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Oligo painting FISH was established to identify all chromosomes in banana (Musa spp.) 
and to anchor pseudomolecules of reference genome sequence of Musa acuminata 
spp. malaccensis “DH Pahang” to individual chromosomes in situ. A total of 19 
chromosome/chromosome-arm specific oligo painting probes were developed and 
were shown to be suitable for molecular cytogenetic studies in genus Musa. For the 
first time, molecular karyotypes of diploid M. acuminata spp. malaccensis (A genome), 
M. balbisiana (B genome), and M. schizocarpa (S genome) from the Eumusa section of 
Musa, which contributed to the evolution of edible banana cultivars, were established. 
This was achieved after a combined use of oligo painting probes and a set of previously 
developed banana cytogenetic markers. The density of oligo painting probes was 
sufficient to study chromosomal rearrangements on mitotic as well as on meiotic 
pachytene chromosomes. This advance will enable comparative FISH mapping and 
identification of chromosomal translocations which accompanied genome evolution 
and speciation in the family Musaceae.

Keywords: banana, chromosome identification, fluorescence in situ hybridization, molecular karyotype, Musa, 
oligo painting FISH

INTRODUCTION 
Bananas (Musa spp.) are grown in tropical and subtropical regions of South East Asia, Africa and 
South America (Häkkinen, 2013; Janssens et al., 2016). They are one of the world’s major fruit 
crops, a staple and important export commodity for millions of people living mainly in developing 
countries. Despite the importance and breeding efforts (Ortiz and Swennen, 2014; Brown et al., 
2017), little is known about banana genome structure, organization and evolution at chromosomal 
level across the whole Musaceae family.

The genus Musa comprises about 75 species and numerous cultivated edible clones. Based on a 
set of morphological descriptors (IPGRI-INIBAP/CIRAD, 1996) and basic chromosome number (x), 
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the genus Musa has traditionally been divided into four sections: 
Eumusa (x = 11), Rhodochlamys (x = 11), Australimusa (x = 10), 
and Callimusa (x = 9, 10) (Cheesman, 1947). Argent (1976) created 
a separate section Ingentimusa which contains a single species 
Musa ingens with the lowest basic chromosome number (x = 7). 
However, genotyping using molecular markers revealed close 
relationship of M. ingens with other species of sections Callimusa 
and Australimusa (Li et al., 2010). Most of the modern edible banana 
clones originated within section Eumusa after intra- and inter-
specific crosses between two wild diploid species M. acuminata 
(donor of A genome) and M. balbisiana (donor of B genome). In 
some cases, diploid M. schizocarpa (S genome) contributed to the 
evolution of edible clones, mainly after cross-breeding with diploid 
M. acuminata (Carreel et al., 1994; Čížková et al., 2013; Němečková 
et al., 2018). The spontaneous intra- and inter-specific crosses gave 
arise to seed sterile diploid (AA, AB) and triploid (AAA, AAB, or 
ABB) edible banana cultivars. Although tetraploid clones (AAAB, 
AABB) that originated spontaneously are known (Simmonds and 
Shepherd, 1955; Simmonds, 1956), currently cultivated tetraploid 
bananas were obtained in the breeding programs.

Species of genus Musa have a relatively small genome, ranging 
from 550 to 750 Mbp/1C (Doležel et al., 1994; Lysák et al., 1999; 
Asif et al., 2001; Kamaté et al., 2001; Bartoš et al., 2005; Čížková 
et al., 2015) and until now it was possible to identify only a few 
chromosomes in their karyotypes. The attempts were hampered 
by the relatively high number of chromosomes, their small size 
at mitotic metaphase (1–2 µm) and morphological similarity 
(Doleželová et al., 1998; Osuji et al., 1998; D’Hont et al., 2000). 
Chromosome banding, which was found informative in plant 
species with large and repeat-rich genomes, including wheat 
and rye (Gill and Kimber, 1977; Gill et al., 1991), did not result 
in diagnostic chromosome banding patterns in Musa, similar to 
many other plant species (Greilhuber, 1977; Schubert et al., 2001).

