provided in this 
approach, could open new opportunities for early identification 
of biotic and abiotic stresses, as visible- and near infrared 
range have been proved useful to detect early changes in plant 
physiology (De Castro et al., 2015b). Finally, the mapping of 
agronomical traits would help to address the goal of developing 
prediction models that connect olive growth traits to yield (Sola-
Guirado et al., 2017).

This UAV-based high-throughput system has been designed 
by using UAV, GPS, and Agisoft PhotoScan Professional Edition 
Photoscan and eCognition Developer software for taking images, 
georeferencing the ground control points, generation of 3D point 
cloud, and identifying and characterizing young olive trees, 
respectively. The developed OBIA algorithm is self-adaptive to 
different crop-field conditions, as row orientation, row and tree 
spacing, field slope, or olive tree dimensions. Moreover, as the 
voxel methodology is used to calculate the volume, LiDAR point 
cloud could also be as input, though these systems are slower than 
UAV technology (De Castro et al., 2018a). Although none of the 
software used in this research are open access, these were selected 
due to their versatility to develop the rule-set that could be 
transferred to some open source software available in the market.

Alternatively, terrestrial laser scanners have shown potential 
for 3D tree characterization (Underwood et al., 2016; Luo et 
al., 2018). In this context, Escolà et al. (2017) used a 2D light 
detection and ranging (LiDAR) on board an all-terrain vehicle 
estimating olive crown volume with R2 values ranging from 
0.56 to 0.82, depending on the algorithms used. The experiment 
was carried out in adult orchards, i.e., larger canopy sizes, 
and used a travel speed of 4 km/h, which requires more time. 
Moreover, LiDAR exhibits some weaknesses such as no spectral 
information is acquired, it is often difficult for it to hit the exact 
tops of trees (Luo et al., 2018), and problems of aligning LiDAR 
scans from both sides of the tree are reported (Rosell et al., 2009). 
Additionally, phenotyping platforms with ground vehicles are 
very difficult to use for cross-regional work due to the lack of 
maneuverability (Yang et al., 2017). On the other hand, higher 
point cloud densities were produced, which could imply a better 
3D reconstruction, although none optimal densities have been 
proposed so far for agriculture (Escolà et al., 2017). Therefore, 
a comparison between tractor-mounted sensors and OBIA-UAV 
technology must be carried out in further research (Escolà et al., 
2017; De Castro et al., 2018b).

In summary, the high-throughput system developed in this 
work consisted of UAV imagery and a robust point cloud based 
OBIA algorithm and allows the automatic, rapid, and accurate 
creation of Digital Terrain Models (DTMs) and identification of 
olive tree at any training system and age, as well as the extraction 
of olive architectural traits in large scale fields at a very young 
stage, that is, around 2 years after planting. In addition, tree height 
can be estimated with acceptable accuracy in an intensive trial at 
the first date, i.e. 15 months after planting. The early and accurate 
estimation of these traits through this cost-efficient methodology 
may drastically reduce the crucial time of decision making for tree 
breeders, therefore discarding the unwanted genotypes early and 
improving the performance of the breeding process (Fiorani and 

Schurr, 2013). Therefore, the time and cost saving of OBIA-based 
trait estimation as well as the higher accuracy, certainly justifies 
the utility of this technology rather than geometric assumptions 
based on manual measurement. Furthermore, the methodology 
may not only be applied in phenotyping tasks in olive breeding 
programs, but it will also support the modernization and 
intensification of the olive sector through a better management 
of these orchards, involving a beneficial effect on the market 
price of olive as well as the economic development especially in 
rural areas (White et al., 2012).

AUTHOr cOnTrIBUTIOnS
AIdC, PR, MPS, and FL-G conceived and designed the 
experiments. PR and MS designed the field trials and performed 
the olive field experiments. LC, AM-S, and MRJ collected and 
processed the ground-based data. AIdC, JT-S, FMJ-B, and 
FL-G performed the UAV flight experiments. AIdC, JT-S, and 
FMJ-B analyzed the data. FL-G, PR, and MPS contributed to the 
interpretation of the results, and with equipment and analysis 
tools. AIdC wrote the paper. FL-G and PR collaborated in the 
discussion of the results and revised the manuscript. All authors 
have read and approved the manuscript.

