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Quercus spp. (oaks) are generally intermediate in shade tolerance, yet there is large 
variation within the genus in shade tolerance and plasticity in response to varying resource 
availability. Ecophysiological knowledge specific to semi-evergreen Quercus spp. from 
subtropical maritime forests is lacking relative to temperate deciduous oaks. We studied 
the influence of light availability and plant competition on leaf physiology and performance 
of semi-evergreen Quercus virginiana on a barrier island along the US southern Atlantic 
coast. Seedlings were underplanted in pine (Pinus taeda) plantation stands with varying 
overstory density (clear-cut, heavy thin, light thin, and non-thinned; creating a gradient 
of understory light availability) and vegetation (no competition removal or herbaceous 
competition removal) treatments. After 2 years, seedling survival was higher with 
increasing light availability (clear-cut = heavy thin > light thin > non-thinned). Seedling 
growth (i.e., diameter, height, and crown width) increased similarly with increasing thinning 
intensity, while vegetation control was mainly beneficial to seedling growth in clear-cuts. 
These responses were partially explained by foliar nitrogen and leaf trait measurements, 
which followed the same pattern. Q. virginiana seedlings demonstrated high plasticity 
in their ability to acclimate to varying resource availability, as indicated by light response 
curves, specific leaf area, stomatal density, stomatal pore index, and maximum theoretical 
stomatal conductance. Light compensation and saturation points illustrated seedling 
capacity to increase net CO2 assimilation with increased light availability. Leaves on trees 
in the high light environment had the highest net CO2 assimilation, stomatal density, 
stomatal pore index, maximum theoretical stomatal conductance, and lowest specific leaf 
area. Although we demonstrated the relative shade tolerance of Q. virginiana in lower light 
environments (i.e., heavy and light thin plots), this semi-evergreen species shows high 
plasticity in capacity to respond to varying resource availability, similar to other Quercus 
spp. from mesic and Mediterranean environments.

Keywords: Quercus virginiana, canopy openness, ecophysiology, gas exchange, leaf traits, light acclimation, 
plant competition, forest regeneration
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InTRODUcTIOn
Plasticity is an adaptive strategy to promote survival and fitness 
of long-lived forest tree species that may experience several 
environmental changes and associated stresses throughout their 
lifespan (Cavender-Bares and Ramírez-Valiente, 2017; Gil-
Pelegrín et al., 2017a). Phenotypic plasticity, both physiological 
and morphological, affects life history traits and contributes to 
the large distribution ranges (Gratani et al., 2003; Niinemets, 
2015) and wide ecophysiological variation (Niinemets and 
Valladres, 2006; Gil-Pelegrín et al., 2017b) of Quercus spp. (oaks). 
From deciduous to semi-evergreen or evergreen Quercus spp., 
plasticity has commonly been identified as a trait contributing 
to greater drought, cold, and shade tolerance (Valladares et al., 
2002; Gimeno et al., 2009; Limousin et al., 2012; Ramírez-
Valiente et al., 2017). Plasticity relates to how populations may 
respond to climate change as well as the development of improved 
management activities (Paquette et al., 2007; Gimeno et al., 
2009). Plasticity is also important in understanding mechanisms 
that lead to regeneration and restoration success (Benito-Garzón 
et al., 2013; Lawson and Michler, 2014; Löf et al., 2019).

Quercus spp. are generally intermediate in shade tolerance 
and underplanting may provide an effective means to restore 
these species (Dey et al., 2012). Increased light and soil moisture 
resulting from overstory density reduction may benefit planted 
Quercus seedlings, but also pioneer species (Dey et al., 2008; 
Dey et al., 2012; Kern et al., 2012; Villar-Salvador, 2016). Pioneer 
species that acclimate rapidly and take advantage of higher 
light levels are particularly competitive, often suppressing oak 
seedling survival and growth (Paquette et al., 2006; Dey et al., 
2008; Gardiner et al., 2010). Limited light, nutrients, and water 
resources from competition can negatively affect physiological 
processes, inhibiting seedling performance (Salifu et al., 2009; 
Grossnickle, 2012). Removal of competing vegetation, therefore, 
has potential to channel limited resources to planted seedlings, 
yet can be logistically prohibitive (Wagner and Zasada 1991; 
Fleming et al., 2006). Alternatively, maintaining partial overstory 
may introduce sufficient light to optimize growth in the target 
species, while restricting faster growing competition (Elliott and 
Swank, 1994; Paquette et al., 2006; Brown et al., 2014).