The application of fluorescence in situ hybridization (FISH), 
usually done with probes for DNA repeats with chromosome-
specific distribution, provided a powerful approach to identify 
chromosomes in a range of plant species and study chromosome 
structural changes (e.g., Liu et al., 2011; Danilova et al., 2014; 
Amosova et al., 2017; Hou et al., 2018). Unfortunately, its use in Musa 
was hampered by the lack of suitable probes (Doleželová et al., 1998; 
Osuji et al., 1998; Valárik et al., 2002; Hřibová et al., 2007; Čížková 
et al., 2013). Until now, only NOR-bearing satellite chromosome, 
two chromosomes with clusters of tandem repeats CL18 and CL33, 
and two chromosomes bearing 5S rDNA loci can be cytogenetically 
identified in M. acuminata and M. balbisiana (Čížková et al., 2013). 
In M. schizocarpa, one chromosome pair bearing NOR and two 
chromosome pairs bearing tandem repeats CL18 and CL33 and 
other four chromosome pairs with 5S rDNA loci can be identified 
cytogenetically (Čížková et al., 2013). Even the mining of the 
reference genome sequence of M. acuminata “DH Pahang” (D’Hont 
et al., 2012) did not result in identification of sequences suitable 
as FISH probes useful for unambiguous identification of all Musa 
chromosomes and their anchoring to the genome sequence.

A method for chromosome painting, which allows fluorescent 
labeling of whole chromosomes, was developed in the late 1980s. This 
advance revolutionized human cytogenetics and found numerous 
applications in animal cytogenetics (e.g., Speicher et al., 1996; 

Cremer and Cremer, 2001; Ferguson-Smith and Trifonov, 2007). 
The original method was based on FISH with whole chromosome 
probes obtained from chromosomes isolated by flow cytometric 
sorting or microdissection. This was the reason why the method 
failed in plants where a majority of DNA repeats is distributed 
across the whole genome and only a minority of sequences are 
unique and chromosome-specific (Schubert et al., 2001). A 
solution was to use pools of chromosome-specific BAC (Bacterial 
Artificial Chromosome) clones (Lysák et al., 2001). However, the 
development of chromosome BAC pools requires whole genome 
sequence obtained after clone by clone (BAC by BAC) sequencing to 
identify single or low copy BAC clones useful for painting. Thus, the 
method is suitable for species with small genomes and containing 
low amounts of DNA repeats. Till now, painting using chromosome-
specific BAC pools was used in dicotyledonous species with small 
nuclear genomes— Arabidopsis and its closely related species (e.g., 
Lysák et al., 2001; Mandáková and Lysák, 2008; Mandáková et al., 
2013) as well as in monocot Brachypodium distachyon (Idziak et al., 
2014). The attempts to use BAC FISH in banana were not successful 
due to the lack of a larger number of BAC clones containing single 
or low copy sequences (Hřibová et al., 2008).

The recent progress in the production of reference genome 
sequences and in technologies for DNA synthesis provided an 
alternative opportunity for affordable preparation of whole 
chromosome probes (chromosome paints) for FISH. The method 
called oligo painting FISH (Han et al., 2015) is based on in silico 
identification of large numbers of short (usually 45–50 bp) and 
unique (single copy) sequences in pseudomolecules of individual 
chromosomes, or their parts, synthesis of oligonucleotides, and 
their fluorescent labeling. A pool of synthesized and fluorescently 
labeled oligonucleotides is then used as a probe for FISH. Thus, 
the oligo painting FISH provides an opportunity to identify 
individual chromosomes and chromosome regions in Musa, 
perform comparative chromosome analysis and characterize 
chromosomal rearrangements (Qu et al., 2017; Braz et al., 2018; 
Xin et al., 2018; Jiang, 2019).

The present study fills the important gap in molecular 
cytogenetics of Musa. The application of oligo painting 
FISH described here allows anchoring genome sequence to 
chromosomes in situ and unambiguous identification of all Musa 
chromosomes after development of molecular karyotypes by a 
combined use of oligo painting probes and existing cytogenetic 
landmarks. Molecular karyotypes are described and compared 
for the three main genomes of Eumusa section—M. acuminata 
ssp. malaccensis, M. balbisiana, and M. schizocarpa, which 
contributed to the evolution of many edible banana clones.

MATeRIAlS AND MeTHODS

Plant Material and Preparations of 
Chromosome Spreads
Representatives of three species from the section Eumusa were 
obtained as in vitro rooted plants from the International Musa 
Transit Centre (ITC, Bioversity International, Leuven, Belgium). 
In vitro plants were transferred to garden soil and maintained in a 
heated greenhouse. Table 1 lists the accessions used in this study. 
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Male buds of M. acuminata “Pahang” and M. balbisiana “Tani” 
were obtained from the research station of the International 
Institute of Tropical Agriculture in Sendusu, Uganda.