FUnDIng
The breeding field trials in which the experiments were performed 
are funded by Interaceituna (Spanish Inter-professional Association 
for Table Olives) through the FIUS projects PR201402347 and 
PRJ201703174. This research was partly financed by the AGL2017-
83325-C4-4-R (Spanish Ministry of Science, Innovation and 
Universities and AEI/EU-FEDER funds), and Intramural-CSIC 
201940E074 Projects. Research of AC was supported by the Juan de 
la Cierva Program-Incorporación of the Spanish MINECO funds.

AcKnOWlEDgMEnTS
We acknowledge support of the publication fee by the CSIC 
Open Access Publication Support Initiative through its Unit of 
Information Resources for Research (URICI). We thank Dr. José 
Manuel Peña his help in field work, and Aceitunas Guadalquivir 
S.L. and Javier del Barco for the maintenance of the field trials.

SUPPlEMEnTArY MATErIAl
The Supplementary Material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpls.2019.01472/
full#supplementary-material

Animations of several figures of the paper are available as 
supplementary materials (Supplementary Video File) in the 
article electronic version, published online. These might be used 
by the interested reader in order to have a dynamic representation 
of the various processing phases.

Frontiers in Plant Science | www.frontiersin.org November 2019 | Volume 10 | Article 1472

https://www.frontiersin.org/articles/10.3389/fpls.2019.01472/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2019.01472/full#supplementary-material
https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


UAV and OBIA for Olive Breeding Applicationsde Castro et al.

16

rEFErEncES
AESA. (2017) Aerial Work—Legal Framework. Available online: http://www.

seguridadaerea.gob.es/LANG_EN/cias_empresas/trabajos/rpas/marco/
default.aspx (accessed on 6 November 2017).

Araus, J. L., and Cairns, J. E. (2014). Field high-throughput phenotyping: the 
new crop breeding frontier. Trends Plant Sci. 19, 52–61. doi: 10.1016/j.
tplants.2013.09.008

Bai, G., Ge, Y., Hussain, W., Baenziger, P. S., and Graef, G. (2016). A multi-
sensor system for high throughput field phenotyping in soybean and 
wheat breeding. Comput. Electron. Agric. 128, 181–192. doi: 10.1016/j.
compag.2016.08.021

Barnston, A. G. (1992). Correspondence among the Correlation, RMSE, and 
Heidke verification measures; refinement of the heidke score. Weather Forecast 
7, 699–709. doi: 10.1175/1520-0434(1992)007<0699:CATCRA>2.0.CO;2

Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., et al. (2014). 
Geographic object-based image analysis – towards a new paradigm. ISPRS J. 
Photogramm. Remote Sens. 87, 180–191. doi: 10.1016/j.isprsjprs.2013.09.014

Díaz-Varela, R. A., de la Rosa, R., León, L., and Zarco-Tejada, P. J. (2015). High-
resolution airborne UAV imagery to assess olive tree crown parameters using 
3D photo reconstruction: application in breeding trials. Remote Sens. 7, 4213–
4232. doi: 10.3390/rs70404213

Dandois, J. P., and Ellis, E. C. (2010). Remote sensing of vegetation structure using 
computer vision. Remote Sens. 2, 1157–1176. doi: 10.3390/rs2041157

Dandois, J. P., Olano, M., and Ellis, E. C. (2015). Optimal altitude, overlap, and 
weather conditions for computer vision UAV estimates of forest structure. 
Remote Sens. 7, 13895–13920. doi: 10.3390/rs71013895

Dandois, J. P., Baker, M., Olano, M., Parker, G. G., and Ellis, E. C. (2017). What 
is the point? Evaluating the structure, color, and semantic traits of computer 
vision point clouds of vegetation. Remote Sens. 9, 355. doi: 10.3390/rs9040355

De Castro, A. I., Ehsani, R., Ploetz, R., Crane, J. H., and Abdulridha, J. (2015a). 
Optimum spectral and geometric parameters for early detection of laurel 
wilt disease in avocado. Remote Sens. Environ. 171, 33–44. doi: 10.1016/j.
rse.2015.09.011

De Castro, A. I., Ehsani, R., Ploetz, R. C., Crane, J. H., and Buchanon, S. (2015b). 
Detection of laurel wilt disease in avocado using low altitude aerial imaging. 
PloS One 10 (4), e0124642. doi: 10.1371/journal.pone.0124642

