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Exposure of plants to abiotic stresses, whether individually or in combination, triggers 
dynamic changes to gene regulation. These responses induce distinct changes in phenotypic 
characteristics, enabling the plant to adapt to changing environments. For example, iron 
deficiency and heat stress have been shown to alter root development by reducing primary root 
growth and reducing cell proliferation, respectively. Currently, identifying the dynamic temporal 
coordination of genetic responses to combined abiotic stresses remains a bottleneck. This is, 
in part, due to an inability to isolate specific intervals in developmental time where differential 
activity in plant stress responses plays a critical role. Here, we observed that iron deficiency, 
in combination with temporary heat stress, suppresses the expression of iron deficiency-
responsive pPYE::LUC (POPEYE::luciferase) and pBTS::LUC (BRUTUS::luciferase) reporter 
genes. Moreover, root growth was suppressed less under combined iron deficiency and heat 
stress than under either single stress condition. To further explore the interaction between 
pathways, we also created a computer vision pipeline to extract, analyze, and compare 
high-dimensional dynamic spatial and temporal cellular data in response to heat and iron 
deficiency stress conditions at high temporal resolution. Specifically, we used fluorescence 
light sheet microscopy to image Arabidopsis thaliana roots expressing CYCB1;1:GFP, a 
marker for cell entry into mitosis, every 20 min for 24 h exposed to either iron sufficiency, 
iron deficiency, heat stress, or combined iron deficiency and heat stress. Our pipeline 
extracted spatiotemporal metrics from these time-course data. These metrics showed that 
the persistency and timing of CYCB1;1:GFP signal were uniquely different under combined 
iron deficiency and heat stress conditions versus the single stress conditions. These metrics 
also indicated that the spatiotemporal characteristics of the CYCB1;1:GFP signal under 
combined stress were more dissimilar to the control response than the response seen 
under iron deficiency for the majority of the 24-h experiment. Moreover, the combined stress 
response was less dissimilar to the control than the response seen under heat stress. This 
indicated that pathways activated when the plant is exposed to both iron deficiency and heat 
stress affected CYCB1;1:GFP spatiotemporal function antagonistically.

Keywords: light sheet imaging, image analysis, cell cycle progression, heat stress and iron deficiency stresses, 
combined stresses
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InTRODUCTIOn
Abiotic stresses, such as low iron bioavailability (iron deficiency, 
−Fe) or high ambient temperatures (heat stress, Heat), negatively 
impact key important plant processes, including growth, 
development, and reproduction. The effects of iron deficiency 
stress range from impaired chlorophyll biosynthesis and 
chloroplast maintenance in shoots to reduced cellular respiration 
and mitochondrial development in roots (Thimm et al., 2001; 
López-Bucio et al., 2003; Rout and Sahoo, 2015). Additionally, 
iron deficiency generally results in reduced primary root growth 
in favor of increased lateral root growth due to modulations in cell 
division within the primary and lateral root meristems (López-
Bucio et al., 2003; Gharagozloo et al., 2008; Gruber et al., 2013; 
Hilo et al., 2017). Similarly, heat stress impairs photosynthesis, 
resulting in reduced biomass, reduced primary root growth, and 
arrested cell division within the root meristem (Larkindale et al., 
2005; Wahid et al., 2007; Zhao et al., 2014). Overall, heat stress 
impairs many cellular processes via a cytotoxic accumulation of 
Reactive Oxygen Species (ROS), while also hindering enzyme 
and membrane function (Larkindale et al., 2005; Mangelsen 
et al., 2011; Tsukagoshi, 2012). Heat stress also increases the rate 
of cells transitioning into the elongation zone within the root 
meristem (Feraru et al., 2019). At its most severe, heat stress 
causes apoptosis (Larkindale et al., 2005). Moreover, heat stress 
has been implicated in several unrelated stress pathways, such as 
heavy metal and oxidative stresses (Larkindale et al., 2005; Kilian 
et al., 2007; Swindell et al., 2007; Hahn et al., 2013). While these 
stress response studies have shed light on many physiological and 
molecular effects, iron deficiency stress and heat stress responses 
have been traditionally studied in isolation. Given that, in 
field conditions, it is common for plants to experience stresses 
in combination rather than as isolated stress events (Thimm 
et al., 2001; Suzuki et al., 2014; Corrales et al., 2017; Carvalho 
et al., 2018), it is necessary to understand the existence of any 
interplay between stress response pathways when plants are 
exposed to multiple stresses. Experimental and computational 
tools that extract spatial and temporal similarities/differences 
in the molecular response of plants under both combinatorial 
and individual stresses would provide insight into the existence 
of interplay between two stress response pathways. This type 
of analysis requires quantifying how these stresses, both 
individually and combinatorially, contribute to the magnitude 
of each respective stress response with respect to a control 
condition. This analysis requires identifying the existence of an 
interaction between stress pathways. If there is interaction, it 
is also necessary to understand how the interaction influences 
function (antagonistically or agonistically).

While recent studies have indicated that there does not 
exist a universal stress regulator in plants, there is evidence for 
commonality in transcriptional regulation within groups of 
stress types, particularly in heat stress responses (Kilian et al., 
2007; Swindell et al., 2007; Iyer-Pascuzzi et al., 2011; Kilian et al., 
2012; Hahn et al., 2013; Zandalinas et al., 2018). A commonly 
observed phenomenon for the response of plants under stress 
is a change in cell cycle progression in actively proliferating 
regions such as the root meristem (Skirycz et al., 2011).  