Actively growing root tips (~1 cm long) were collected 
into 50-mM phosphate buffer (pH 7.0) containing 0.2% 
(v/v) β-mercaptoethanol, pre-treated in 0.05% (w/v) 
8-hydroxyquinoline for three hours at room temperature, fixed 
in 3:1 ethanol:acetic acid fixative overnight, and stored in 70% 
ethanol. Preparation of protoplast suspensions was performed 
according to Doležel et al. (1998). Briefly, after digesting root 
tip segments in a mixture of 2% (w/v) cellulase and 2% (w/v) 
pectinase in 75-mM KCl and 7.5-mM EDTA (pH 4) for 90 min at 
30°C, the suspension of resulting protoplasts was filtered through 
a 150-μm nylon mesh, pelleted, and washed in 70% ethanol. For 
further use, the protoplast suspension was stored in 70% ethanol 
at −20°C. Mitotic metaphase chromosome spreads were prepared 
by dropping method according to Doležel et al. (1998), the slides 
were postfixed in 4% (v/v) formaldehyde solution in 2x SSC 
solution and used for FISH.

Preparation of pachytene chromosome spreads was performed 
according to Mandáková and Lysák (2008), with minor 
modifications. Male flowers were fixed in 3:1 ethanol:acetic acid 
fixative overnight and stored in 70% ethanol at −20°C. Anthers 
were incubated in 0.3% (w/v) mix of cellulase, cytohelicase, 
and pectolyase (Sigma Aldrich, Darmstadt, Germany) for 30 
min at 37°C. After the incubation in the enzyme mixture, the 
anthers were dissected in a drop of 60% (v/v) acetic acid on a 
microscopic slide and spread on the slide placed on a metal 
hot plate (50°C) after adding 60% (v/v) acetic acid for 25 s. The 
preparations were fixed in 3:1 ethanol:acetic acid fixative, air-
dried, and used for FISH.

Identification of Specific Oligomers and 
labeling of the Oligo Probes
Oligomers specific for individual chromosome arms were 
identified in the reference genome sequence of M. acuminata 
“DH Pahang” v.2 (Martin et al., 2016) using Chorus pipeline (Han 
et al., 2015). Sets of 20,000 oligomers (45-mers) per one library 
were synthesized by Arbor Biosciences (Ann Arbor, Michigan, 
USA). Labeled oligomer probes were prepared according to Han 
et al. (2015). Briefly, the oligomer libraries were amplified using 
emulsion PCR (Murgha et al., 2014), where F primer contained 
T7 RNA polymerase promoter. The emulsified PCR product was 

washed with water-saturated diethyl ether and ethyl acetate and 
purified with QIAquick PCR purification kit (Qiagen, Hilden, 
Germany). The product (480 ng DNA) was used for T7 in vitro 
transcription with MEGAshortscript T7 Kit (ThermoFisher 
Scientific/Invitrogen, Waltham, Massachusetts, USA) at 37°C 
for 4 h. The RNA product was purified using RNeasy Mini 
Kit (Qiagen) and 42 μg of RNA was reverse-transcribed with 
either digoxigenin-, biotin-, or CY5-labeled R primer (Eurofins 
Genomics, Ebersberg, Germany) using Superscript II Reverse 
Transcriptase and SUPERase-In RNase inhibitor (ThermoFisher 
Scientific/Invitrogen). The RNA : DNA hybrids were cleaned 
with Quick-RNA MiniPrep Kit (Zymo Research, Freiburg 
im Breisgau, Germany) and hydrolyzed with RNase H (New 
England Biolabs, Ipswich, Massachusetts, USA) and finally with 
RNase A (ThermoFisher Scientific/Invitrogen). The products 
were purified with Quick-RNA MiniPrep Kit (Zymo Research) 
and eluted with nuclease-free water to obtain single-stranded 
labeled oligomers, which were used as FISH probes.