De Castro, A. I., Jiménez-Brenes, F. M., Torres-Sánchez, J., Peña, J. M., Borra-
Serrano, I., and López-Granados, F. (2018a). 3-D characterization of vineyards 
using a novel UAV Imagery-Based OBIA Procedure for Precision Viticulture 
Applications. Remote Sens. 10, 584. doi: 10.3390/rs10040584

De Castro, A. I., Torres-Sánchez, J., Peña, J. M., Jiménez-Brenes, F. M., Csillik, O., 
and López-Granados, F. (2018b). An automatic random forest-OBIA algorithm 
for early weed mapping between and within crop rows using UAV imagery. 
Remote Sens. 10, 285. doi: 10.3390/rs10020285

De Castro, A. I., Maja, J. M., Owen, J., Robbins, J., and Peña, J. M. (2018c). 
“Experimental approach to detect water stress in ornamental plants using 
sUAS-imagery,” in Autonomous Air and Ground Sensing Systems for 
Agricultural Optimization and Phenotyping III. (International Society for 
Optics and Photonics) 106640N. doi: 10.1117/12.2304739

De la Rosa, R., Kiran, A. I., Barranco, D., and Leon, L. (2006). Seedling vigour as a 
preselection criterion for short juvenile period in olive breeding. Aust. J. Agric. 
Res. 57, 477–481. doi: 10.1071/ar05219

Dong, L., and Shan, J. (2013). A comprehensive review of earthquake-induced 
building damage detection with remote sensing techniques. ISPRS J. 
Photogramm. Remote Sens. 84, 85–99. doi: 10.1016/j.isprsjprs.2013.06.011

El Riachy, M., Priego-Capote, F., Rallo, L., Luque-de Castro, M. D., and León, L. 
(2012). Phenolic profile of virgin olive oil from advanced breeding selections. 
Span. J. Agric. Res. 10, 443–453. doi: 10.5424/sjar/2012102-264-11

Escolà, A., Martínez-Casasnovas, J. A., Rufat, J., Arnó, J., Arbonés, A., Sebé, F., et al. 
(2017). Mobile terrestrial laser scanner applications in precision fruticulture/
horticulture and tools to extract information from canopy point clouds. Precis. 
Agric. 18, 111–132. doi: 10.1007/s11119-016-9474-5

Fabbri, A., Lambardi, M., and Ozden-Tokatli, Y. (2009). Olive Breeding, in: 
Breeding Plantation Tree Crops: Tropical Species, (New York, NY: Springer), 
423–465. doi: 10.1007/978-0-387-1075 71201-7

FAOSTAT [WWW Document], 2017. Available at: URL http://www.fao.org/
faostat/en/#data (Accessed March 19 2018)

Fernández, T., Pérez, J. L., Cardenal, J., Gómez, J. M., Colomo, C., and Delgado, J. 
(2016). Analysis of landslide evolution affecting olive groves using UAV and 
photogrammetric techniques. Remote Sens. 8, 837. doi: 10.3390/rs8100837

Fernández-Sarría, A., Martínez, L., Velázquez-Martí, B., Sajdak, M., Estornell, J., 
and Recio, J. A. (2013). Different methodologies for calculating crown volumes 
of Platanus hispanica trees using terrestrial laser scanner and a comparison 
with classical dendrometric measurements. Comput. Electron. Agr. 90, 176–
185. doi: 10.1016/j.compag.2012.09.017

Fiorani, F., and Schurr, U. (2013). Future scenarios for plant phenotyping. Annu. 
Rev. Plant Biol. 64, 267–291. doi: 10.1146/annurev-arplant-050312-120137

Fritz, A., Kattenborn, T., and Koch, B. (2013). Uav-Based Photogrammetric 
Point Clouds - Tree STEM Mapping in Open Stands in Comparison to 
Terrestrial Laser Scanner Point Clouds. ISPRS Arch. 1, 141–146. doi: 10.5194/
isprsarchives-XL-1-W2-141-2013

Gómez-Candón, D., De Castro, A. I., and López-Granados, F. (2014). Assessing 
the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for 
precision agriculture purposes in wheat. Precis Agric. 15, 44–56. doi: 10.1007/
s11119-013-9335-4

Gatziolis, D., Lienard, J. F., Vogs, A., and Strigul, N. S. (2015). 3D Tree 
Dimensionality Assessment Using Photogrammetry and Small Unmanned 
Aerial Vehicles. PloS One 10, e0137765. doi: 10.1371/journal.pone.0137765