Obtaining data that quantifies the time, location, and duration 
in which cell cycle progression is altered under single and 
combinatorial stress conditions could provide substantial 
insight into the interplay between iron deficiency and heat stress 
response pathways that are activated under combinatorial stress 
conditions. These data may also provide quantitative insight 
into how plants regulate overall cell proliferation; a key aspect of 
organ growth (Sakamoto et al., 2016).

In this work, we theorize that the comparison of spatiotemporal 
cell cycle patterns extracted from single and combinatorial stress 
data may allow us to 1) infer the temporal characteristics of stress 
specific pathways under combinatorial stress conditions, and 
2) decipher whether stress specific pathways interact with one 
another and if that interaction functions antagonistically. We first 
quantified the dynamics of transcriptional luciferase fusions for 
two known −Fe response genes, POPEYE (PYE) and BRUTUS 
(BTS) in response to iron deficiency stress (−Fe), heat stress 
(Heat), and a combination of both stresses (−Fe+Heat). Since 
plants can be exposed to high temperature fluctuations over a 
24-h period in field conditions, heat stress experimental regimes 
typically involve a short application of heat (60–90 mins) (Yeh 
et al., 2012; Silva-Correia et al., 2014). For this reason, we chose 
to implement heat stress by applying 38°C for 80 min. However, 
we applied iron deficiency stress for the full 24 h because this 
is a nutritional stress that plants are more commonly exposed 
to for days or longer. We observed that under the combinatorial 
−Fe+Heat stress condition, transcriptional activation of these 
genes is suppressed by Heat within the 24-h time frame, revealing 
antagonism between the output of these stress pathways with 
respect to these −Fe response genes. To gain further insight 
into how these combinatorial stress conditions affect molecular 
mechanisms associated with root development, we developed a 
computational approach to extract non-iron deficiency specific 
high-dimensional data from microscopy images obtained after 
exposing Arabidopsis thaliana seedlings expressing CYCB1;1:GFP 
(a proxy for cell entry into division) (Menges et al., 2005; de 
Luis Balaguer et al., 2016; Schnittger and De Veylder, 2018) to 
these conditions. We used Light Sheet Fluorescence Microscopy 
(LSFM), which offers low phototoxicity in fluorescent molecules, 
to acquire high temporal imaging data over 24-h time-course 
experiments (Reynaud et al., 2015; Ovečka et al., 2018). We 
developed the BioVision Tracker (BVT) image analysis pipeline 
to analyze root growth dynamics and track CYCB1;1:GFP 
expression within the meristematic region of the root over time. 
We used these tracking data to extract spatiotemporal metrics, 
which captured similarities and differences in spatiotemporal 
CYCB1;1:GFP expression patterns over fine intervals of 
time in response to −Fe, Heat, and −Fe+Heat. We show that 
our computational pipeline was capable of extracting useful 
spatiotemporal metrics from high throughput microscopy 
images, which revealed that Heat and −Fe responses interact 
with one another in an antagonistic manner. This technology 
facilitates the design of further studies with unprecedented 
specificity into how simultaneous plant stress responses function 
on a given output, which will potentially inform agricultural 
efforts in maintaining consistent crop growth despite impending 
climate and environmental changes.
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REsUlTs

Iron Deficiency Responsive genes Are 
suppressed When Introduced to Both Iron 
Deficiency and heat shock
To gain insight into if and how Heat stress affects the −Fe 
response under combinatorial stress, we examined the dynamics 
of transcriptional luciferase fusions for two known −Fe response 
genes, POPEYE and BRUTUS in A. thaliana seedlings. PYE acts as a 
regulator to many iron deficiency-specific genes while BTS is tightly 
coregulated with PYE such that both genes are transcriptionally 
induced in response to −Fe (Long et al., 2010). Two independent 
transgenic lines expressing pPOPEYE::luciferase (pPYE::LUC4-2 
and pPYE::LUC5-5) or BRUTUS::luciferase (pBTS::LUC5-1 and 
pBTS::LUC2-3) were exposed to either 1) control media (Control); 
2), −Fe media (−Fe), 3) control media and subjected to 80 min of 
heat stress (Heat); or 4) −Fe media and subjected to 80 min of heat 
stress (−Fe+Heat) (Figures 1A, B; see Materials and Methods). We 
performed a bioluminescence assay for our treatments to measure 
pBTS::LUC and pPYE::LUC expression levels in response to our 
variety of stress conditions. We observed that the expression levels 
of pPYE::LUC and pBTS::LUC were significantly higher for −Fe 
compared to the Control and Heat conditions within 12 h of the 
experiment (p < 0.05) (Figures 1C, D and Supplementary Figure 2). 
This was expected since POPEYE and BRUTUS are upregulated 
within 12 h of –Fe induction based on previous studies (Long et al., 
2010). However, the expression levels were significantly higher 
under the –Fe than under the –Fe+Heat condition within 16 h for 
pBTS::LUC and within 18 h for pPYE::LUC (p < 0.05). This result 
was unexpected since BRUTUS and POPEYE are not known to 
be heat stress-responsive and it was not anticipated that exposure 

to −Fe+Heat would significantly disrupt the expression of either 
BRUTUS or POPEYE. These statistically different expression profiles 
suggest that there was interaction between the two pathways under 
a combination of stress. Furthermore, pBTS::LUC and pPYE::LUC 
expression levels appear to be suppressed when Heat is added in 
combination to −Fe which suggests the pathways are functioning 
antagonistically with one another. Therefore, we investigated further 
into the interplay of these two stress pathways by looking at root 
growth and molecular markers correlated with root growth and cell 
division that are not specific to either stress to determine if there 
exist similar antagonistic characteristics on the root itself.