To facilitate forest restoration, there has been increased 
investigation in converting pine plantations to diverse hardwood 
forests using clear-cutting or thinning followed by planting 
of desired species (Parker et al., 2001; Gómez-Aparicio et al., 
2009; Löf et al., 2010; Villar-Salvador, 2016; Lesko and Jacobs, 
2018). Overstory removal treatments affect light, temperature, 
soil moisture, and soil compaction in complex feedback loops, 
which are dependent on species and ecosystems (Canham et al., 
1990; Madrigal-González et al., 2017; Soto et al., 2017). Thus, 
understanding how silvicultural treatments affect plasticity and 
adaptive potential of target species regeneration may accelerate 
restoration processes by increasing availability of light, water, 
and nutrients.

Maritime forests of the subtropical US southern Atlantic 
coast, characterized by the dominant, semi-evergreen Quercus 
virginiana L., represent a case study where conversion of pine 
plantations back to diverse native hardwood forests may facilitate 

the restoration of associated ecosystem services (Albers and Alber, 
2003; Jones et al., 2013). Within the range of Q. virginiana, there 
has been centuries of human land transformation, particularly 
on the more stable land where maritime forests develop (Bratton 
and Miller, 1994; Bellis, 1995; Fox et al., 2007; Jones et al., 2013). 
A fraction of the original estimated land area of maritime forests 
remains at approximately 39,000 ha, which has created interest 
to protect and restore maritime forests (Mathews et al., 1980; 
Lopazanski et al., 1988).

Many agricultural lands that were originally maritime 
forests on the US southern Atlantic coast were abandoned and 
more recently planted into pine plantations (i.e., Pinus taeda 
L.) for commercial investment and to minimize erosion (Fox 
et al., 2007; Brockerhoff et al., 2008). Pine plantations tend to 
perform poorly when exposed to inherent coastal stressors 
and abandoned monoculture pine plantations with low genetic 
diversity are particularly prone to disease and outbreaks of 
southern pine beetles (Dendroctonus frontalis Zimm.), which 
are an economically destructive forest pest due to exponential 
outbreaks (Conner et al., 2005; Fox et al., 2007; Brockerhoff et al., 
2008; Watson et al., 2013; Nowak et al., 2015; Asaro et al., 2017). 
Clear-cuts are used to salvage residual timber value and reduce 
continual spread of active outbreak sites, while overstory thinning 
helps to minimize future outbreaks in at-risk stands (Belanger et 
al., 1993; Watson et al., 2013; Asaro et al., 2017). The complete or 
partial removal of the pine overstory provides an opportunity to 
restore maritime forest by regenerating Q. virginiana.

Our objective was to better understand the underlying 
physiological mechanisms that drive plant structure, physiology, 
and function of Q. virginiana, as a semi-evergreen oak. Quercus 
virginiana L. has a broad distribution across maritime edaphic site 
factors compared to other maritime oaks (Cavender-Bares and 
Pahlich 2009), suggesting potential for high plasticity. While the 
effects of varying resources such as temperature and precipitation 
has been studied in Q virginiana (Kurtz et al., 2013; Ramírez-
Valiente et al., 2015; Cavender-Bares and Ramírez-Valiente, 
2017), the species response to light and competition has yet to 
be explored. We experimentally evaluated the relative influence 
of pine overstory density and vegetation control treatments on 
Q. virginiana seedling performance. We hypothesized that Q. 
virginiana survival, growth, and leaf development would peak 
in the thinned treatments, when competition was controlled, 
reflective of the relative shade tolerance of most Quercus spp. 
Under this scenario, seedlings should show higher net CO2 
assimilation and greater growth and development due to 
increased light compared to the control, while avoiding excessive 
light in the clear-cut.