Hammamia, S. B. M.,  de la Rosa, R, Sghaier-Hammamic,  B, León, L, Rapoport, H. F., 
(2012). Reliable and relevant qualitative descriptors for evaluating complex 
architectural traits in olive progenies. Scientia Horticulturae 143, 157–166

Hosoi, F., and Omasa, K. (2006). Voxel-based 3-D modeling of individual trees for 
estimating leaf area density using high-resolution portable scanning lidar. IEEE 
Trans. Geosci. Rem. Sens. 44, 3610–3618. https://ieeexplore.ieee.org/abstract/
document/4014317. doi: 10.1109/TGRS.2006.881743

Innovagri. (2018). Available at: https://www.innovagri.es/investigacion-desarrollo-
inovacion/principales-sistemas-de-formacion-en-el-olivar-en-seto.html.

Instituto de Estadística y Cartografía de Andalucía-Junta de Andalucía (IECA). (2018). 
Available at: https://www.juntadeandalucia.es/institutodeestadisticaycartografia/
prodCartografia/bc/mdt.htm.

International Olive Council. (2017). Available online: http://www.internationaloliveoil.
org (accessed on 1February 2018).

James, MR, and Robson, S. (2014). Mitigating systematic error in topographic 
models derived from UAV and ground-based image networks. Earth Surface 
Processes and Landforms, 39(10), 1413–1420. doi: 10.1002/esp.3609

Jiménez-Brenes, F. M., López-Granados, F., de Castro, A. I., Torres-Sánchez, J., 
Serrano, N., and Peña, J. M. (2017). Quantifying pruning impacts on olive tree 
architecture and annual canopy growth by using UAV-based 3D modelling. 
Plant Methods 13, 55. doi: 10.1186/s13007-017-0205-3

Johansen, K., Raharjo, T., and McCabe, M. F. (2018). Using multi-spectral UAV 
imagery to extract tree crop structural properties and assess pruning effects. 
Remote Sens. 10 (6), 854. doi: 10.3390/rs10060854

Kattenborn, T., Sperlich, M., Bataua, K., and Koch, B. (2014). Automatic Single 
Tree Detection in Plantations using UAV-based Photogrammetric Point 
clouds. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-3, 139–144. 
doi: 10.5194/isprsarchives-XL-3-139-2014

López-Granados, F., Torres-Sánchez, J., de Castro, A. I., Serrano-Pérez, A., Mesas-
Carrascosa, F. J., and Peña, J.-M. (2016). Object-based early monitoring of a 
grass weed in a grass crop using high resolution UAV imagery. Agron. Sustain. 
Dev. 36, 67. doi: 10.1007/s13593-016-0405-7

Lehmann, E. L. (1951). A General Concept of Unbiasedness. Ann. Math Stat. Vol. 
22, 587–592. doi: 10.1214/aoms/1177729549

Li, J., Hu, B., and Noland, T. L. (2013). Classification of tree species based on 
structural features derived from high density LiDAR data. Agr. For. Meteorol., 
171–172, 104-114. doi: 10.1016/j.agrformet.2012.11.012

Luo, L., Zhai, Q., Su, Y., Ma, Q., Kelly, M., and Guo, Q. (2018). Simple method for 
direct crown base height estimation of individual conifer trees using airborne 
LiDAR data. Optics Express 26, A562–A578. doi: 10.1364/OE.26.00A562

Madec, S., Baret, F., de Solan, B., Thomas, S., Dutartre, D., Jezequel, S., et al. (2017). 
High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial 
Vehicles and Ground LiDAR Estimates. Front. Plant Sci. 8, 2002. doi: 10.3389/
fpls.2017.02002

Matese, A., Gennaro, S. F. D., and Berton, A. (2017). Assessment of a canopy height 
model (CHM) in a vineyard using UAV-based multispectral imaging. Int. J. 
Remote Sens. 38, 2150–2160. doi: 10.1080/01431161.2016.1226002

