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The determination of internal maturity parameters of table grape is usually done destructively 
using manual methods that are time-consuming. The possibility was investigated to 
determine whether key fruit attributes, namely, total soluble solids (TSS); titratable acidity 
(TA), TSS/TA, pH, and BrimA (TSS – k x TA) could be determined on intact table grape 
bunches using Fourier transform near-infrared (FT-NIR) spectroscopy and a contactless 
measurement mode. Partial Least Squares (PLS) regression models were developed for 
the maturity and sensory quality parameters using grapes obtained from two consecutive 
harvest seasons. Statistical indicators used to evaluate the models were the number of 
latent variables (LVs) used to build the model, the prediction correlation coefficient (R2p) 
and root mean square error of prediction (RMSEP). For the respective parameters TSS, 
TA, TSS/TA, pH, and BrimA, the LVs were 21, 23, 5, 7, and 24, the R2p = 0.71, 0.33, 
0.57, 0.28, and 0.77, and the RMSEP = 1.52, 1.09, 7.83, 0.14, and 1.80. TSS performed 
best when moving smoothing windows (MSW) + multiplicative scatter correction (MSC) 
was used as spectral pre-processing technique, TA with standard normal variate (SNV), 
TSS/TA with Savitzky-Golay first derivative (SG1d), pH with SG1d, and BrimA with MSC. 
This study provides the first steps towards a completely nondestructive and contactless 
determination of internal maturity parameters of intact table grape bunches.

Keywords: table grapes, near-infrared spectroscopy, total soluble solids, titratable acidity, BrimA

INTRODUCTION
The logistics of table grape harvest and shipment to intended consumer markets is complex and 
challenging. Table grapes (Vitis vinifera L.) is a nonclimacteric fruit, which does not ripen further, 
nor does the quality improve after harvest (Sonego et al., 2002). Therefore, grapes must be at the 
desired maturity level when harvested and the eating quality of packed produce must be retained 
during several weeks of cold storage and ultimate shipment to markets. Traditionally, fruit maturity 
is expressed in terms of total soluble solids (TSS), also referred to as soluble solids content (SSC), 

Frontiers in Plant Science | www.frontiersin.org November 2019 | Volume 10 | Article 1517

ORIGINAl ReSeARCh

doi: 10.3389/fpls.2019.01517
published: 28 November 2019

https://creativecommons.org/licenses/by/4.0/
mailto:opara@sun.ac.za 
mailto:hhn@sun.ac.za 
https://doi.org/10.3389/fpls.2019.01517
https://www.frontiersin.org/article/10.3389/fpls.2019.01517/full
https://www.frontiersin.org/article/10.3389/fpls.2019.01517/full
https://www.frontiersin.org/article/10.3389/fpls.2019.01517/full
https://www.frontiersin.org/article/10.3389/fpls.2019.01517/full
https://loop.frontiersin.org/people/749980
https://loop.frontiersin.org/people/358940
https://loop.frontiersin.org/people/666572
https://loop.frontiersin.org/people/798188
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science#editorial-board
http://doi.org/10.3389/fpls.2019.01517
https://www.frontiersin.org/journals/plant-science#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2019.01517&domain=pdf&date_stamp=2019-11-28


Measuring Grapes With FT-NIR SpectroscopyDaniels et al.

2

which primarily reflects the sugar content, and titratable acidity 
(TA), which reflects the tartaric acid content (Nelson et al., 1963). 
Although pH is usually included as part of the routine chemical 
analysis to assess the maturity and sensory characteristics of 
grapes, no clear link has yet been established between pH and 
grape maturity (Walker et al., 2001; Reynolds et al., 2006). TSS is 
typically measured in the vineyard with a handheld refractometer 
and expressed as °Brix, while TA is determined in the laboratory 
by wet chemistry methods. Worldwide, TSS and sugar/acid ratios 
(TSS/TA) serve as primary indices for the quality of export fruit. 
Minimum requirements are specified for TSS concentrations and 
TSS/TA ratios for each cultivar, for example by the Agricultural 
Product Standards Act, 1990 (Act No. 119 of 1990) of South 
Africa, section 4(3)(a)(ii). Harvested table grape bunches are 
packed and exported either as individual bunches in punnets, or 
individually wrapped and packed in a box together with other 
bunches. When table grape consignments reach the harbour of 
the exporting country, random spot checks are done on packed 
fruit. If any sample is found to be at the incorrect TSS and/or 
TSS/TA ratio, whole export consignments can be rejected, or 
even returned once they have reached the intended market. 
Given that the popularity of table grapes makes it one of the most 
consumed fruits in the world (Piazolla et al., 2013), anything that 
affects quality negatively and leads to losses should be avoided.

All the aforementioned laboratory measurements are 
done destructively and are time consuming. Furthermore, 
measurement of TA requires both specialised equipment and 
chemicals and creates chemical waste. Opportunities for the 
table grape industry to move away from destructive techniques 
to determine key maturity parameters (TSS, TA, TSS/TA, and 
pH) already exist. Fourier transform near infrared (FT-NIR) 
spectroscopy has long been used with success to determine a 
wide variety of parameters in fruit. Nondestructive postharvest 
determination of TSS, TA, and pH have been reported on apricots 
(Camps and Christen, 2009), pears (Liu et al., 2008), mandarins 
(Liu et al., 2010), plums (Pérez-Marín et al., 2010), blueberries 
(Sugiyama et al., 2010), avocados (Wedding et al., 2010), wine 
grapes (González-Caballero et al., 2010; Kemps et  al., 2010; 
Barnaba et al., 2013), and individual table grape berries (Cao 
et al., 2010; Omar, 2013).