Preparation of Other Cytogenetic Markers 
for FISH
Probes specific for ribosomal DNA sequences were prepared by 
labeling Radka1 (part of 26S rRNA gene) and Radka2 (contains 
5S rRNA gene and non-transcribed spacer) DNA clones (Valárik 
et al., 2002) with biotin-16-dUTP (Roche Applied Science, 
Penzberg, Germany) or aminoallyl-dUTP-CY5 (Jena Biosciences, 
Jena, Germany) by PCR using T3 (forward) and T7 (reverse) 
primers (Invitrogen). Probes for tandem repeats CL18 and CL33 
(Hřibová et al., 2010) were amplified using specific primers and 
labeled with aminoallyl-dUTP-CY5 or fluorescein-12-dUTP 
(Jena Biosciences, Jena, Germany) by PCR according to Čížková 
et al. (2013). Single copy BAC clone 2G17 (Hřibová et al., 2008) 
was labeled by digoxigenin-11-dUTP nick translation following 
manufacturer’s recommendation (Roche Applied Science, 
Penzberg, Germany).

Fluorescence In Situ Hybridization and 
Image Analysis
Hybridization mix (30 µl) containing 50% (v/v) formamide, 
10% (w/v) dextran sulfate in 2x SSC and 10 ng/µl of labeled 
probe was added onto slide and denatured for 3 min at 80°C. 
Hybridization was carried out overnight at 37°C. The sites of 

TABle 1 | List of analyzed accessions, their genomic constitution, genome size, and the number of loci identified on mitotic metaphase chromosomes (data from 
Čížková et al., 2013).

Species Accession 
name

ITC codea Genomic 
constitution

Genome size 
(1C)

Chromosome 
number (2n)

The number of loci in diploid cells (2n = 22)

45S rDNA 5S rDNA BAC 2G17 Cl33 Cl18

M. acuminata ssp. 
malaccensis

Pahang 0609 AA 594 Mbpb 22 2 6 2 4 2

M. balbisiana Tani 1120 BB 551 Mbpb 22 2 6 2 0 4
M. schizocarpa Schizocarpa 0560 SS 671 Mbpb 22 2 12 2 4 2

aCode assigned by the International Transit Centre (ITC, Leuven, Belgium)
bDNA content was estimated by flow cytometry using Glycine max L. cv. Polanka (2C = 2.5pg DNA) which served as an internal reference standard (Čížková et al., 2013).
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hybridization of digoxigenin- and biotin-labeled probes were 
detected using anti-digoxigenin-FITC (Roche Applied Science) 
and streptavidin-Cy3 (ThermoFisher Scientific/Invitrogen), 
respectively. Chromosomes were counterstained with DAPI 
and mounted in VECTASHIELD Antifade Mounting Medium 
(Vector Laboratories, Burlingame, CA, USA). The slides were 
examined with Axio Imager Z.2 Zeiss microscope (Zeiss, 
Oberkochen, Germany) equipped with Cool Cube 1 camera 
(Metasystems, Altlussheim, Germany) and appropriate optical 
filters. The capture of fluorescence signals, merging the layers, 
and measurement of chromosome length were performed with 
ISIS software 5.4.7 (Metasystems), the final image adjustment 
and creation of idiograms were done in Adobe Photoshop CS5.

ReSUlTS

Development of Chromosome Painting 
Probes and In Situ Hybridization
In order to produce chromosome arm-specific painting probes, 
unique k- mers were identified according to Han et al. (2015) in 
the reference genome sequence of the doubled haploid banana (M. 
acuminata “DH Pahang”; Martin et al., 2016) and analyzed with 
the Chorus program (https://github.com/forrestzhang/Chorus). 
While eight pseudomolecules corresponded to metacentric 
chromosomes, pseudomolecules 1, 2, and 10 appeared to be 
acrocentric with peri-centromeric region occupying an entire 
chromosome arm. The density of unique oligomers was lower in 
peri-centromeric regions in all pseudomolecules (Supplementary 
Figure S1) and these regions were excluded from the selection of 
oligomers for painting probes. The number of unique oligomers 
ranged from 79,896 to 127,835 for pseudomolecules 2 and 
6, respectively. Sets of 20,000 45-mers specific to individual 
chromosome arms were then selected in Chorus, synthesized 
as so called immortal libraries and labeled directly by Cy5 or 
indirectly by biotin or digoxigenin as described in Materials 
and Methods. Oligomer libraries were designed to achieve a 
density of 0.9 to 2.1 oligomers per 1-kb chromosome sequence 
(Supplementary Table S1). To confirm that it is not possible to 
paint peri-centromeric regions with low oligomer densities and 
large gaps between low copy oligomers, a painting probe was 
prepared from peri-centromeric region of pseudomolecule 3. 
In total, 8,317 oligomers spanning this region (~10.5 Mb long) 
ensured an average density of ~0.8 oligomers/kb.