MaTERIaLS anD METhODS

Experimental Site
The experiment was conducted on the north end of St. Simon’s 
Island, Georgia at Cannon’s Point Preserve (N 31°15’29“ W 
81°20’45”), which is a 246-ha wilderness tract with approximately 
50 ha dominated by abandoned pine plantations (mostly P. taeda 
L. with some P. elliotti Englem.). Tree rings and cores indicated 
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that the pine stands were approximately 50 years old. In 2015 and 
2016, areas of natural and planted pines affected by southern pine 
beetles were clear-cut to salvage timber and reduce the southern 
pine beetle outbreak.

Soils at Cannon’s Point Preserve are a mixture of fine sandy soils 
dominated by Mandarin fine sand and Cainhoy fine sand, 0–5% 
slopes. Pottsburg sand and Rutledge fine sand are also present 
(NRCS, 2017). At each plot, four soil samples were composited 
to evaluate physical and chemical characteristics using Mehlich 
III extraction (Brookside Laboratories, New Brennan, Ohio). 
Soil characteristics were similar with slight differences creating 
variability across replicate blocks (Table 1).

This region receives an average annual precipitation of 114 
cm and average annual temperature was 20.0°C. During the 
study period 2017–2018, average annual precipitation was 90 cm 
and temperature was 21.0°C (Sapelo Island National Estuarine 
Research Reserve Meterological Monitoring, 2018; U.S. Climate 
Data, 2018). Hurricane Irma (September 2017; 7 months into 
experiment) resulted in temporarily increased precipitation, 
saltwater inundation, salt spray, and strong winds across the 
region, yet no damage to our experimental site.

Experimental Design and Treatments
A randomized complete block design with a split-plot structure 
was used for this study. The whole plot factor consisted of four 
overstory densities (clear-cut, heavy thin, light thin, and non-
thinned). The subplot factor was two levels of vegetation control 
(no vegetation removal and 2 years of vegetation removal). 
A total of 25 seedlings were planted within each subplot. All 
treatment combinations were replicated by four blocks resulting 
in 800 total seedlings.

Overstory density treatments were randomly applied to 
a 66 × 44 m area. Within the treated area, 26 × 14 m research 
plots were established. All plots were fenced (2.5 m height) to 
exclude white-tailed deer (Odocoileus virginianus Zimm.) as 
herbivory is cited as a limiting site factor in maritime forest 
restoration (Thyroff et al., 2019). Overstory density treatments 
were installed by modifying the basal area of the original pine 
overstory. Target basal areas were clear-cut at 0 m2 ha−1, heavy 
thin at 4–9 m2 ha−1, light thin at 18–23 m2 ha−1, and non-thinned 
at 27+ m2 ha−1. Logging operations to implement overstory 
treatments were completed in December 2016. Target basal areas 
were monitored by a contracted forester and logger. Additionally, 

all mid-story trees, understory vegetation, and large slash were 
removed immediately after the harvest activity to reduce possible 
confounding effects. Subplots requiring vegetation control over 
2 years were done so throughout both growing seasons using 
mechanical methods (i.e., brush saws and hand clippers).

Plant Material
One-year-old Q. virginiana bare-root seedlings were planted in 
February 2017. Seedlings were obtained from Superior Trees in Lee, 
Florida with a Louisiana seed source. From baseline morphology 
analysis (n = 20), mean seeding diameter was 5 mm (± 0.20), mean 
seedling height was 54 cm (± 2.00), and root to shoot dry mass 
(g) ratio was 0.89 (± 0.76). Seedlings were sorted prior to planting 
and randomly assigned treatments. Seedlings were hand planted 
with planting bars at 2-m spacing. To maintain planting density 
and interspecific seedling competition, a perimeter of buffer trees 
was planted 2 m from the research seedlings.