Challenges related to quality evaluation of intact bunches 
include the complexity of their morphology which includes the 
number of berries on the bunch and, the shape and compactness 
of the bunch (Mattheou et al., 1995; May, 2000), which in turn 
have been shown to be dependent on the grape cultivar (Balic 
et al., 2014). Other factors which add to the challenge of scanning 
intact bunches include the within-bunch and between-bunch 
heterogeneity in sugar and maturity levels (Mattheou et al., 1995; 
Šuklje et al. (2012). These aspects are known to be influenced by 
the seasonal effects as well as the geographical location of the 
vineyards (Sonego et al., 2002). The double sigmoidal growth 
curve associated with grape development and ripening stages has 
been thoroughly discussed by several authors (Dokoozlian and 
Kliewer, 1996; Wheeler et al., 2009) and recently on table grapes 
by Sonnekus (2015). It is, however, important to emphasize the 
complex role temperature plays in the ripening (Kuhn et al., 
2014) and hence quality of grapes (Coombe, 1987). Fluctuations 

in the maximum and minimum temperatures during consecutive 
seasons can lead to grapes either ripening earlier or later than 
might be anticipated. This has serious consequences on the 
marketability of table grapes for the producers.

In this study, the potential of NIR spectroscopy to quantify 
TSS, TA, TSS/TA, and pH nondestructively on intact bunches 
is explored. Individual bunches were scanned contactless 
using diffuse reflectance FT-NIR spectroscopy. To enrich the 
information gathered on the mentioned quality parameters, 
another sensory-based parameter, namely, BrimA (calculated 
as TSS - k x TA), and originally proposed by (Jordan et al., 
2001), was also included in the analysis. BrimA is an alternative 
parameter for determining the palatability of table grapes. 
Jordan et al. (2001) argued that the TSS/TA ratio does not 
fully reflect the major influence that acid has on the tastiness 
prediction of table grapes. The human tongue does not have 
the same sensitivity for sugar than it has for acidity. However, 
Jayasena and Cameron (2008), argued that TSS/TA ratio is a 
better indicator of consumers’ taste acceptance of Crimson 
Seedless table grapes than TSS, TA, and BrimA alone. Fawole 
and Opara (2003) also reported that both the TSS/TA ratio and 
BrimA are useful to create a dependable index for evaluating 
optimal fruit maturity of pomegranates. The inclusion of both 
TSS/TA ratio and BrimA as sensory parameters in this study 
was, therefore, of utmost importance to pave the way for 
nondestructive evaluation of the taste acceptability of grapes. To 
our knowledge, this is the first report on analysis of completely 
intact bunches using FT-NIR spectroscopy.

MATeRIAlS AND STRATeGIeS

Grape Sampling
The experimental design in Figure 1 shows the harvest years, 
cultivars, location of the vineyard cultivars were harvested 
from, number of bunches harvested per location and per year, 
as well as the two strategies followed to build PLS models for the 
parameters under investigation. Our experimental design aimed 
to include variability resulting from seasonal effects, vineyard 
geographic location, ripeness levels, and grape cultivar. Grapes 
were harvested from three locations over two seasons (2016 and 
2017), and at two ripening stages. Three white seedless table grape 
cultivars were used, i.e., Prime Seedless, Thompson Seedless, and 
Regal Seedless, which are amongst the top 20 cultivars exported 
from South Africa (SATI, 2018).

Table 1 shows the GPS co-ordinates, harvest week, and the 
TSS level for the three cultivars at the individual locations. 
Grapes were harvested from the fifth row of each block starting 
from the third section of the row. The vines were marked so 
that grapes could be harvested from the same vines in the two 
consecutive years. The rationale for this step was to reduce the 
number of factors that would play a role in each year. Soils, as 
well as the microclimate which influences the development of 
bunches (accumulation of sugar and breakdown of acids) may 
vary within a block (Šuklje et al., 2012). Bunches were randomly 
selected from the vines on both sides of the canopy and each 
cultivar was harvested twice on two separate dates from each 
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location. The respective distances from the vineyards to the 
laboratory in Stellenbosch are Kakamas 840 km, Wellington 42 
km, and Hex Valley 139 km. Grapes were harvested and packed 
in the morning before 10 h and kept at 20°C during transport to 
the laboratory. A total of 338 grape bunches was scanned on the 
infrared spectrometer within twelve hours after harvest.

Table 2 shows the lowest, highest, and average daily 
temperatures for the different locations taken from weather 
stations in the nearest vicinity of the blocks from which grapes 
were harvested from during the two seasons. These weather 
stations were Hex Valley PP with latitude = -33,46609, longitude = 
19,66304 and altitude = 459 for Hex Valley; Eureka with 
latitude = -33,69301, longitude = 18,95259 and altitude = 161 for 
Wellington and Kromhout Boerdery with Latitude  =  -28,7869, 
Longitude 18,95259 and Altitude = 161 for Kakamas. The 
values in bold indicate where the daily average maximum and 
minimum temperatures were higher in the second season and 
the underlined values indicate where the daily average maximum 

and minimum temperatures were lower in the second season. 
The influence this had on the maturity and sensory parameters 
will be discussed further down in the manuscript.

Fourier Transform Near-Infrared 
Spectroscopy
The laboratory measurement setup was designed so that diffuse 
reflectance FT-NIR spectra of intact table grape bunches were 
obtained in a contactless mode by using the MATRIX-F FT-NIR 
spectrometer connected via a fibre optic cable (1 m) to a NIR 
emission head (Bruker Optics, Ettlingen, Germany), as shown 
in Figure 2. Each bunch was placed on the sample platform 
directly below four air-cooled tungsten NIR light sources (12 
V, 5 W each) housed in the emission head (230 mm diameter, 
185 mm height), and scanned individually. Upon illumination 
of the grapes, the diffuse reflected light was collected and guided 
back to the spectrometer by the optic cable. The focal point of 

FIGURe 1 | Experimental design for the 338 intact table grape bunches subjected to Fourier transform near-infrared (FT-NIR) spectroscopy. A Grapes harvested 
from the same vineyard block in both years; B Grapes harvested from the same vineyard block in both years; and then C,D Grapes harvested from these two new 
vineyards blocks in 2017.

TABle 1 | GPS co-ordinates, harvest week, and TSS level of grapes.