First, the painting probes were hybridized to mitotic metaphase 
chromosomes spreads of M. acuminata ssp. malaccensis (A 
genome)—the genotype from which the Musa reference genome 
sequence was developed. FISH with the painting probes resulted 
in visible signals covering chromosome arms along their lengths 
(Figures 1A–F). This observation confirmed that the probes 
had the expected parameters. Moreover, because the painting 
highlighted individual chromosome arms, it was possible to 
anchor pseudomolecules to individual chromosome arms. This 
work revealed that in the assembly, pseudomolecules 1, 6, 7 start 
with long arms and end with short arms, i.e., they are oriented 
inversely to the way karyotypes are presented, where the short 
arm of the chromosome is on top and the long arm on the bottom.

Following this, the painting probes were used for FISH in M. 
balbisiana (B genome) and M. schizocarpa (S genome) (Figures 
1B, G, H). Comparison of chromosome and/or chromosome-arm 
painting in M. acuminata ssp. malaccensis and M. schizocarpa did 
not reveal any large chromosome translocations differentiating 
both species. On the other hand, a large translocation of the long 
arm of chromosome 3 to long (painted) arm of chromosome 1 
was found in M. balbisiana (Figure 1B).

The small size of condensed mitotic metaphase chromosomes 
reduces the longitudinal resolution of chromosome painting 
and hence a chance to discover small structural rearrangements. 
An alternative is to perform chromosome painting with meiotic 
pachytene chromosomes (Figure 2) which are approximately fifty 
times longer. When hybridized to pachytene chromosome spreads 
of M. acuminata ssp. malaccensis, painting probes provided visible 
signals and the opportunity to analyze chromosome structure in 
more detail. This experiment showed that banana chromosomes 
do not contain large blocks of heterochromatin in distal and 
subtelomeric regions (Figure 2). Taking the advantage of higher 
spatial resolution, the set of oligo painting probes developed in this 
work will be suitable to visualize meiotic processes such as crossing 
over and synapsis. Following this, pachytene chromosome spreads 
of M. acuminata ssp. malaccensis were used to evaluate the signal 
of peri-centromeric painting probe designed for chromosome 3. 
FISH with the probe did not result in a continuous signal along 
the whole region. Instead, discontinuous signals, with signal-free 
gaps along most of the (peri-)centromeric region of chromosome 
3 (Figure 2B), were observed. Based on this observation, painting 
probes were not designed for (peri-)centromeric regions of the 
remaining ten banana chromosomes.

Integration of Cytogenetic landmarks 
and Oligopaints
In order to utilize the existing probes for FISH in Musa and 
develop a highly informative toolbox to characterize Musa 
chromosome structure, the existing cytogenetic landmarks were 
integrated with the painting probes.

45S rRNA genes mapped to secondary constriction located on 
non-painted arm of chromosome 10 in all three Musa species. The 
probe for 5S rRNA genes localized to different chromosome regions 
and on different chromosomes in the three Musa species studied. 
In M. acuminata ssp. malaccensis, six signals of 5S rDNA were 
observed on mitotic metaphase plates and were localized in sub-
telomeric region of chromosome 1 and long arm of chromosome 
8, and in peri-centromeric region on short arm of chromosome 3. 
Six hybridization signals with 5S rDNA probe were observed also 
in mitotic metaphase plate of M. balbisiana. Two pairs of strong 
signals were localized in sub-telomeric region of chromosome 
2 (non-painted arm) and in peri-centromeric region of the long 
arm of chromosome 3. Additional weak signal was observed 
in peri-centromeric region of the long arm of chromosome 6 
(Figures 3 and 4). In M. schizocarpa, three pairs of strong signals 
and three pairs of weaker signals were observed after FISH with 
5S rDNA probe on mitotic metaphase plate. Sub-telomeric region 
of chromosome 1 (non-painted arm) and peri-centromeric region 
of short arm of chromosome 3 and long arm of chromosome 4 
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FIGURe 1 | Oligo painting FISH on mitotic metaphase plates of three species of Musa. (A) M. acuminata ssp. malaccensis “Pahang” (2n = 22, AA; chromosome 1 
in red, chromosome 3 in green). (B) M. balbisiana “Tani” (2n = 22, BB; chromosome 1 in red, chromosome 3 in green). (C) M. acuminata ssp. malaccensis “Pahang” 
(2n = 22, AA; short arm of chromosome 4 in green, its long arm in red). (D) M. acuminata ssp. malaccensis “Pahang” (2n = 22, AA; short arm of chromosome 5 
in red, its long arm in green). (e) M. acuminata ssp. malaccensis “Pahang” (2n = 22, AA; chromosome 6 in red, chromosome 7 in green. (F) M. acuminata ssp. 
malaccensis “Pahang” (2n = 22, AA; chromosome 10 in red, chromosome 11 in green. (G) Musa schizocarpa “Schizocarpa” (2n = 2x = 22, SS; chromosome 8 
in red, chromosome 2 in green). (H) Musa schizocarpa “Schizocarpa” (2n = 2x = 22, SS; chromosome 11 in red, chromosome 9 in green). Chromosomes were 
counterstained with DAPI (blue). Arrows point to the region of chromosome 3 translocated to chromosome 1 in M. balbisiana. Bars = 5 µm.
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contained strong signals of 5S rDNA. Additional weaker signals of 
5S rDNA probe were observed in peri-centromeric regions of short 
arm of chromosome 8 and short arm of chromosome 11, as well as 
on the non-painted arm of chromosome 10 (Figures 3 and 4).