Imaging Pipeline and Root growth Assay 
shows Root growth Rate is higher in −
Fe+heat Than in −Fe or heat Alone
To gain insight into these stress responses at the molecular and 
physiological level, we grew A. thaliana CYCB1;1:GFP seedlings 
in a MAGIC growth and imaging chamber (de Luis Balaguer et al., 
2016) for 4 days and subsequently imaged them by a light sheet 
microscope every 20 min for 24 h under the same conditions as was 
used in the luciferase assay (Figures 2A, B). Since cell division is a 
contributor to root growth, second to root cell elongation, we chose 
CYCB1;1:GFP as a proxy for cell division because of its significant 
involvement in signaling mitosis (López-Bucio et al., 2003; 
Tsukagoshi, 2012). We chose to observe CYCB1;1:GFP every 20 
min because CYCB1;1 expression, on average, has a duration of 3 h, 
which gave us about nine samples per occurrence (Yin et al., 2014). 
Using the digital images from both the fluorescent and brightfield 
channels of the light sheet microscope, we segmented, processed, 
and tracked CYCB1;1:GFP Regions of Interest (ROI) within the root 

FIgURE 1 | Bioluminescence assay on POPEYE and BRUTUS. (A, B) A 24-h bioluminescence assay was performed to measure the expression levels of two 
major iron deficiency response genes POPEYE (PYE) and BRUTUS (BTS). Two lines each of pPYE::LUC (pPYE::LUC5-5 and pPYE::LUC4-2) and pBTS::LUC 
(pBTS::LUC5-1 and pBTS::LUC2-3) seedlings were grown on plates for 4 days and then exposed to Control, −Fe, Heat, or −Fe+Heat conditions (three biological 
replicates containing three seedlings for each condition). (C, D) Imaging began at 4 h and was conducted every 2 h following. These luminescence expression 
signals show that the expression of BRUTUS and POPEYE were suppressed over time when the seedlings were introduced to −Fe+Heat in comparison to −Fe (*p 
< 0.05 in comparison to the −Fe condition using a two-sample t-test). Here, lines pBTS::LUC2-3 and pPYE::LUC4-2 are shown, whereas supplementary material 
shows all four lines. Error bars show the standard error across biological replicates.
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with our custom automated image analysis software as described 
below in Development of an Automated Image Analysis Software 
to Extract Quantitative Spatiotemporal Metrics of CYCB1;1:GFP 
(adapted from Buckner et al., 2018). We utilized the tracking portion 
of our pipeline to assess root growth by quantifying the global 
movement of the root between sequential images. These data were 
collected every 20 min, aggregated into a time signal, and filtered 
using a low-pass filter to reduce noise and jitter (see Materials and 
Methods). As expected, the −Fe, Heat, and −Fe+Heat conditions 
resulted in stunted overall root growth within the scope of the 24-h 
experiment (Figure 2B). However, for the −Fe+Heat condition, the 
total root growth over the 24 h was more than the total root growth 
under either of the individual stress conditions (Figure 2B). By 
observing the root growth rate over time (Figure 2C) we were able 
to conclude that after 5 h of the experiment, the rate in which roots 
undergoing −Fe+Heat conditions were growing was faster than the 
roots undergoing −Fe or Heat conditions individually. This suggests 
that due to the response to both of these stresses, an interaction 
between pathways may have occurred to result in increased root 
growth rate. Although our assay does not indicate the specific 
molecular mechanism by which this interaction occurred, the 
interaction appear antagonistic since the suppression of root growth 
was decreased under the combinatorial condition.

To further assess the characteristics that this combination of 
stresses induced at the molecular level, we modified our existing 
computational pipeline (Buckner et al., 2018) to provide an 
automated process for collecting temporal characteristics of 
cells newly expressing CYCB1;1:GFP as well as the perdurance 
of CYCB1;1:GFP signal. It also collected spatial information of 
where in the root the CYCB1;1:GFP signal was detected. These 
CYCB1;1:GFP ROI tracking data were used to generate profiles of 
10 spatiotemporal metrics (Material and Methods) over the 24-h 
experimental period. The temporal profiles of these 10 metrics 
were analyzed and compared numerically using a sum of squares 
approach to quantify similarities and differences between single 
and combinatorial stress responses (Figure 2A).

Development of an Automated Image 
Analysis software to Extract Quantitative 
spatiotemporal Metrics of CYCB1;1:gFP
We developed the BioVision Tracker (BVT) image analysis 
software to track ROIs in the time course microscopy images 
using a method that we adapted from our previously developed 
algorithm (Buckner et al., 2018). BVT first processes 3D 
fluorescence microscopy images (Figure 3A) by selecting ROIs 

FIgURE 2 | Overall computational pipeline and root growth assays. (A) The overall flow of our experimental setup and computational approach. A. thaliana plants 
were grown in FEP tubes for 4 days and then treated to 1 of 4 of the same environmental conditions as the luciferase assay for 24 h while being imaged within 
the ZEISS Lightsheet Z.1 every 20 min. CYCB1;1:GFP, a proxy for entry into cell division, was visualized through a fluorescent channel. The images were then 
processed to segment, track, and locate CYCB1;1:GFP fluorescent regions of interest within the 3D locations of the root. Then, metrics were derived from the 
automated image analysis data to give temporal profiles of spatiotemporal CYCB1;1 data from fluorescent signals. These profiles were used to quantify similarities 
of cell division regulation across stress conditions. The total root growth during the course of the experiment (B) and the root growth rate (C) was recorded every 20 
min over the 24 experiment for n = 3 to 4 biological replicates.
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using an image intensity threshold and segmenting each ROI using 
a watershed algorithm for each image in the time-course (Figures 
3C–E). BVT then uses image registration techniques to track the 
movement of the ROIs within the scope of the microscope’s field 
of view over time (Figures 3C–E). Additionally, BVT is able to 
define a root-specific coordinate system that localizes the ROIs 
within specific portions of the root by processing the 3D images 
from the Brightfield channel (Figure 3B). This is done by using 
an unsupervised clustering algorithm on the Brightfield image’s 
gradient data to estimate which voxels in the image contain root 
tissue and which do not (Buckner et al., 2018).