Frontiers in Plant Science | www.frontiersin.org November 2019 | Volume 10 | Article 1472

http://www.seguridadaerea.gob.es/LANG_EN/cias_empresas/trabajos/rpas/marco/default.aspx
http://www.seguridadaerea.gob.es/LANG_EN/cias_empresas/trabajos/rpas/marco/default.aspx
http://www.seguridadaerea.gob.es/LANG_EN/cias_empresas/trabajos/rpas/marco/default.aspx
https://doi.org/10.1016/j.tplants.2013.09.008
https://doi.org/10.1016/j.tplants.2013.09.008
https://doi.org/10.1016/j.compag.2016.08.021
https://doi.org/10.1016/j.compag.2016.08.021
https://doi.org/10.1175/1520-0434(1992)007<0699:CATCRA>2.0.CO;2
https://doi.org/10.1016/j.isprsjprs.2013.09.014
https://doi.org/10.3390/rs70404213
https://doi.org/10.3390/rs2041157
https://doi.org/10.3390/rs71013895
https://doi.org/10.3390/rs9040355
https://doi.org/10.1016/j.rse.2015.09.011
https://doi.org/10.1016/j.rse.2015.09.011
https://doi.org/10.1371/journal.pone.0124642
https://doi.org/10.3390/rs10040584
https://doi.org/10.3390/rs10020285
https://doi.org/10.1117/12.2304739
https://doi.org/10.1071/ar05219
https://doi.org/10.1016/j.isprsjprs.2013.06.011
https://doi.org/10.5424/sjar/2012102-264-11
https://doi.org/10.1007/s11119-016-9474-5
https://doi.org/10.1007/978-0-387-1075 71201-7
URL http://www.fao.org/faostat/en/#data
URL http://www.fao.org/faostat/en/#data
https://doi.org/10.3390/rs8100837
https://doi.org/10.1016/j.compag.2012.09.017
https://doi.org/10.1146/annurev-arplant-050312-120137
https://doi.org/10.5194/isprsarchives-XL-1-W2-141-2013
https://doi.org/10.5194/isprsarchives-XL-1-W2-141-2013
https://doi.org/10.1007/s11119-013-9335-4
https://doi.org/10.1007/s11119-013-9335-4
https://doi.org/10.1371/journal.pone.0137765
https://ieeexplore.ieee.org/abstract/document/4014317
https://ieeexplore.ieee.org/abstract/document/4014317
https://doi.org/10.1109/TGRS.2006.881743
https://www.innovagri.es/investigacion-desarrollo-inovacion/principales-sistemas-de-formacion-en-el-olivar-en-seto.html
https://www.innovagri.es/investigacion-desarrollo-inovacion/principales-sistemas-de-formacion-en-el-olivar-en-seto.html
https://www.juntadeandalucia.es/institutodeestadisticaycartografia/prodCartografia/bc/mdt.htm
https://www.juntadeandalucia.es/institutodeestadisticaycartografia/prodCartografia/bc/mdt.htm
http://www.internationaloliveoil.org
http://www.internationaloliveoil.org
https://doi.org/10.1002/esp.3609
https://doi.org/10.1186/s13007-017-0205-3
https://doi.org/10.3390/rs10060854
https://doi.org/10.5194/isprsarchives-XL-3-139-2014
https://doi.org/10.1007/s13593-016-0405-7
https://doi.org/10.1214/aoms/1177729549
https://doi.org/10.1016/j.agrformet.2012.11.012
https://doi.org/10.1364/OE.26.00A562
https://doi.org/10.3389/fpls.2017.02002
https://doi.org/10.3389/fpls.2017.02002
https://doi.org/10.1080/01431161.2016.1226002
https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


UAV and OBIA for Olive Breeding Applicationsde Castro et al.

17

Mendenhall, W., Beaver, R. J., and Beaver, B. M. (2009). Introduction to Probability 
and Statistics. (Australia: Brooks/Cole, Cengage Learning).

Monserrat, O., and Crosetto, M. (2008). Deformation measurement using 
terrestrial laser scanning data and least squares 3D surface matching. ISPRS J. 
Photogrammetry Remote Sens. 63 (1), 142e154. doi: 10.1016/j.isprsjprs.2007.07.008

Montes, J. M., Melchinger, A. E., and Reif, J. C. (2007). Novel throughput 
phenotyping platforms in plant genetic studies. Trends Plant Sci. 12, 433–436. 
doi: 10.1016/j.tplants.2007.08.006

Morales-Sillero, A., Rallo, P., Jimenez, M. R., Casanova, L., and Suarez, M. P. 
(2014). Suitability of two table olive cultivars (‘Manzanilla de Sevilla’ and 
‘Manzanilla Cacerena’) for mechanical harvesting in superhigh-density 
hedgerows. Hortscience. 49, 1028–1033.