Cultivar Site latitude longitude Altitude 2016 
harvest 
Week

2017 
harvest 
Week

2016 TSSd 2017 TSS

Thompson 
Seedless

HVa 33°27’53,9”S 19°39’43,7”S 907 m W3 W4 16.85 15.64

W4 W5 Stolen 16.62
Thompson 
Seedless

Wb 33°37’03,5”S 18°58’05,3”S 904 m W3 W3 17.49 18.72

W4 W5 18.62 Rotten
Regal Seedless HV 33°27’50,4”S 19°39’47,6”E 904 m W3 W5 18.39 19.41

W5 W5 21.27 21.36
Regal Seedless W 33°30’14,2”S 10°50’40,0”E 904 m W3 W4 15.47 14.12

W5 W6 16.44 16.34
Prime Seedless W 33°38’22,0”S 10°50’47,6”E 900 m W51 10.65

W52 12.02
Prime Seedless Kc 28°37’54,8”S 20°26’38,6”E 903 m W48 14.89

W50 16.08

aHex Valley; bWellington; cKakamas;dTotal soluble solids in °Brix measured with a handheld refractometer.
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TABle 2 | Temperature data for the sites from which the grapes were harvested.

Site Month Day Txa Tnb Tx Tn Tx Tn

2015 2016 2017

HVd 11 Lowest 19.75c 6.38 21.83 3.32
HV 11 Highest 37.64 22.65 37.67 16.27
HV 11 Average 27.18 17.8 28.88 9.21
HV 12 Lowest 26.63 19.9 25.29 8.83
HV 12 Highest 35.37 28.42 39.99 16.38
HV 12 Average 30.23 23.65 33.01 11.92
HV 1 Lowest 33.36 26.1 24.5 8.62
HV 1 Highest 33.55 28.31 38.24 17.88
HV 1 Average 33.46 27.45 32.09 12,66
HV 2 Lowest 26.02 8.13 27.97 7.66
HV 2 Highest 39.91 19.6 38.02 18.15
HV 2 Average 31.46 12.29 33.29 12.85
We 11 Lowest 17.55 8.02 20 9.55
W 11 Highest 38.66 20.05 35.54 20.05
W 11 Average 27.34 13.73 28.44 14.58
W 12 Lowest 23 12.44 21.41 12.6
W 12 Highest 41.09 22.34 36.99 19.87
W 12 Average 30.94 16.46 31.22 15.67
W 1 Lowest 24.26 15.82 23.35 12.91
W 1 Highest 39.97 25.3 38.34 20.48
W 1 Average 33.99 20.92 31.37 16.56
W 2 Lowest 25.14 12.5 24 14.08
W 2 Highest 38.41 24.52 40 24.64
W 2 Average 31.49 17.53 32.3 17.87
Kf 11 Lowest 30.25 8.9
K 11 Highest 41.14 21.33
K 11 Average 36.15 14.37
K 12 Lowest 33.18 11.72
K 12 Highest 44.05 22.76
K 12 Average 38.71 16.97

aDaily Maximum Temperature; bDaily Minimum Temperature, cUnit = °C; dHex Valley; eWellington; fKakamas. The values in bold indicate where the daily average 
maximum and minimum temperatures were higher in the second season.

FIGURe 2 | An intact Thompson Seedless table grape bunch scanned contactless with the MATRIX-F NIR spectrometer. Important parts of the instrument are  
also illustrated.
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the lights was 170 mm and the area illuminated on bunches was 
80 mm in diameter. The detecting emission head also housed a 
sensitive, thermoelectric cooled, and temperature-controlled 
InGaAs diode detector. The scanning procedure per sample took 
40 s in which time 32 repeat scans (resolution, 2 cm-1; scanner 
velocity, 10 kHz) were collected in the wavenumber range 800 
to 2,500 nm (12,000 to 4,000 cm-1), and averaged into a single 
absorbance spectrum using OPUS software (OPUS version 7.2 
Bruker Optics, Ettlingen, Germany). OPUS works by default in 
wavenumbers thus 12,000 to 4,000 cm-1. Each spectrum consisted 
of 1,801 data points. A background spectrum was collected using 
a spectralon in the same way prior to scanning the grape bunches 
and at hourly intervals during operation of the spectrometer. 
The spectralon is situated on the sample platform and is covered 
with a black lid when the sample is being scanned. The Log (1/R) 
transformed absorbance spectra were processed using OPUS 
and saved after the spectral acquisition. Each bunch was scanned 
on two opposite sides, denoted top or bottom, respectively, by 
turning the bunch manually.

Reference Measurements
A sampling of twenty grape berries (ten each bunch side - the 
top and bottom sides) from within the focus area of the NIR 
light sources (Figure 2) was done after the spectra of bunches 
were generated. Free flowing juice was collected by crushing 
the berries by hand, for 1 min in a plastic bag, followed by 
filtration using cheesecloth. TSS of the juice was determined 
using a handheld digital refractometer (ATAGA Palete Digital 
Refractometer PR-32 Alpha, Tokyo, Japan). TA and pH were 
determined with a TIM 865 Titration Manager (Radiometer 
Analytical, Villeurbanne Cedex, France) automatic titrator. 
The TSS/TA ratio was calculated by dividing the TSS value of 
each juice sample by that of the percentage TA (°Brix ÷ %Acid) 
(Jayasena and Cameron, 2008). BrimA was calculated as TSS – k 
x TA. The constant k shows that the tongue is more sensitive to 
acid than it is to sugar. Due to different fruit containing different 
ratios of acids and sugars the k value range from 2 to 10. A k value 
of 5 is suggested for table grapes and was accordingly used in this 
study (Jordan et al., 2001).

The standard error of laboratory (SEL) for respectively, TSS 
( ± 0.03), TA ( ± 0.05), and pH ( ± 0.20) were based on those 
reported by the Wine Analytical Laboratory of the Agricultural 
Research Council, Infruitec-Nietvoorbij in Stellenbosch, South 
Africa where the samples were analyzed. Certified standards 
for each parameter were tested daily in triplicate. SEL was 
calculated as the average of the difference between the true value 
of the certified standard and the measured result (triplicate 
measurements). Grape samples were analysed once.