Tandem organized repeats CL18, CL33, and BAC clone 2G17 
were localized on non-painted arm of chromosome 1 in all three 
Musa species, except satellite CL33, which was not detected 
on any chromosome in M. balbisiana. In contrast, additional 
signal of tandem repeat CL33 located on non-painted arm of 
chromosome 2 was observed in M. acuminata ssp. malaccensis 
and in M. schizocarpa (Figures 3 and 4). Finally, additional signal 
of tandem repeat CL18 was observed in M. balbisiana on the 
non-painted arm of chromosome 2.

DISCUSSION
Until recently, chromosome painting could be used only in plants 
whose genomes were sequenced clone by clone (The Arabidopsis 
Genome Initiative, 2000; The International Brachypodium 

Initiative, 2010) and chromosome painting was achieved by 
FISH with pools of single copy BAC clones that covered entire 
chromosomes. Importantly, chromosome paints developed in 
one species could be used in related species, providing a powerful 
approach for comparative karyotype analysis and for tracing 
karyotype changes during the evolution and speciation (e.g., 
Lysák et al., 2001; Idziak et al., 2014). Unfortunately, this painting 
method cannot be used in species with large genomes due to the 
prevalence of repetitive DNA and in species not closely related to 
those for which painting using BAC pools was developed.

The progress in DNA sequencing technology and assembly 
algorithms resulted in a shift from the clone by clone sequencing 
to shotgun sequencing and a majority of plant genomes has 
been sequenced in this way (Hamilton and Buell, 2012; Zimin 
et al., 2017; Belser et al., 2018). The availability of reference 
genome sequences and the affordable cost of synthesizing short 
oligonucleotides offered a direct way to develop chromosome 
paints (Han et al., 2015). Here, thousands of short single copy 
sequences are identified, bulk synthesized, fluorescently labeled 
and used as probes for FISH (Han et al., 2015). Pools of labeled 

FIGURe 2 | Oligo painting FISH on meiotic pachytene chromosome spreads of Musa. (A) M. acuminata ssp. malaccensis “Pahang” (2n = 22, AA; chromosome 
1 in red, chromosome 4 in green). (B) M. acuminata ssp. malaccensis “Pahang” (2n = 22, AA; (peri-)centromeric region in red, chromosome 3 in green). (C) M. 
balbisiana “Tani” (2n = 22, BB; chromosome 1 in red, chromosome 3 in green). (D) M. balbisiana “Tani” (2n = 22, BB; chromosome 5 in red, chromosome 11 in green). 
Chromosomes were counterstained with DAPI (blue). Arrows point to the region translocated from chromosome 3 to chromosome 1 in M. balbisiana. Bars = 10 µm.
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oligonucleotide probes were found suitable for FISH on somatic 
metaphase chromosomes, meiotic pachytene chromosomes and 
interphase nuclei (Han et al., 2015; Filiault et al., 2018; Xin et al., 
2018; Albert et al., 2019; Jiang, 2019). Successful applications 
of oligo painting FISH include construction of molecular 
cytogenetic karyotypes (Braz et al., 2018; Qu et al., 2017; Meng 
et al., 2018), identification of large chromosomal rearrangements, 
analysis of chromosome pairing in meiosis (Han et al., 2015; He 
et al., 2018; Albert et al., 2019), as well as the visualization of the 
arrangement of chromosomes in 3D space of interphase nuclei 
(Albert et al., 2019).