Newman, M., Zygielbaum, A., and Terry, B. (2018). Static analysis and dimensional 
optimization of a cable-driven parallel robot. In Cable-Driven Parallel Robots. 
Mechanisms and Machine Science, vol. 53. Eds. Gosselin, P., Cardou, T., 
Bruckmann, A., and Pott, C. (Cham: Springer).

Ostos, F., de Castro, A. I., Torres-Sánchez, J., Pistón, F., and Peña, J. M. (2019). High-
throughput phenotyping of bioethanol potential in cereals by using UAV-based 
multi-spectral imagery. Front. Plant Sci. 10, 948. doi: 10.3389/fpls.2019.00948

Park, H. J., Lim, S., Trinder, J. C., and Turner, R. (2010). Voxel-based volume 
modelling of individual trees using terrestrial laser scanners, in: Proceedings 
of 15th Australasian Remote Sensing & Photogrammetry Conf., Alice Springs, 
Australia. 1125–1133.

Pastor, M., editor. Cultivo del olivo con riego localizado: diseño y manejo del 
cultivo y las instalaciones, programación de riegos y fertirrigación (in Spanish) 
[Internet]. Mundi Prensa Libros S.A.; 2005. Available at: http://dialnet.unirioja.
es/servlet/libro?codigo=8551.

Peña, J. M., Torres-Sánchez, J., Serrano-Pérez, A., de Castro, A. I., and López-
Granados, F. (2015). Quantifying efficacy and limits of unmanned aerial 
vehicle (UAV) technology for weed seedling detection as affected by sensor 
resolution. Sensors 15, 5609–5626. doi: 10.3390/s150305609

Peña, J. M., Castro, A. I., Torres-Sánchez, J., Andújar, D., Martín, C. S., and 
Dorado, J. (2018). Estimating tree height and biomass of a poplar plantation 
with image-based UAV technology. AIMS Agric. Food 3, 313–326. doi: 10.3934/
agrfood.2018.3.313

Phattaralerphong, J., and Sinoquet, H. (2005). A method for 3D reconstruction 
of tree crown volume from photographs: assessment with 3D-digitized plants. 
Tree Physiol. 25, 1229–1242. doi: 10.1093/treephys/25.10.1229

Rallo, P., Jimenez, R., Ordovas, J., and Suarez, M. P. (2008). Possible early selection 
of short juvenile period olive plants based on seedling traits. Aust. J. Agr. Res. 
59, 933–940. doi: doi.10.1071/ar08013

Rallo, L., Barranco, D., Castro-Garcia, S., Connor, D. J., Gómez del Campo, M., 
and Rallo, P. (2014). High-Density Olive Plantations. Hortic. Rev. 41, 303–384. 
doi: 10.1007/s00122-003-1301-5

Rallo, L., Caruso, T., Díez, C. M., and Campisi, G. (2016). “Olive growing in a time of 
change: from empiricism to genomics,” in The Olive Tree Genome, Compendium 
of Plant Genomes (Cham: Springer), 55–64. doi: 10.1007/978-3-319-48887-5_4

Rallo, L., Barranco, D., Díez, C. M., Rallo, P., Suárez, M. P., Trapero, C., et al. (2018). 
Strategies for olive (Olea europaea L.) breeding: cultivated genetic resources 
and crossbreeding; In Advances in Plant Breeding Strategies: Fruits (New York 
City, USA: Springer International Publishing).

Rosati, A., Paoletti, A., Caporali, S., and Perri, E. (2013). The role of tree architecture 
in super high density olive orchards. Sci. Hortic. 161, 24–29. doi: doi.10.1016/j.
scienta.2013.06.044

Rosell, J. R., Llorens, J., Sanz, R., Arnó, J., Ribes-Dasi, M., Masip, J., et al. (2009). 
Obtaining the three-dimensional structure of tree orchards from remote 
2d terrestrial lidar scanning. Agric. For. Meteorol. 149 (9), 1505–1515. doi: 
10.1016/j.agrformet.2009.04.008