Data Analysis
To investigate the relationship between the spectral information 
of the intact bunches and the content of TSS, TA, TSS/TA 
ratio, pH, and BrimA, PLS regression was implemented in the 
R statistical environment (R Core Team, 2016) using the “pls” 
package (Mevik et al., 2016). PLS is a bilinear modelling strategy 
(Naes et al., 2004) which was used to find the correlation between 

the spectra taken of the intact table grape bunches and the 
reference values that was obtained for the maturity parameters 
TSS, TA, TSS/TA ratio, pH, and BrimA. The data matrix, 
therefore, consisted of a set of independent X variables (NIR 
spectral data) and five dependent Y variables TSS, TA, TSS/TA 
ratio, pH, and BrimA.

Two strategies were used to design calibration and validation 
sample sets. In Strategy 1, as can be seen in Figure 1, a model 
was created with data from one year (2016) and tested on data 
from another year (2017). In Strategy 2, the calibration set and 
the validation sample sets consisted of randomly selected data 
from both years combined (2016 and 2017). In Strategy 1, the 
2016 data (n = 267) was used as the training set and the 2017 data 
(n = 71) was used as the test set. In Strategy 2, the data sets for 
2016 and 2017 were combined (n = 338) and randomly divided 
into two sub-data sets, i.e., the training set containing 2/3 of the 
data (n = 204) and testing set containing 1/3 of the total data 
set (n = 134) for each parameter. A full cross-validation process 
was applied to build the PLS regression models using the training 
data set for each parameter

The regression models were evaluated using the coefficient 
of determination (R2) and the Root Mean-Square Error of 
Calibration (RMSEC) or Validation (RMSECV when cross 
validation is used and RMSEP when test set validation is used). The 
R2 value, which represents the proportion of explained variance 
of the response variable in the calibration set (R2

c) or validation 
set (R2

cv or r2 when cross validation is used and R2
p when test set 

validation is used). This value needs to be as high as possible for 
a good model. It differs from the correlation coefficient (r) which 
only shows how strong the relationship between two variables 
are (Taylor, 1990) and R2 is a multiple of it (Nagelkerke, 1991). 
RMSECV is the term indicating the prediction error of the model 
and the RMSEP value gives the average expected uncertainty for 
predictions of future samples and both needs to be as close as 
possible to zero (Brown et al., 2005; Saeys et al., 2005; Esbensen, 
2006). The residual prediction deviation (RPD) value is defined 
as the ratio of the standard deviation of the reference data of the 
validation set to the standard error of prediction and gives some 
indication of the efficiency of a calibration (Williams and Norris, 
2001). The RPD value has to be between 1.5 and 2 for the model 
to discriminate low from high values of the response variable; 
a value between 2 and 2.5 to indicate that course quantitative 
predictions are possible, and a value between 2.5 and 3 or above 
to show good and excellent prediction accuracy (Saeys et al., 
2005). The standard error of calibration (SEC); standard error of 
performance (SEP); limit control for SEP (LC_SEP); and limit 
control for bias (LC_bias) were also calculated. The SEC and SEP, 
as well as the control limits, also have to be as close as possible to 
zero to give good working models.

Furthermore, the original data (no spectral preprocessing), 
as well as five spectral preprocessing techniques, were evaluated 
for each parameter when the models were built. These were 
baseline correction, multiplicative scattering correction (MSC) 
perhaps the most commonly used spectral preprocessing 
technique followed by standard normal variate (SNV) (Rinnan 
et al., 2009). These first three are used to correct for any shift that 
might have occurred in the baseline of the samples and in that 
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way minimize the inconsistency between the samples because of 
light scatter (Rinnan et al., 2009). In order to enhance the signal 
to noise ratio, the moving window smoothing (MWS) method 
is used. This is the standard and easiest one and makes use of a 
function that smoothes the original data by computing a moving 
average on a fixed-size spectral window. Before the average can 
be computed, points outside the spectral window are determined 
by second-order polynomial extrapolation on both ends of the 
spectrum (Chau et al., 2004). Savitzky-Golay first derivative 
(SG1d) also uses smoothing of the spectra before computing 
the derivative. This is to minimize the negative influence that 
conventional fixed-difference derivatives would have on the 
signal-to-noise ratio (Rinnan et al., 2009). A combination of 
each of the last three spectral preprocessing techniques were 
used in combination with MSC, i.e., MSW+MSC, SNV+MSC, 
and SG1d+MSC.

ReSUlTS AND DISCUSSION

Intact Bunch Spectral Features
In Figure 3, the characteristic log (1/R) spectra of intact bunches 
(A) and the spectral preprocessed spectra (B) are displayed. 
Similarly, as in González-Caballero et al. (2010), the first 
derivative of the spectra was taken and the effect can clearly be 
seen through the overlapping absorption bands being separated 
and absorbance peaks being displayed more clearly (B).

Reference Data Statistics
A large portion of the soluble solids in grapes is sugars that 
account for more than 90% of TSS at harvest (Muñoz-Robredo 
et al., 2011). Kliewer (1967) found that the range of TSS in mature 
grapes varied widely from 13.7 to 31.5°Brix. Table 3 shows 
the statistical analysis of training sample sets of 2016 and 2017 
respectively for all the parameters (Strategy 1) and Table 4 shows 
them for the training set and the testing set when the two years 
are combined (Strategy 2). In Strategy 2, the training set contains 
two-thirds of the data (n = 204) and the testing set contains one-
third of the data (n = 137). The minimum value was 10.18°Brix 
in 2016 and 6.58°Brix in 2017. This was exceptionally low 
particularly in 2017 given that the intended TSS that the grapes 

were to be harvested at was 14.0°Brix for Prime Seedless and 
16.0°Brix for Regal Seedless and Thompson Seedless according 
to the standards and requirements regarding control of the 
export of table grapes (ACT No. 119 OF 1990 of South Africa). 
However, when the mean (17.59°Brix in 2016 and 15.62°Brix) as 
well as the range values (14.22°Brix in 2016 and 15.60°Brix in 
2017) are considered, they seem to be on par with the standards. 
Both the standard deviations (SD) and coefficients of variation 
(CV) values were higher in 2016 (2.37 and 0.13, respectively) 
compared to 2017 (3.75 and 0.24) as shown in Table 3. The trend 
repeats in Table 4 when the combined two years and the training 
and testing sets selection are random. Harvesting of the grapes 
were at two stages in both years. The second harvest being at a 
higher TSS level shown by the maximum values contained in 
Table 3 (24.40°Brix in 2016 and 22.18°Brix in 2017). This might 
explain the high coefficient of variation (CV) values as was the 
case when González-Caballero et al. (2010) also harvested the 
grapes in their study over different ripening periods.