We processed the images taken by the light sheet using the 
BVT software to provide tracking information about ROIs that 
fluoresce the CYCB1;1:GFP signal in the meristematic region of 
the roots. We extracted two major categories of data from this 
software: 1) the location of each ROI with respect to the distance 
from the tip of the root and the longitudinal axis and 2) the tracking 
information about which ROIs continued to produce signal in 
sequentially sampled images and for how long (Figure  3). These 
data were aggregated for each environmental condition (Control, 
−Fe, Heat, and −Fe+Heat) and used to produce 10 spatiotemporal 
metrics that capture the characteristics of the CYCB1;1:GFP 
signal under single and combinatorial stress.

The 10 spatiotemporal metrics, derived from the BVT tracking 
data characterized the spatiotemporal CYCB1;1:GFP ROI dynamics 
for each condition in 20-min increments over the 24-h experimental 
period. Table 1 gives the definition of 6 of the 10 metrics, along 
with the biological implications as it relates to CYCB1;1:GFP. The 

remaining four metrics are described in the Materials and Methods. 
Figure 4 shows 6 of the 10 spatiotemporal metrics that were 
collected to measure the temporal dynamics of the CYCB1;1:GFP 
expression. The additional four metrics were collected to measure 
overall spatial distributions of CYCB1;1:GFP signal over time with 
respect to the distance from the tip and the longitudinal axis of the 
root and are shown in Supplementary Figure 1.

The data from each of the 10 metrics were transformed into 
10 time signals using a low pass digital filter across all conditions. 
The value of the time signal at a given time stamp was computed 
by averaging the data for the corresponding metric around that 
specific time (see Materials and Methods). This approach provided 
a way of reducing noise and jitter in the spatiotemporal metrics as 
sliding windows can behave much like a low pass filter. We first 
observed that the metrics describing spatial measurements did 
not show obvious distinctive differences between the temporal 
profiles of the different environmental conditions (Supplementary 
Figure  1). However, we found that CYCB1;1:GFP timing and 
progression were both greatly affected and highly dynamic under 
iron deficiency stress, heat stress, and a combination of both stresses 
when compared to the control over 24 h (Figure 3, Table 1).

To assess how single and combinatorial stresses altered 
CYCB1;1:GFP expression duration with respect to the control, 
we further examined the metrics associated with persistency 
(PERSISTENCY AVERAGE, PERSISTENCY SPREAD, and 
PERSISTENT ADDITIVE) and timing (AVERAGE NUMBER, 
NEW APPEARANCES, and TRACK END) in greater detail. We 
first examined metrics associated with persistency, or the amount 

FIgURE 3 | Automated image analysis on 3D light sheet microscopy images. (A) A 3D fluorescent image was taken every 20 min capturing ROIs of the 
CYCB1;1:GFP signal. The image analysis software distinguished the different ROIs as individual instances. (B) A corresponding 3D brightfield image was taken 
every 20 min in the light sheet growth chamber to capture the overall structure of the A. thaliana root. The ROI locations were on to the processed coordinate 
system of the root. Scale bars = 50 μm. (C–E) Segmentation and tracking of the 3D images max projected onto 2D images. Segmented ROIs of the same color 
indicates the same region in different time stamps.
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of time (in hours) a uniquely identified ROI is tracked, as it relates 
to the average persistency across all detected ROIs at a given 
time stamp (PERSISTENCY AVERAGE), the variation around 
this average, (PERSISTENCY SPREAD), and additive sum of 
persistency of all detected ROIs (PERSISTENT ADDITIVE). 
These signals are shown in Figures 4A–C, respectively. We note 
that overall, under control conditions, these metrics remain 
constant with little variation. This suggests that the progression 
of cell cycle remains relatively constant for the portion of the 
cycle in which CYCB1;1:GFP is active over a 24-h period when 
no stress is applied. We also look at metrics associated with the 

timing of CYCB1;1:GFP characteristics, such as the average 
number of ROIs detected at a given time stamp (AVERAGE 
NUMBER), the number of new ROIs that appear at that time 
stamp (NEW APPEARANCES), and the number of ROIs that 
are no longer detectable at that time point (TRACK END). These 
signals are shown in Figures 4D–F, respectively. For the control, 
Figures 4D–F showed a maximum value around 6 h for these 
timing metrics, indicating that under control conditions regions 
currently expressing, starting to express, and ceasing to express 
CYCB1;1:GFP had peaked around this time. We compared the 
characteristics of these timing and persistency metrics under 

TABlE 1 | Temporal metric descriptions.

Metric Technical description Biological description (CYCB1;1)

PERSISTENCY AVERAGE Each ROI tracked from the software has a persistency value which is the  
amount of time (in hours) that ROI has been and will be tracked from the 
images. This metric is the average persistency measure of ROIs at a time point.

An increase in this metric suggests a longer sustained 
CYCB1;1 signal

PERSISTENCY SPREAD The standard deviation of persistency measures of the ROIs at a  
time point.