Plot characteristics
For each plot, basal area and canopy closure data were collected 
in summer 2017. All mature tree species within each fenced plot 
and the buffer areas around them were identified and measured for 
diameter at breast height (DBH; 1.37 m) to the nearest centimeter. 
DBH of mature trees were used to calculate the basal area. Three 
hemispherical photographs were taken under homogeneous 
diffuse sky conditions and across the centerline, working from west 
to east cardinal directions, at approximately 4.7-m intervals (1/3 of 
the plot width). Photographs were analyzed with CIMES software 
(Gonsamo et al., 2011) to determine percent canopy closure.

To record soil moisture and temperature, each plot had an 
Em50 digital data logger with two 5TM sensors (Decagon, 
Pullman, Washington) located in the subplot center. Each sensor 
was installed at a depth of 25 cm and recorded measurements 
every 2 h. Four of the plots (all of block 1) had additional sensors 
installed; photosynthetically active radiation (PAR) sensors to 
monitor light and VP4 sensors to capture air temperature and 
relative humidity recorded every 2 h. At the peak of vegetation 
cover on site (September 2018), five seedlings from each treatment 
(160 total) were randomly selected for a 1-m2 plot vegetation 
survey to assess percent competing vegetation cover, mean height 
of competition, and top competing species within each plot.

Seedling Performance
At the time of planting (February 2017), measurements of ground 
line diameter and height to last live bud were recorded. At the 
end of the growing seasons (November 2017 and 2018), survival, 
diameter, height, and crown width were recorded. Survival was 
recorded as a binary response; “alive” included seedlings with 
any number of green leaves. At the end of the second growing 
season (November 2018), foliar nitrogen (N) was determined by 
randomly sampling seven seedlings per subplot, resulting in 224 
total sampling units. Three leaves per seedling were collected and 
composited, dried at 60°C for 72 h, weighed, pulverized in vials 
with stainless steel balls, and analyzed with an ECS 4010 CHNSO 
Analyzer (Costech, Valencia, California).

TaBLE 1 | Mean (± SE) of initial soil parameters using Mehlich III extraction.

chemical characteristic

Organic matter (%) 2.1 (± 0.3)
pH 4.6 (± 0.3)
CEC (ME 100g−1) 2.2 (± 0.7)
Estimated nitrogen (kg ha−1) 67.8 (± 5.1)
Soluble sulfur (ppm) 8.5 (± 1.0)
Phosphorous (ppm) 99.6 (± 24.5)
Potassium (ppm) 17.3 (± 1.4)
Magnesium (ppm) 35.8 (± 4.6)
Calcium (ppm) 257.1 (± 93.3)
Sodium (ppm) 35.7 (± 1.8)
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Ecophysiology and Leaf Trait 
Measurements
Gas exchange, specific leaf area (SLA), stomatal density, 
stomatal pore index (SPI), and maximum theoretical stomatal 
conductance (gmax) were measured during the growing season 
(June 2018). Leaf gas-exchange was measured with a portable 
LI-6400XT (LI-COR Biosciences, Lincoln, Nebraska) to create 
light response curves. Two Q. virginiana seedlings were randomly 
selected per subplot, resulting in 64 total sampling units. One 
upper-canopy, fully expanded, recently mature leaf per tree was 
measured between the hours 10:00 and 14:00. Light levels used 
to create light response curves were: 1,600, 1,400, 1,200, 1,000, 
800, 600, 400, 300, 200, 100, 50, 0 (µmol m−2 s−1). Infrared gas 
analyzers of the LI-6400XT (IRGAs; reference and sample) 
were matched at the beginning and end of each light curve 
measurement. Relative humidity (~ 60%), vapor pressure deficit 
(<3.0 kPa), and temperature (leaf and block) were monitored for 
consistency. The gas exchange data point was taken after sample 
gas values (H2O and CO2) and net CO2 assimilation were stable, 
based on coefficient of variation. Q. virginiana leaves did not fully 
fill the 2 × 3 cm LI-6400XT leaf chamber, therefore, gas-exchange 
measurements were adjusted for actual leaf areas. Leaf areas were 
determined from a photo of the leaf in the chamber using ImageJ 
(National Institutes of Health, Bethesda, Maryland). Light 
response curves were created by plotting net CO2 assimilation 
(AN, μmol CO2 m−2 s−1) against PAR. The curves were fitted to 
a non-rectangular hyperbola (SigmaPlot V11.0, Systat Software, 
San Jose, California). Methodology to calculate final parameters 
from the model followed Chartier and Prioul (1976). Final 
parameters were used to calculate light compensation (µmol m−2 
s−1) and light saturation (µmol m−2 s−1) points.