Rossi, P., Mancini, F., Dubbini, M., Mazzone, F., and Capra, A. (2017). Combining 
nadir and oblique UAV imagery to reconstruct quarry topography: 
methodology and feasibility analysis. Eur. J. Remote Sens. 50, 211–221. doi: 
10.1080/22797254.2017.1313097

Rugini, E, Baldoni, L, Rosario, M, and Sebastiani, Leditors. (2016). The Olive 
tree genome. (New York: Springer International Publishing). 193. doi: 
10.1007/978-3-319-48887-5

Shafiekhani, A., Kadam, S., Fritschi, F. B., and DeSouza, G. N. (2017). Vinobot 
and vinoculer: two robotic platforms for high-throughput field phenotyping. 
Sensors 17, 214. doi: 10.3390/s17010214

Shi, Y., Thomasson, J. A., Murray, S. C., Pugh, N. A., Rooney, W. L., Shafian, S., 
et al. (2016). Unmanned Aerial Vehicles for High-Throughput Phenotyping 
and Agronomic Research. PloS One 11, e0159781. doi: 10.1371/journal.
pone.0159781

Sola-Guirado, R. R., Castillo-Ruiz, F. J., Jiménez-Jiménez, F., Blanco-Roldan, G. L., 
Castro-Garcia, S., and Gil-Ribes, J. A. (2017). Olive actual “on Year” yield 
forecast tool based on the tree canopy geometry using UAS imagery. Sensors 17 
(8), 1743. doi: 10.3390/s17081743

Solanelles, F., Escolà, A., Planas, S., Rosell, J. R., Camp, F., and Gràcia, F. (2006). An 
electronic control system for pesticide application proportional to the canopy width 
of tree crops. Biosyst. Eng. 95, 473–481. doi: 10.1016/j.biosystemseng.2006.08.004

Stilliano, T., de Luca, A. I., Falcone, G., Spada, E., Gulisano, G., and Strano, A. 
(2016). Economic profitability assessment of mediterranean olive growing 
systems. Bulg J. Agric. Sci. 22 (No 4), 517–526.

Tattaris, M., Reynolds, M. P., and Chapman, S. C. (2016). A direct comparison 
of remote sensing approaches for high-throughput phenotyping in plant 
breeding. Front. Plant Sci. 7, 1131. doi: 10.3389/fpls.2016.01131

Torres-Sánchez, J., López-Granados, F., Serrano, N., Arquero, O., and Peña, J. M. 
(2015). High-throughput 3-D monitoring of agricultural-tree plantations 
with unmanned aerial vehicle (UAV) technology. PloS One 10, e0130479. doi: 
10.1371/journal.pone.0130479

Torres-Sánchez, J., López-Granados, F., Borra-Serrano, I., and Peña, J. M. (2018a). 
Assessing UAV-collected image overlap influence on computation time and 
digital surface model accuracy in olive orchards. Precis. Agric. 19, 115–133. doi: 
10.1007/s11119-017-9502-0

Torres-Sánchez, J., de Castro, A. I., Peña, J. M., Jimenez-Brenes, F. M., Arquero, 
O., Lovera, M., et al. (2018b). Mapping the 3D structure of almond trees using 
UAV acquired photogrammetric point clouds and object-based image analysis. 
Biosyst. Eng. 176, 172–184. doi: 10.1016/j.biosystemseng.2018.10.018

Underwood, J. P., Hung, C., Whelan, B., and Sukkarieh, S. (2016). Mapping almond 
orchard canopy volume, flowers, fruit and yield using lidar and vision sensors. 
Comput. Electron. Agric. 130, 83–96. doi: 10.1016/j.compag.2016.09.014

Vetrivel, A., Gerke, M., Kerle, N., and Vosselman, G. (2015). Identification 
of damage in buildings based on gaps in 3D point clouds from very high 
resolution oblique airborne images. ISPRS J. Photogramm. Remote Sens. 84, 
85–89. doi: 10.1016/j.isprsjprs.2015.03.016

Virlet, N., Sabermanesh, K., Sadeghi-Tehran, P., and Hawkesford, M. J.Field 
scanalyzer. (2017). Field Scanalyzer: An automated robotic field phenotyping 
platform for detailed crop monitoring. Funct. Plant Biol. 44, 143–153. doi: 
10.1071/FP16163