An increase in this metric suggests that the duration of time 
of sustained CYCB1;1 signal in cells is highly variable.

PERSISTENT ADDITIVE The cumulative sum of all ROI persistency measures at a time point. An increase in this metric suggests higher overall CYCB1;1 
production in the meristematic region

AVERAGE NUMBER The number of ROIs detected by the software at a time point. An increase in this metric suggests more individual cells are 
producing CYCB1;1

NEW APPEARANCES The number of ROIs that first appear at a time point. An increase in this metric suggests more cells are beginning 
to produce CYCB1;1

TRACK END The number of ROIs that cease to be tracked at a time point An increase in this metric suggests more cells are ceasing 
to produce CYCB1;1

FIgURE 4 | Time-course profiles of individual metrics obtained from the image analysis software. (A–F) Metrics obtained from image analysis of all conditions over 
a 24-h time period. Error bars indicate standard error from the biological replicates (n = 3 to 4). (A) PERSISTENCY AVERAGE metric showing the average time 
(in hours) that ROIs were tracked. This corresponds to how long cells were expressing CYCB1;1:GFP. (B) PERSISTENCY SPREAD metric showing the standard 
deviation of ROI persistency measures. This corresponds to the variety of lengths of time that cells expressed CYCB1;1:GFP. (C) PERSISTENT ADDITIVE metric 
showing the cumulative sum of persistency measures from detected ROIs at any one time. (D) AVERAGE NUMBER metric showing the average number of ROIs 
detected by the software at any one time. An increase in AVERAGE NUMBER corresponds to an increased number of cells producing CYCB1;1:GFP (E) NEW 
APPEARANCES metric showing the average number of newly appearing ROIs at any one time. This corresponds to the average number of new cells expressing 
CYCB1;1:GFP (F) TRACK END metric showing the average number of ROIs ceasing to be tracked by the software at any one time.
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control conditions to the metrics obtained under −Fe, Heat, and 
−Fe+Heat conditions to assessing differences in magnitude and 
temporal characteristics.

We observed that the PERSISTENCY AVERAGE and 
PERSISTENCY SPREAD signals were consistently higher for all 
three stress conditions than for the control while also maintaining 
larger variation throughout most of the 24-h window (Figures 
4A, B). These results suggest that there is an increase in the length 
of time uniquely identified ROIs are tracked under these stresses 
which could potentially imply a stall in cell cycle, specifically 
during the stage of mitosis. While the data suggests increased 
persistence for all three stress conditions, the profiles of these two 
metrics for the −Fe+Heat condition does not appear to strictly 
follow that of either single stress. Furthermore, it appears that the 
PERSISTENCY AVERAGE of the −Fe+Heat condition was lower 
than either single stress which may be associated with higher 
growth rates for this condition especially between 12 and 18 h in 
which −Fe+Heat and Control values of PERSISTENCY AVERAGE 
overlapped closely. During the same 12–18-h period, root growth 
rate (Figure 2C) under −Fe+Heat conditions accelerated to similar 
growth rates under Control conditions, which never occurred in 
either single stresses. Overall, this suggests a unique response in 
CYCB1;1:GFP persistency that correlates with altered root growth 
rate induced by combining −Fe and Heat.

The PERSISTENT ADDITIVE and AVERAGE NUMBER 
signals (Figures 4C, D) show similar increases in all three stress 
conditions in that all three contained a peak between 3 and 12 
h. Thus, the data that our software collected was able to capture 
specific time points in which events associated with cell division 
spike. This spike could be explained by 1) the duration of time 
that cell division was being prolonged was increased for all stress 
conditions, 2) the rate in number of cells initiating division was 
larger than the rate of cells actually dividing, and/or 3) there was 
an increase of stress-induced DNA damage in cells since CYCB1;1 
has also been shown to be produced in earlier stages of the cell 
cycle after DNA damage occurs is present in the cell (Schnittger 
and De Veylder, 2018). However, further experiments examining 
these time points would be needed to further conclude specifics 
about the effects of iron and heat stress on the cell cycle.

Finally, we examine the characteristics of the NEW 
APPEARANCES and TRACK END signals under stress 
conditions and compare them to the characteristics seen under 
the control. For the NEW APPEARANCES signal, we observed 
that for Heat, the increase of newly appearing ROIs was sustained 
and peaked around 12 h in contrast to both the control and −
Fe conditions, which were sustained but peaked at less than 6 h. 
Finally, for the TRACK END signal, we observed delayed peaks 
for each stress condition compared to the control, where the 
peaks for each stress condition were located around 12 h.

Our computational approach allowed us to collect information 
that captured the dynamics of many spatiotemporal cell cycle 
characteristics in response to stress at an unprecedented 
resolution. Our method allowed us to extract many observations 
by expanding the data collected from image analysis into 
quantitative metrics. We observed that CYCB1;1:GFP was 
perdured in response to all three types of stress introduced 
here. We also found that many of the profiles for the −Fe+Heat 

condition had peaks and valleys at different times than either the 
−Fe or Heat conditions alone and, in most cases, the magnitude 
of response was different in −Fe+Heat than the profiles of either 
−Fe or Heat. This suggests that the time and the degree to which 
plants respond to −Fe+Heat with respect to CYCB1;1:GFP 
is distinct from that which occurs in response to −Fe or Heat 
individually. Therefore, we further investigated by aggregating all 
metrics collectively in a high-dimensional space to assess when, 
and to what degree, plants initiate specific stress responses, and 
how combining these stresses might affect these responses.