Grapes also contain significant amounts of organic acids. 
These are very important components of grape juice, since they 
are responsible for the tart taste and have a marked influence on 
juice stability, color, and pH (Fahmi et al., 2012). During berry 
development, TA usually decreases as TSS increases. The juice 
pH is a measure of the hydrogen ion concentration in the berry 
generally related to juice acidity. Although there is no direct 
relationship between TA and pH, higher acid levels in fruit are 
often associated with lower pH values and vice versa as can be 
seen in Table 3 especially in terms of the maximum values in 2016 
(TA = 7.62 g/L and pH = 4,07) and 2017 (TA = 10.99 g/L and pH = 
4.29). The juice pH of Thompson Seedless grapes usually ranges 
between 3.5 and 3.9 at harvest. Vial et al. (2005) obtained a mean 
of 3.46 in the experiments they conducted and Fahmi et al. (2012) 
one of 4.05 in theirs. This falls within the range obtained in 2016 
(4.73 g/L) but not in 2017 (8.02 g/L) and in Strategy 2 (8.10 g/L 
and 7.39 g/L respectively for the training and testing sets). This is 
due to the higher minimum (2.97 g/L) and maximum (10.99 g/L) 
values that were obtained in 2017. This highlights a very significant 
effect that seasons can have on the development of grapes as could 
also be clearly seen in the minimum and maximum values of TSS 
which were lower in 2017 (6.58°Brix and 22.18°Brix) then in 2016 
(10.18°Brix and 24.40°Brix). The temperature difference between 
these two seasons (Table 2) probably played a role with the average 

FIGURe 3 | The log (1/R) spectra of intact bunches (A) and spectra of intact bunches after Savitzky-Golay First Derivative (SG1d) spectral preprocessing was 
applied (B).
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maximum daily temperatures being mostly higher and the average 
minimum temperature being mostly lower during the ripening 
and harvest period. All metabolic processes in plants such as 
photosynthesis responsible for carbohydrate manufacturing (TSS) 
are temperature dependent (Berry and Björkman, 1980).

According to the South African standards and requirements 
regarding control of the export of table grapes (ACT No. 119 
OF 1990), the acceptable TSS/TA values for table grapes are 22 
for Prime Seedless, 24 for Regal Seedless and 21 for Thompson 
Seedless. When the minimum values are considered, they are 
below these and the maximum values are above these, with the 
mean value being much higher in 2016 (39.24) than in 2017 
(29.01) and the range the other way around for the two years 
49.20 in 2016 and 59.21 in 2017. Jayasena and Cameron (2008) 
obtained values of up to 40 for Crimson Seedless in their study 
similar to the mean of this study in 2016.

BrimA is not a widely used parameter for table grapes and has 
only thus far been proposed by Jordan et al. (2001) and evaluated 
by Jayasena and Cameron (2008) who found that it could not 
give better predictive results for the sensory qualities of Crimson 
Seedless table grapes than what TSS/TA could. However, BrimA 
has been reported as a valuable maturity index and quality 
parameter for a wide range of fruits including mango (Wongkhot 
et al., 2012), pomegranate (Fawole and Opara, 2013; Arendse 

et al., 2014), citrus (Ncama et al., 2017), and grapefruit (Olarewaju 
et al., 2018). The acceptable minimum and maximum values as 
well as median and ranges is, therefore, still to be established and 
may differ from the ones achieved in Tables 3 and Table 4 when 
other table grape cultivars are added.

Performance of Calibration Models
Daniels et al. (2018) showed that the best calibration models 
were obtained when the average spectra of table grape bunches 
were used to construct the respective models. Table 5 shows the 
results of the calibration models for TSS, TA, TSS/TA ratio, pH, 
and BrimA (Strategy 1). Table 6 shows the results for the same 
parameters but built using Strategy 2. Construction of models was 
with data of the original spectra as well as the baseline corrected 
spectra, but only results of the models with the original spectra 
are shown since they always performed better. The best model 
was selected in terms of which spectral preprocessing technique 
or combination of techniques gave the most appropriate values 
for the statistics used to measure the strength of the model.

TSS, TA, TSS/TA Ratio, ph, and BrimA
The best predictive results for TSS was obtained with MSW+MSC 
as spectral preprocessing technique with Strategy 2. When 

TABle 3 | Statistical analysis of sample sets for the table grape quality parameters TSS, TA, TSS/TA Ratio, pH and BrimA under study collected in the 2016 and 2017 
harvesting seasons to incorporate seasonal changes.

Training Statistic 2016 2017

Parameter TSSa TAb TSS/TA 
Ratio

ph BrimA TSS TA TSS/TA 
Ratio

ph BrimA

N 267 267 267 267 267 71 71 71 71 71
Mean 17.59 4.67 39.24 3.78 5.82 15.62 6.15 29.01 3.78 12.55
Median 17.54 4.40 38.66 3.77 5.88 15.70 5.55 27.67 3.74 12.45
Minc 10.18 2.89 15.08 3.31 2.63 6.58 2.97 6.93 3.36 1.83
Maxd 24.40 7.62 64.28 4.07 10.43 22.18 10.99 66.14 4.29 19.58
Range 14.22 4.73 49.20 0.76 7.80 15.60 8.02 59.21 0.93 17.75
Standard Deviation 2.37 0.90 9.66 0.14 1.35 3.75 2.05 13.45 0.22 4.20
Coefficient of Variation 0.13 0.19 0.25 0.04 0.23 0.24 0.33 0.46 0.06 0.33

aTotal soluble solids, bTitratable acidity, cMinimum, dMaximum.