White, J. W., Andrade-Sanchez, P., Gore, M. A., Bronson, K. F., Coffelt, T. A., and 
Conley, M. M. (2012). Field-based phenomics for plant genetics research. Field 
Crops Res. 133, 101–112. doi: 10.1016/j.fcr.2012.04.003

Woo, H., Kang, E., Wang, S., and Lee, K. H. (2002). A new segmentation method 
for point cloud data. Int. J. Mach Tool Manu 42, 167–178. doi: 10.1016/
S0890-6955(01)00120-1

Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., et al. (2017). Unmanned aerial 
vehicle remote sensing for field-based crop phenotyping: current status and 
perspectives. Front. Plant Sci. 8, 1111. doi: 10.3389/fpls.2017.01111

Zang, Z., Cao, L., and Guanghui, S. (2017). Estimating forest structural parameters 
using canopy metrics derived from airborne lidar data in subtropical forests. 
Remote Sens. 9, 940. doi: 10.3390/rs9090940

Zaman-Allah, M., Vergara, O., Araus, J. L., Tarekegne, A., Magorokosho, C., 
Zarco-Tejada, P. J., et al. (2015). Unmanned aerial platform-based multi-
spectral imaging for field phenotyping of maize. Plant Methods 11, 35. doi: 
10.1186/s13007-015-0078-2

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as 
a potential conflict of interest.

Copyright © 2019 de Castro, Rallo, Suárez, Torres-Sánchez, Casanova, Jiménez-
Brenes, Morales-Sillero, Jiménez and López-Granados. This is an open-access 
article distributed under the terms of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction in other forums is permitted, 
provided the original author(s) and the copyright owner(s) are credited and 
that the original publication in this journal is cited, in accordance with accepted 
academic practice. No use, distribution or reproduction is permitted which does 
not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org November 2019 | Volume 10 | Article 1472

https://doi.org/10.1016/j.isprsjprs.2007.07.008
https://doi.org/10.1016/j.tplants.2007.08.006
https://doi.org/10.3389/fpls.2019.00948
http://dialnet.unirioja.es/servlet/libro?codigo=8551
http://dialnet.unirioja.es/servlet/libro?codigo=8551
https://doi.org/10.3390/s150305609
https://doi.org/10.3934/agrfood.2018.3.313
https://doi.org/10.3934/agrfood.2018.3.313
https://doi.org/10.1093/treephys/25.10.1229
https://doi.org/doi.10.1071/ar08013
https://doi.org/10.1007/s00122-003-1301-5
https://doi.org/10.1007/978-3-319-48887-5_4
https://doi.org/doi.10.1016/j.scienta.2013.06.044
https://doi.org/doi.10.1016/j.scienta.2013.06.044
https://doi.org/10.1016/j.agrformet.2009.04.008
https://doi.org/10.1080/22797254.2017.1313097
https://doi.org/10.1007/978-3-319-48887-5
https://doi.org/10.3390/s17010214
https://doi.org/10.1371/journal.pone.0159781
https://doi.org/10.1371/journal.pone.0159781
https://doi.org/10.3390/s17081743
https://doi.org/10.1016/j.biosystemseng.2006.08.004
https://doi.org/10.3389/fpls.2016.01131
https://doi.org/10.1371/journal.pone.0130479
https://doi.org/10.1007/s11119-017-9502-0
https://doi.org/10.1016/j.biosystemseng.2018.10.018
https://doi.org/10.1016/j.compag.2016.09.014
https://doi.org/10.1016/j.isprsjprs.2015.03.016
https://doi.org/10.1071/FP16163
https://doi.org/10.1016/j.fcr.2012.04.003
https://doi.org/10.1016/S0890-6955(01)00120-1
https://doi.org/10.1016/S0890-6955(01)00120-1
https://doi.org/10.3389/fpls.2017.01111
https://doi.org/10.3390/rs9090940
https://doi.org/10.1186/s13007-015-0078-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

	High-Throughput System for the Early Quantification of Major Architectural Traits in Olive Breeding Trials Using UAV Images and OBIA Techniques
	Introduction
	Materials and Methods
	Study Fields
	UAV-Based Phenotyping Platform
	Point Cloud Generation
	OBIA Algorithm
	Validation
	DTM Generation
	Olive Tree Identification and Geometric Traits Validation


	Results
	Point Cloud and DTM Generation
	Olive Tree Detection
	Olive Tree Characterization
	Height of Olive Tree
	Olive Crown Parameters


	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