Image Analysis Reveal That Characteristics 
of CYCB1;1:gFP in Combined stress Are 
Different Than single stresses
To identify similarities in spatiotemporal CYCB1;1:GFP 
behaviors between experimental conditions, we computed 
the sum of squared difference (SS) across all 10 metrics for all 
pairwise combination of stress vs. the control at each 20-min time 
point. Each metric was normalized between 0 and 1 so that no 
single metric would bear more weight than another. Figure  5A 
shows the SS values for each stress condition in comparison to 
the control. Note that a larger SS value corresponds to increased 
dissimilarity between the compared conditions.

We found that the spatiotemporal CYCB1;1:GFP data of 
the Heat and −Fe+Heat stress conditions diverged in behavior 
from the control early in the time course, which is indicated 
by increasing SS values for these curves within the first 3 h 
(Figure  5A), whereas the −Fe condition diverges very slightly 
from the control throughout the entire 24-h span. The SS 
values comparing the similarity between the Heat and Control 
conditions show distinctively different characteristics compared 
to the −Fe vs. Control profile in magnitude and timing, showing 
intervals of both increasing dissimilarity (0–12 h and 20–24 h, 
Figure 5A) and decreasing dissimilarity (12–20 h, Figure 5A). 
SS values for the −Fe+Heat vs. Control are different in magnitude 
from the aforementioned SS values, where the characteristics 
are more similar to the control than the Heat condition but less 
similar to the control than the −Fe experiment for most of the time 
course. This was further affirmed by looking at the integration of 
these SS signals over the entire 24-h experiment to assess overall 
dissimilarity (Figure 5B). This suggests that, according to our 
pipeline analysis, an interaction between stress pathways exists, 
but the overall effect on CYCB1;1:GFP expression is antagonistic.

DIsCUssIOn AnD COnClUsIOn
Abiotic stresses affect development, in part, by altering the size, 
shape and number of cells, which is controlled by progression 
through the cell cycle. Our computational approach of using image 
analysis to quantify root growth showed that growth was inhibited 
more in −Fe and Heat conditions than in −Fe+Heat conditions. 
Furthermore, our approach was used to extract spatiotemporal 
gene expression data. This allowed us to observe many aspects 
of how and when CYCB1;1:GFP patterns are altered due to iron 
deficiency stress, heat stress, and a combination of both conditions, 
which have certain implications on cell division. We found that 
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overall, CYCB1;1 spatiotemporal patterns were affected by both of 
these stresses individually and combinationatorially in as early as 3 
h. However, the timing and magnitude to which they were affected 
appeared to differ under combined stress condition compared to 
single stress conditions alone. Our observation of CYCB1;1:GFP 
tracking revealed there to be an apparent temporal relationship 
between the temporal prolonging of CYCB1;1:GFP expression 
and root growth inhibition which could explain the increased 
root growth in the −Fe+Heat condition since the combined 
stress condition had overall lower PERSISTENCY AVERAGE; 
however, root growth is a physiological outcome that is controlled 
by a network of genes, and by assessing the characteristics of 
CYCB1;1:GFP, one may not be able to conclude causation of root 
growth, particularly because root cell elongation had likely been 
affected by either stress, which would also contribute to root 
elongation. Thus, we show how our approach has the potential to 
reveal underlying mechanisms by observing molecular and organ 
level characteristics at high temporal resolution. We conclude from 
these observations that these two stress pathways could interact 
which may cause the plant to regulate genes in a completely unique 
way apart from iron deficiency or heat stresses alone resulting in an 
antagonistic outcome on the biological reporters we have selected.

Our results are consistent with previous studies that have 
concluded not only that plant gene regulation cannot be predicted 
in many combinatorial stresses just by observing the regulation 
of each stress response individually, but also that combinatorial 
stresses trigger unique stress responses relative to that of single 
stress responses (Kilian et al., 2012; Rivero et al., 2014). Moreover, 
with respect to iron-centric studies, increased iron availability 
is implicated in promoting both root meristematic cell division 
and CYCB1 expression in petunia and has established roles in 
regulating primary root elongation (Landsberg, 1996; López-Bucio 
et al., 2003; Gharagozloo et al., 2008; Gruber et al., 2013; Hilo et al., 
2017). Furthermore, heat stress is also known to reduce primary 
root growth and promote G2/M phase arrest in root meristematic 
cells (Zhao et al., 2014). Established relationships with either iron or 
heat stress within roots are consistent with our findings of apparent 
cell cycle arrest, based on dynamics changes in CYCB1;1:GFP, 

in all stress conditions. Little is known about the combinatorial 
interactions of heat and iron stress in plants, particularly in root 
cells. However, it has been shown that moderate heat stress causes 
ferroptosis-like cell death in root hair cells. Ferroptosis, identified 
first in animal cells, is a type of cell death that occurs in response to 
moderate heat stress and is dependent on cellular iron availability 
and mediated by ROS accumulation (Mushegian, 2017). In recent 
studies, ferroptosis-like cell death has been identified in root 
hair cells in which moderate heat stress induces cell death that is 
mediated by ROS accumulation, as in animal cells (Distéfano et al., 
2017). However, in combination with iron chelators, heat stress is 
unable to induce cell death; thus, iron deficiency via chelation has 
been shown to attenuate a moderate heat stress response (Distéfano 
et al., 2017). Similarly, our results suggest that heat stress and iron 
deficiency, which was induced by iron chelation, interact in an 
opposing manner to regulate the cellular life cycle. Moreover, heat 
stress triggers ROS production, resulting in either root acclimation 
to stress or cell death; however, heat stress in combination with 
other abiotic stresses, such as drought or salinity, results in unique 
patterns of ROS production relative to those produced by heat 
single stress (Kilian et al., 2012; Choudhury et al., 2017). It is likely 
that heat stress responses, in concert with iron deficiency stress 
responses function antagonistically to each other so that cellular 
ROS production is inhibited and, thus, ROS-induced or iron-
dependent (ferroptosis) cell death was mitigated. Moreover, it is 
also possible that the stress responses induced by iron deficiency 
primed, or acclimated, the root to the subsequent heat stress 
condition, especially since priming, or desensitization of a plant 
from one stress by another previous stress has been observed 
(Kilian et al., 2012).