TABle 4 | Statistical analysis of randomly selected training (two thirds of data) and test (one third of data) sets for the combined 2016 and 2017 data sets of the table 
grape quality parameters TSS, TA, TSS/TA Ratio, pH, and BrimA under study.

Training Statistic Training set Testing set

Parameter TSSa TAb TSS/TA 
Ratio

ph BrimA TSS TA TSS/TA 
Ratio

ph BrimA

N 204.00 204.00 204.00 204.00 204.00 134.00 134.00 134.00 134.00 134.00
Mean 17.07 4.99 36.89 3.78 7.11 17.17 4.89 36.57 3.78 7.18
Median 17.45 4.62 37.40 3.77 6.23 17.40 4.64 37.18 3.77 6.23
Minc 6.58 2.89 6.93 3.31 2.63 6.58 2.89 6.93 3.34 2.63
Maxd 24.40 10.99 66.14 4.29 19.32 22.96 10.28 61.92 4.29 18.63
Range 17.82 8.10 59.21 0.98 16.69 16.38 7.39 54.99 0.95 16.00
Standard Deviation 2.94 1.41 11.47 0.16 3.35 2.94 1.13 11.21 0.16 3.49
Coefficient of Variation 0.17 0.28 0.31 0.04 0.47 0.17 0.23 0.31 0.04 0.49

aTotal soluble solids, bTitratable acidity, cMinimum, dMaximum.
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González-Caballero et al. (2010) scanned whole wine grape 
bunches to assess the SSC the authors obtained value of 0.57 and 
higher SEP, LC_SEP, and LC_bias values of 1.63, 0.62, and 1.35, 
respectively. Cao et al. (2010) found r and RMSEP of 0.91 and 
0.96 for SSC and similarly did Baiano et al. (2012) and Omar 
(2013) who found R2 and RMSE of 0.94 and 0.06 and 0.95 and 

0.18, respectively. The R2 value is higher and the RMSE values 
lower because they scanned single table grape berries and not 
intact table grape bunches as in this study. This is also clearly 
illustrated in the study of Parpinello et al. (2013) that found 
values for r2 = 0.85, RMSECV = 1.08, SECV = 1.08, and RPD = 
2.6 when using cross-validation instead of test set validation. The 
data in all the other experiments were also collected from a single 
year and not over two years as in this study.

The best model for TA was also achieved with Strategy 2 when 
SNV was used as spectral preprocessing technique. Baiano et al. 
(2012) found the R2 and RMSE to be 0.95 and 0.06 for TA using 
5 LVs for the construction of their models.

TSS/TA ratio gave the best model with Strategy 2 when SG1d 
was used as spectral preprocessing techniques.

González-Caballero et al. (2010) also scanned intact bunches 
for amongst others SSC, TA, and pH, but it was of wine grapes 
and the physiology of wine grape bunches are different from 
those of table grapes. Wine grape bunches and berries are much 
smaller than those of table grapes and the berries are also situated 
much closer together (more compact) than table grape bunches. 
Table grape bunches tend to be looser due to not only having 
longer pedicels, but also due to the bunch preparation that were 
done on them such as thinning and removal of small and uneven 
berries before harvesting.

The best model for pH was achieved with Strategy 2 when 
SG1d was used as spectral preprocessing technique. Cao et al. 
(2010) found r and RMSEP were 0.98 and 0.13 for pH, and 0.91 
and 0.96 for SSC respectively in the prediction set. Baiano et al. 
(2012) found the pH validation values for R2 and RMSE to be 0.80 
and 0.06 and Omar (2013) found R2 = 0.763 and RMSE = 0.11. 
Gonzalez-Caballero et al. (2010) made use of test set validation 
and found the best predictive values for pH (r2 = 0.51, SEP = 0.19, 
LC_BIAS = 0.06, LC_SEP = 0.13). These values were similar to 
those in this study except the r2 that was lower (0.28).

TABle 5 | Performance of Partial Least Squares (PLS) models for table grape 
quality parameters using 2016 data as the training set (n = 267) and 2017 as the 
testing set (n = 71). Also shown is the preprocessing techniques that gave the 
best model.

Parameter TSSa TAb TSS/TA 
ratio

ph BrimA

Spectral 
preprocessing 
technique

SNVc SNV SNV SG1d
d MSCe

LVsf 20 18 20 4 11
R2

c
g 0.92 0.66 0.67 0.31 0.27

R2
cv

h 0.83 0.32 0.32 0.16 0.06
R2

p
i 0.71 0.16 0.14 0.07 0.09

SECj 0.68 0.52 5.50 0.12 0.12
SEPk 2.09 1.89 12.55 0.21 0.21
LC_SEPl 0.88 0.67 7.15 0.15 0.16
LC_biasm 0.41 0.31 3.30 0.07 0.07
RMSECn 0.68 0.52 5.49 0.12 0.12
RMSEP° 2.18 2.51 19.86 0.21 0.21
RPDc

p 3.51 1.73 1.76 1.21 1.17
RPDp

q 1.09 0.36 0.49 0.68 0.67

aTotal soluble solids, bTitratable acidity, cStandard Normal Variate, dSavitzky-
Golay first derivative, eMultiplicative scatter correction, fLatent variables, 
gCoefficient of determination for the calibration set, hCoefficient of determination 
for cross validation, iCoefficient of determination for prediction, jStandard error 
of calibration, kStandard error of performance, lLimit control for SEP (LC_SEP), 
mLimit control for bias, nRoot mean square error of calibration), °Root mean 
square error for prediction, pResidual prediction deviation for calibration, 
qResidual prediction deviation for prediction.