Despite the availability of a reference genome sequence of 
M. acuminata ssp. malaccensis (D’Hont et al., 2012; Martin et al., 
2016) and resequencing of more than 120 accessions of Musa 

(Dupouy et al., 2019), DNA pseudomolecules have not been 
anchored to individual chromosomes and molecular karyotype 
of Musa has not been developed to date. In many plant species, 
tandem organized repeats serve as useful probes for FISH to 
identify individual chromosomes and their regions (Hřibová 
et al., 2007; Badaeva et al., 2015; Koo et al., 2016; Křivánková 
et  al., 2017; Said et al., 2018). The nuclear genome of Musa 
species is relatively small (1C ~ 500–750 Mb; Doležel et al., 
1994; Lysák et al., 1999; Asif et al., 2001; Kamaté et al., 2001; 
Bartoš et  al., 2005; Čížková et al., 2015) and until now, only 
a few tandem organized repeats and rDNA sequences were 
successfully used as cytogenetic landmarks (Balint-Kurti et al., 
2000; Valárik et al., 2002; Hřibová et al., 2007; Hřibová et al., 
2010; Čížková et al., 2013; Novák et al., 2014). Moreover, only 

FIGURe 3 | Integration of oligo painting FISH and existing cytogenetic markers on mitotic metaphase plates of Musa. (A) M. acuminata ssp. malaccensis “Pahang” 
(2n = 22, AA; chromosome 1 in red, BAC clone 2G17 in green). (B) M. schizocarpa “Schizocarpa” (2n = 22, SS; chromosome 2 in red, tandem repeat CL33 in 
green). (C) M. schizocarpa “Schizocarpa” (2n = 22, SS; short arm of chromosome 4 in green, 5S rRNA in red—two loci are localized on long arm of chromosome 
4). (D) M. acuminata ssp. malaccensis “Pahang” (2n = 22, AA; 5S rRNA in red, short arm of chromosome 3 in green bears 5S rRNA). Chromosomes were 
counterstained with DAPI (blue). Bars = 5 µm. Arrows indicate colocalization of oligo painting FISH probes with existing cytogenetic markers.
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one BAC clone has been used as a cytogenetic marker in Musa 
(Hřibová et al., 2008) and only four BAC clones were localized on 
pachytene chromosomes (De Capdeville et al., 2009). Thus, the 
attempts to use of BAC clones for anchoring pseudomolecules 
to chromosomes in banana as has been done in other species 
(Jiang et al., 1995; Lapitan et al., 1997; Kim et al., 2002; Idziak et 
al., 2014), were not successful.

Unlike the previous approaches, chromosome painting 
using pools of single copy oligomers offers the opportunity to 

establish a molecular karyotype of Musa, making it possible to 
identify individual chromosomes, follow their behavior during 
somatic cell cycle and meiosis, perform comparative karyotype 
analysis, and identify structural chromosome changes. FISH 
with oligo painting probes developed in this work resulted 
in visible hybridization signals along chromosomal arms on 
condensed mitotic metaphase chromosomes (Figure 1) as 
well as on less condensed pachytene chromosomes (Figure 
2) confirming their usefulness as painting probes in Musa. 

FIGURe 4 | Idiograms of three diploid species of Eumusa section of Musa. (A) Musa acuminata ssp. malaccensis “Pahang” (genome A) ITC 0609. (B) Musa 
balbisiana “Tani” (genome B) ITC 1120. (C) Musa schizocarpa “Schizocarpa” (genome S) ITC 0560. (D) multicolored scheme.
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Only small regions on pachytene chromosomes were free of 
painting signals. This could be either due to the presence 
of heterochromatin blocks, or due to gaps in the genome 
sequence (Figure 2). In contrast to chromosome arms, peri-
centromeric regions were not labeled. These regions contain 
large gaps in the genome sequence and large proportion 
of repetitive DNA sequences in peri-centromeric regions 
(Hřibová et al., 2010; Neumann et al., 2011; D’Hont et al., 
2012; Martin et al., 2016).