Since iron deficiency causes the malnutrition of billions of 
individuals worldwide and there is currently a rise in global 
temperatures, it is very likely that these two stresses commonly 
appear in combination to many crops all over the world (Stein, 
2010). While our laboratory growth conditions may not fully 
reflect field conditions in which crops are grown, we attempted 
to emulate aspects of field-like characteristics such as a short (80 
min) heat stress application and constant 24-h iron deficiency 

FIgURE 5 | Sum of squares comparison of conditions. (A) Sum of squares analysis was performed every 20 min interval by comparing the high dimensional 
CYCB1;1:GFP data of stress-inducing experiments to the control. (B) The profiles from (A) were integrated across time to get overall dynamic similarities 
between treatments.
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application, which is commonly used to reflect fluctuating heat 
over a 24-h period and prolong nutrient deficiencies, respectively. 
Our findings and methods shed new light on how plant responses 
to combinatorial stress conditions may be non-intuitive. Moreover, 
we provide a computational approach that can be adapted to study 
a broad application of spatiotemporal dynamics of gene regulation 
under diverse developmental and environmental conditions. We 
have designed our approach such that it can be customizable to 
many different applications for gaining insight on the effects that 
environment has on plant growth. Specifically, our approach can 
be used to transform high volumes of fluorescence microscopy 
image data, containing specimens with fluorescent-tagged genetic 
markers, into quantitative spatiotemporal metrics. These metrics 
can then, as shown here, give biological insight into the timing and 
characteristics of plant responses under single and multiple stresses.

MATERIAls AnD METhODs

Plant growth and seed Preparation
The Arabidopsis thaliana pCYCLINB1;1:CYCLINB1;1::GFP in 
a Columbia (Col-0) background was used for all experiments. 
Seeds were sterilized in 70% ethanol for 5 min followed by 
incubation in 30% bleach and 0.02% Triton X-100 for 15 min. 
Then, seeds were rinsed 3 times in sterile water and stratified at 
4°C for at least 2 days. Seeds were germinated and grown in a 
MAGIC 3D printed growth chamber as described in (de Luis 
Balaguer et al., 2016). Each seed was germinated in 13-mm-long 
FEP tube, containing iron-sufficient (+Fe) MS low gelling media, 
consisting of standard Murashige and Skoog medium with 
0.05% MES (w/v), 1% (w/v) sucrose, 0.4% (w/v) low gelling agar, 
and 0.1-mM FeEDTA substituted for iron sulfate. Each tube 
was oriented vertically, held upright by standard +Fe MS solid 
media in plates which were kept at 22°C under a 16-h-light and 
an 8-h-dark period in environmentally-controlled plant growth 
chambers (Percival Scientific).

On the 4th day after planting, seedlings were prepared for 
imaging. To induce iron deficiency, +Fe low gelling medium 
was replaced with −Fe low gelling medium, which had the same 
composition of +MS low gelling media, except that 300 μM 
ferrozine was added as an iron chelator. For the biological replicates 
that were induced with heat stress, the imaging chamber was 
programmed to incubate the specimens at 38°C for 80 min starting 
at the 2-h mark from the beginning of the imaging experiment. For 
all other times outside of the heat stress window and for specimens 
not induced with heat stress, the chamber was programmed to 
incubate at 22°C. Each experiment, iron sufficient (+Fe), iron 
deficient (−Fe), heat stress (Heat), and iron deficient with heat 
stress (−Fe+Heat), used 3–4 seedlings as individual replicates.

light sheet Microscopy and  
Imaging Chamber
The ZEISS Lightsheet Z.1 microscope (Carl Zeiss, Germany) 
was used for all imaging experiments. All settings related to 
imaging configuration and imaging chamber environment of the 
microscope were adjusted using the ZEN software from ZEISS.

The MAGIC chamber was lowered into the light sheet where 
the meristematic region of each root was imaged using a W 
Plan-Apochromat 20x/1.0 NA objective (Carl Zeiss, Germany). 
Two image channels were taken simultaneously of each plant, 
a 3D fluorescent channel and a 3D brightfield channel. In the 
fluorescent channel, the laser was set to single-side excitation with 
settings of 488 nm, 50 mW, laser intensity set to 60%, and the 
exposure time was set to 29.97 ms. The SBS LP 560 beam splitter 
and BP505-545 emission filter were used to detect GFP emissions. 
Both the fluorescent images and the brightfield images were taken 
at a pixel resolution of 0.23 μm × 0.23 μm and a z-slice interval 
of 3.33 μm. The microscope was programmed to image each root 
every 20 min for 24 h. Every 20 min from the beginning to the end 
of any experiment is considered a timestamp. This time interval 
was chosen because it was determined to be a good sampling 
frequency for observing cell cycle changes in A. thaliana.