TABle 6 | Performance of Partial Least Squares (PLS) models for table grapes quality parameters of randomly selected training (n = 204) and test set (n = 134) samples 
of the combined 2016 and 2017 data. Also shown is the preprocessing techniques that gave the best model.

Parameter TSSa TAb TSS/TA ratio ph BrimA

Preprocessing 
strategy

MSWc+MSCd No spectral 
pre-processing

SG1d
e SG1d MSW+MSC

LVsf 21 23 5 7 24
R2

c
g 0.95 0.80 0.76 0.66 0.95

R2
cv

h 0.88 0.47 0.61 0.21 0.78
R2

p
i 0.71 0.33 0.57 0.28 0.77

Secj 0.61 0.67 5.31 0.09 0.75
Sepk 1.50 1.08 7.86 0.14 1.81
LC_Sepl 0.79 0.87 6.91 0.12 0.98
LC_biasm 0.36 0.40 3.19 0.06 0.45
RMSECn 0.61 0.67 5.30 0.09 0.75
RMSEP° 1.52 1.09 7.83 0.14 1.80
RPDc

p 4.72 2.26 2.05 1.72 4.57
RPDp

q 1.89 1.38 1.39 1.13 1.90

aTotal soluble solids, bTitratable acidity, cMoving smoothing windos, dMultiplicative scatter correction, eSavitzky-Golay first derivative, fLatent variables, gCoefficient of 
determination for the calibration set, hCoefficient of determination for cross validation, iCoefficient of determination for prediction, jStandard error of calibration, kStandard 
error of performance, lLimit control for SEP (LC_SEP), mLimit control for bias, nRoot mean square error of calibration), °Root mean square error for prediction, pResidual 
prediction deviation for calibration, qResidual prediction deviation for prediction.
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BrimA gave the best model with Strategy 2 when MSC was 
used as spectral preprocessing technique. The RPD values 
obtained for the BrimA model was the highest overall and the only 
one other than that for TSS indicating that the model is able to 
discriminate low from high values of the response variable (Saeys 
et al., 2005). For the rest of the parameters, TA, TSS/TA ratio, 
and pH, this value indicates that the models are not ready yet to 
be used for discrimination purposes since it is below 1.5 (Saeys 
et al., 2005). RPD was rarely reported in the published literature 
as a statistic to evaluate the strength of calibration models for the 
parameters of interest. Parpinello et al. (2013) reported a RPD 
value of 2.6 for SSC for single table grape berries. In the present 
work, on intact bunches, a significantly higher RPD values for 
the calibration stage (RPDc

p) were obtained for TSS (4.72 in 
Table 6). In one study, on intact wine grape bunches, González-
Caballero et al. (2010) reported RPD values for SSC ranging from 
2.92 to 3.18 depending on the spectral range used to establish 
the calibration models. A comparison of RPD values obtained for 
TA and pH showed that the results obtained in the present study 
were comparable to those reported by González-Caballero et al. 
(2010). The R2 values obtained in the present study for BrimA 
were considerably better than those found for the TSS/TA ratio. 
This was also the case in the research work of Jordan et al. (2001). 
The R2 values for BrimA were mostly above 70% where those for 
the TSS/TA ratio were always just above 60%.

The major difference in the results of the two different calibration 
sample selection strategies was the much higher RMSEP values that 
were obtained for all the parameters, except BrimA with Strategy 
1. Low RPD values were also obtained with Strategy 1 (Tables 5 
and 6). A major contributor towards this difference may have been 
the higher maximum values for all the parameters, except TSS 
that was present in the 2017 dataset that was used for validation. 
Samples with similar or higher values should have been present in 
the calibration dataset (2016) as well. For TSS the minimum value 
of 2017 again was not present in the calibration set and similar 
samples would thus not have been able to be predicted.

The SEL values were in all instances much lower than 
the RMSEC and RMSEP values obtained with the models, 
highlighting the fact that the accuracy of models constructed 
using data captured through NIR spectroscopy can never be 
as good as the standard reference method used. These results 
underscore the importance of updating calibration models with 
samples from future harvests (Guthrie et al., 2005) as well as 
the use of different calibration ranges as was done in González-
Caballero et al. (2010).

effect of Spectral Preprocessing 
Techniques
All the spectral preprocessing techniques and combination with 
MSC had various effects on the results obtained for each parameter 
(Tables 5 and 6). Parpinello et al. (2013) also evaluated five spectral 
preprocessing techniques but does not show the effect each specific 
spectral preprocessing technique had on each model, but states 
that a combination of mean normalization (MN)+MSC delivered 
the best model for SSC when discriminant analysis (DA) was 
performed. Baiano et al. (2012) also evaluated second derivatives. 

They, however, found that not any of the spectral preprocessing 
technique could create a better model than the original spectra. Cao 
et al. (2010) just made use of averaging and not any specific spectral 
preprocessing technique. It is however clear from the results shown 
here that a specific spectral preprocessing technique will not always 
deliver all the desired statistical values that constitute for a good 
model. Thus, one spectral preprocessing technique or combination 
with another, for example, SNV or MSW alone or each combined 
with MSC will not always deliver the highest R2 and RPD values and 
lowest SEP, RMSEP, and control limits for a parameter as desired. 
This can most probably be contributed to the different regions or 
areas of the spectrum that is highly associated with the chemistry of 
each parameter, which was not evaluated in this study. In Poblete-
Echeverría et al. (2018), however, a decrease in predictive accuracy 
was obtained with variable selection in both the artificial neural 
network (ANN) and PLS models, but a good result was obtained 
with spectral preprocessing applied in the final PLS model.