We demonstrate that chromosome/chromosome-arm 
specific oligo painting libraries designed for M. acuminata 
ssp. malaccensis can be used for cytogenetic analysis of related 
species M. balbisiana and M. schizocarpa, which played an 
important role in the evolution of many edible banana clones 
(Carreel et  al., 1994; D’Hont et al., 2012; Davey et al., 2013; 
Čížková et al., 2013). This observation provided an opportunity 
for comparative karyotype analysis and identification of 
putative chromosome translocations. In our study, we observed 
translocation of long arm of chromosome 3 to long arm of 
chromosome 1 in M. balbisiana (B genome) (Figures 1B and 
2C). This observation confirms the result of Baurens et al. 
(2019), which were obtained after anchoring a dense genetic 
map of M. balbisiana “Pisang Klutuk Wulung” to M. acuminata 
ssp. malaccensis reference genome sequence (Martin et al., 
2016). The authors estimated the size of the translocated region 
of long arm of chromosome 3 to be ~8 Mb, confirming the 
sensitivity of oligo chromosome painting.

Co-localization of chromosome painting probes with 
cytogenetic markers developed earlier for Musa (Valárik 
et al., 2002; Hřibová et al., 2010; Čížková et al., 2013) offered 
an opportunity to create molecular karyotypes suitable for 
comparative analysis. The presence of 5S rRNA genes on 
non-collinear chromosomes in the A, B, and S genomes 
of Musa as described here indicates small chromosomal 
rearrangements which occurred during Musa speciation. 
On the other hand, the location of tandem organized repeats 
CL18, CL33, and BAC clone 2G17 on collinear chromosome 
arms in all three species indicates their structural homology 
of the chromosome arms. These observations imply that 
chromosomes containing a particular DNA sequence, e.g., 
5S rDNA, cannot be considered as collinear. This shows a 
potential weakness of comparative karyotype analysis of 
using only a few cytogenetic markers (Fukui et al., 1994; 
Murata et al., 1997).

Tandem organized repeats CL18 and CL33 (Hřibová et 
al., 2010) were located together with 5S rRNA genes on short 
arms of chromosomes 1 and 2, which lacked oligopainting 
signals. Genome sequence of M. acuminata ssp. malaccensis 
includes three pseudomolecules which are represented by 
two large regions differing in DNA repeat composition and in 
density of unique oligomers (Supplementary Figure 1, Martin 
et al., 2016). The constitution of banana pseudomolecules 1, 
2, and 10 indicates that they cover only one chromosome arm 
and a peri-centromeric region. Painting probes created for the 
three pseudomolecules localized to only one chromosomal 

arm. One of the pseudomolecules is collinear with acrocentric 
chromosome 10 and bears 45S rRNA locus on its short arm. 
The two remaining pseudomolecules represent chromosomes 
1 and 2, which seem to be meta or sub-metacentric thus could 
miss a large sequence region. These observations indicate that 
these genomic regions were not completely assembled and are 
missing due to the presence of a large number of various tandem 
organized sequences.

The improved version of M. acuminata “DH Pahang” 
reference genome sequence represents 450.7 Mbp which 
corresponds to ~81% of its nuclear genome size estimated by 
flow cytometry (Čížková et al., 2013). In addition, the reference 
genome sequence contains a total of 56.6-Mbp sequences, 
which were not anchored to the 11 pseudomolecules. The most 
plausible explanation why these sequences were not included 
in pseudomolecules is that they represent heterochromatin 
regions, which are difficult to sequence. However, relatively 
high number of unique oligomers in unanchored scaffolds as 
observed in this work (Supplementary Figure 1) indicates 
that the unanchored part of the reference genome sequence 
contains low copy sequences from euchromatic regions. Thus, 
these regions were probably not anchored due to the absence 
of DNA markers, or they were too short to be anchored using 
Bionano optical mapping. The use of long-read sequencing 
technologies such as Oxford Nanopore in combination with 
optical mapping (Belser et al., 2018) should further improve 
the current assembly and shed light on the difficult parts of M. 
acuminata ssp. malaccensis genome.

CONClUSIONS
In this work, chromosome painting probes were developed for 
banana (Musa spp.) and used to establish molecular karyotypes 
for three species of Musa that were the parents of a majority of 
cultivated edible banana clones. This advance made it possible to 
anchor reference genome sequence of banana, Musa acuminata 
spp. malaccensis to individual chromosomes. The study also 
demonstrates the potential of oligo painting FISH for comparative 
karyotype analysis and identification of structural chromosome 
changes that accompanied the evolution and speciation in the 
genus Musa.
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