Dynamic Cell Cycle Metrics Descriptions 
and low Pass Filtering
The images taken from the light sheet were processed to track 
fluorescent CYCB1;1:GFP ROI over space and time using 
the BioVision Tracker software (Buckner et al., 2018). We 
further processed the data about the ROIs that were collected 
from the software into metrics that help characterize average 
spatiotemporal CYCB1;1:GFP signal patterns at any one time 
stamp. The following metrics were collected for each image that 
was taken.

1. PERSISTENCY AVERAGE (X1)—The average persistency 
measure of all ROIs detected.

2. PERSISTENCY SPREAD (X2)—This is the standard deviation 
of collected persistency measures from all ROIs in a single 
time point.

3. PERSISTENCY ADDITIVE (X3)—Each ROI has a persistency 
measure which is the length of time that each ROI has been 
and will be tracked (in hours). Persistency additive is the sum 
of all visible ROI’s persistency measures in a single time point.

4. AVERAGE NUMBER (X4)—This is the average number of 
ROIs detected at any one time stamp.

5. NEW APPEARANCE (X5)—This is the number of ROIs 
that first appear and begin to be tracked in the evaluated 
time stamp.

6. TRACK END (X6)—This is the number of ROIs that stopped 
being visible during that time stamp and thus stopped being 
tracked at that time.

7. TIP DISTANCE AVERAGE (X7)—This is the average distance 
away from the tip (in microns) ROIs appeared within the root 
at that time stamp.

8. TIP DISTANCE SPREAD (X8)—This is the standard deviation 
of ROI distances away from the tip of the root at that time stamp.

9. CENTER DISTANCE AVERAGE (X9)—This is the average 
distance away from the longitudinal axis (in microns) ROIs 
appeared within the root at that time stamp.

10. CENTER DISTANCE SPREAD (X10)—This is the standard 
deviation of ROI distances away from the longitudinal axis of 
the root at that time stamp.
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These 10 metrics were collected for each 20-min imaging 
timestamp across all replicates in each environmental condition. 
Let X ni k

r
, ( ) ,represent the discrete time signal for metric k, 

condition i, replicate r, and time stamp t, and let h(n) represent 
the following digital filter.

 h n
k

( ) ( ),= −
= −

∑ 1
10

4

δ n k
S

 

where δ is the Dirac delta function.
All time signals were filtered by convolving them with h(n).

 F n X h ni k
r

i k
r
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The overall metric profiles were calculated using the average 
filtered signal across all replicates in each environmental 
condition. Here, Ri is the number of biological replicates used for 
each condition i.
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sum of squares Pairwise Comparisons
Each metric profile was aggregated together to create a 
10-dimensional profile. Here, T stands for the transpose 
operation of a matrix.
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To compare any two profiles (Pi(n) vs. Pj(n)), first each metric 
was normalized between 0 and 1.

 
P n M P ni i

′ = ×−( ) ( ),1

 

where M is a 10 × 10-diagonal matrix that contains the highest 
observed value across all experiments for each of the 10 metrics.

A sum of squares (SS) operation was then completed across 
all metrics.
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×11 10 1  ))
 

To evaluate the overall SS value across all time (SST), the SS 
values for each time stamp were summed together. Here, N is the 
number of total time stamps found in the imaging experiment, 
which is 72 for this study.

 SST SS ni j i j N, , ( )= × ×1 1  

MAgIC Root growth Assay
Using the 24-h time-course image data from the environmental 
experiments, a growth vector was calculated to represent the growth 
of the root between any two consecutive time stamps using image 

registration in the BioVision Tracker Software. The magnitude 
of each growth vector g ni

r ( )was determined using a euclidean 
distance calculation for each replicate r, condition i, and time stamp 
n. This magnitude was translated into distances in microns from 
distances in voxels using the voxel resolution value (α) obtained 
from the light sheet metadata. For each root, the total growth at 
time stamp n was calculated using the following equation.

 
G n agi

r
i
r

n

( ) ( )= ∑
µ

µ
=1

 

Bioluminescence Assay
The promoter sequences of BTS: (3,000 bp) using 
5’-caccATGAGATGAAATGTCTTATCTTTAT-3’ and 5’-TTCC 
CCCAAAGCTTATCTCCGTTTT -3’, and PYE: (1,120 bp) 5’-ca 
ccACCGCAAAACTATATATAGTATTT-3’ and 5’-CTTTGCTTT 
TATTACAGAACAAGA-3’, were amplified from genomic 
DNA from Columbia (Col-0) as the template. Each promoter 
region was cloned into pENTR/D-TOPO then transferred to the 
pFLASH vector, containing the firefly luciferase gene, containing 
a spectinomycin resistance gene. Transformation and selection 
proceeded as described in Long et al., 2010. The resultant 
reporter lines pBTS::LUC5-1, pBTS::LUC2-3, pPYE::LUC4-2, and 
pPYE::LUC5-5 were germinated on iron sufficient MS media for 
4 days. On the 4th day, seedlings were transferred to new (iron 
sufficient or iron deficient) media plates. Seedlings were sprayed 
with 5-mM D-luciferin (Goldbio) in 0.1% Triton X-100 8 h 
prior to transferring. After transfer, plates were acclimated in the 
percival for 2 h then half of the plates were put in a 38°C water bath 
for 80 min (as described above). Bioluminescence imaging was 
performed and the first image was taken 4 h after transfer. Images 
were acquired every 2 h with exposure times of 20 min across 2 
consecutive days. Images were processed using software ImageJ 
(Schneider et al., 2012). All experimental treatments contain three 
biological replicates (n = 3) with three seedlings for each replicate. 
A two-sample t-test was run for all pairwise comparisons using the 
MATLAB function ttest2.m.
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