latent Variables
The number of LVs used to construct the best model for the 
parameters varied from as little as four for pH and as high as 24 
for BrimA. The optimum number of principal components (latent 
variables) in case of PLS seems to be three at the lowest level of 
residual validation variance (Jha et al., 2006). A relatively low 
number of LVs are generally desirable to avoid modelling noise 
signals (Fernández-Novales et al., 2009). This especially not to 
compromise the robustness of the models for future predictions. 
The lowest number of LVs should thus be that which always 
gave the lowest error as to not make the models too complex 
by using more factors that are necessary (Rinnan et al., 2009). 
This is, however, not always possible as can be seen in this study. 
Parpinello et al. (2013) obtained the best model with 17 LVs for 
SSC when monitored in each berry of intact bunches in order to 
evaluate intra-bunch distribution and variability. A number that 
is comparable to the numbers used here. Baiano et al. (2012) used 
nine, seven, and nine for SCC, pH, and TA respectively, which 
are lower than the numbers used here to achieve the lowest 
error. Only when SG1d was used were such low number of LVs 
used, but they did not give the lowest errors. Figure 4 shows the 
calibration and validation plots of the models obtained for the 
five parameters and the spectral preprocessing strategy applied 
to the raw spectra during the construction process as well as the 
distribution of the errors obtained with each model. It can be seen 
in the calibration plots that the samples are not always spread 
evenly along the regression line in the validation plots as they 
are in the calibration plots. The same way that the frequency and 
the spread of the errors are, not the same in the calibration and 
validation bar plots. This shows clearly that the models should 
thus not only be evaluated on the numerical values of the statistics 
but also on the visual distribution of the samples and/or errors.

Calibration Ranges
The better prediction statistics obtained for TSS are due to not 
only the higher concentration level of TSS present in the grapes, 
but also due to the wide range over which it spreads (6.58–
24.40). The values of TA and pH spreads over a very narrow 
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range, 2.89–10.99 g/L for TA and 3.31–4.29 for pH making the 
construction of a proper calibration model extremely difficult 
as can be seen in Figure 4. Moreover, given that NIR spectra 
contain overtones and combinations derived from fundamentals 
which appear in the infrared region (Skoog et al., 1997) and 
measures the vibrational transitions of molecular bonds, such as 
the O-H bonds in water, and bonds such as C-N, N-H, and C = 
O, characteristic to organic matter (Rinnan and Rinnan, 2007). 
TSS is predominantly consisting of water and sugar, making the 
creation of a good calibration easier unlike pH that cannot actually 
be measured directly seeing that the activity of single ion (H+) is 
involved (Covington et al., 1985). Its accuracy, therefore, depends 
on the operation used to measure it, usually in a liquid state, as 
done during the reference measurements in this experiment and 
not nondestructively and intact as set out in this experiment.

Due to the fact that table grapes mainly consist of water 
like many other fruit and vegetables, NIR spectra are complex 
and are dominated by the water peaks (Nicolaï et al., 2007) in 
the wavelength ranges from 1400–1440 nm and 1900 to 1950 
nm (Bünning-Pfaue, 2003), as can be seen in Figure 3A. Since 
grape sugars are dissolved in water, the wavelengths that are 
strongly associated with the O-H and C-H first and second 
overtones associated with sugar are usually masked in those areas 
(Cozzolino et al., 2006; Dambergs et al., 2006). First derivative of 
the spectra using the Savitzky-Golay algorithm as was done in 
this study to enhance these peaks (Figure 3B).

The PLS beta coefficient is also a very good indication of 
which wavelengths play a dominant role in the calibration model 
(Maghirang et al., 2003: Nagle et al., 2010). In Figure 5, the 
regression coefficients for all the best models for the wavelength 

FIGURe 4 | Calibration and validation plots of the models obtained for the five parameters and the spectral preprocessing methods applied to the raw spectra 
during the construction process; (A) total soluble solids (TSS), (B) titratable acidity (TA), (C) TSS/TA ratio, (D) pH, and (e) BrimA as well as the distribution of the 
errors obtained for each model (F) TSS, (G) TA, (h) TSS/TA, (I) pH, and (J) BrimA.
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FIGURe 5 | Continued

Frontiers in Plant Science | www.frontiersin.org November 2019 | Volume 10 | Article 1517

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Measuring Grapes With FT-NIR SpectroscopyDaniels et al.

12

region up to 1000 nm are shown and the peaks at 950 nm and 
980 nm are strongly associated with TSS and that at 980 nm 
for pH as in González-Caballero et al. (2010). Giovenzana et al. 
(2014) identified 670 nm, 730 nm, and 780 nm as being highly 
associated with TSS in wine grapes. It is not uncommon to use 
the entire NIR region (Jarén et al., 2001) during calibration as 
was done in this study, although the use of specific regions has 
also been reported (Herrera et al., 2003; Bellincontro et al., 2011). 
The regression plots for TA highlighted the difficulty of assigning 
a specific wavelength to this parameter, since it is made up of 
several different acids, and likewise the TSS/TA ratio and BrimA 
parameters which are calculated from the TSS and TA values.

It is important to note when comparing the results obtained here 
to those on berry experiments of the work of other authors (Baiano 
et al., 2012; Omar, 2013; Parpinello et al., 2013) that the focus area 
of the light source on their samples was short, and not 17 cm as 
in this experiment. It is thus remarkable that the spectra could 
capture enough of the information in the grape bunches. This not 
only because of the heterogeneous nature of grape bunches which 
consists of a rachis berries, and pedicels, but also due the usually 
low penetration depth of NIR light into a sample.

CONClUSIONS
The development of models with RPD values which can 
discriminate between high and low values of TSS, TA, and TSS/
TA ratio together with low RMSEP values, can greatly help 
minimize the losses suffered by producers due to the incorrect 
determination and classification of grapes for the export market 
based on these parameters.

Another implication of these results for the table grape 
industry is much quicker decisions taken over the quality of 
the grapes either using one of the parameters or all of them 
collectively to determine which class and which export markets 
table grapes should be send to. This especially with the inclusion 
of BrimA which can now help producers with the sensory quality 
of table grapes, so they can market them accordingly based on 
consumers’ palates, e.g., low sweetness-high acidity, neutral, high 
sweetness-low acidity tasting grapes, etc.

Future work will be to build better models for especially pH 
and TA. This will be explored through the selection of specific 
wavelengths strongly associated with these two parameters. When 
different strategies are used to build NIRS models, sampling 
should be done in such a way that in the end both the calibration 
and validation sets contain samples that are represented in each.
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