SLA, stomatal density, SPI, and gmax were sampled from the 
same four selected Q. virginiana seedlings per plot used for gas-
exchange measurements. Three selected, upper-canopy, fully 
expanded, recently mature leaves were used for each seedling. 
In the non-thinned overstory some seedlings did not have many 
leaves, therefore in those cases only two leaves were collected. SLA 
was calculated by dividing leaf area by leaf mass (cm2 g−1). Collected 
whole leaves were scanned to measure leaf area (cm2) using ImageJ. 
Leaves were dried at 60°C for 48 h then weighed for leaf mass (g).

Impressions of the abaxial leaf surface were made in the middle 
of each leaf, midway between the midrib and the leaf margin. Leaf 
impressions were made on microscope slides using cyanoacrylate. 
Five leaf impression images (DCM 900 microscope CMOS 
Camera, Oplenic Optronics, Hangzhou, China) were taken of a 
0.19 × 0.14 mm (0.0266 mm2) area under 40× magnification using a 
microscope (BH-2 microscope, Olympus, Tokyo, Japan). Stomatal 
counts were conducted using ImageJ and the cell counter plug-in 
(Kurt De Vos, University of Sheffield). For unbiased counting, all 
whole stomata were counted within the impression image area 
and stomata partially within the image were only counted on the 
top and right sides of the image area. Stomatal density (mm−2) 
was calculated by dividing the number of stomata in the image by 
image area. To calculate SPI and gmax, stomatal lengths and widths 
were calculated from the leaf impressions using ImageJ and using 
the Feret’s diameter measurement (Supplementary Appendix A). 

SPI was calculated by multiplying stomatal density by stomatal 
length squared, while gmax (mmol m−2 s−1) was calculated using 
stomatal length and width following equations from McElwain 
et al. (2016) methodology.

Statistical analyses
All data was analyzed with R software version 3.5.3 (R Core 
Team, 2019) using: lme4 package (Bates et al., 2015) for general 
linear models, linear regressions, and logistic regression; 
nlme (Pinheiro et al., 2018) package for repeated measures 
models; multcomp package (Hothorn et al., 2008) for pairwise 
comparisons. Plot characteristics (basal area, canopy closure, and 
data loggers) were analyzed with general linear mixed models, 
with overstory as the fixed factor and block as a random factor. 
A logistic regression model was used to analyze survival with 
overstory, vegetation control, and interaction as fixed factors 
and block as a random factor. Diameter, height, and crown 
width were analyzed with repeated measures general linear 
mixed models with overstory, vegetation control, time, and 
resulting interactions as fixed factors; block and individual tree 
as random factors. Foliar N, light response curves including light 
compensation/saturation points, leaf traits (i.e., SLA, stomatal 
density, SPI, gmax), and vegetation survey dependent variables 
were analyzed separately with general linear mixed models, with 
overstory, vegetation control, and interaction as fixed factors and 
block as a random factor. Linear regression models were used to 
analyze light saturation points and growth parameters. Residuals 
from all response variables were tested to ensure normality and 
homogeneity of variance. Crown width did not meet assumptions 
and data was square root transformed. For all analyses, when 
significant treatment effects were detected (p ≤ 0.05), Tukey’s 
HSD test was used to test for pairwise comparisons (α = 0.05). 
All statistical output results are provided in Appendices B and C. 
Although the number of sampling units from each experimental 
unit varied across measurements (per details above), the number 
of experimental units was always n = 4.

RESULTS

Plot characteristics
Basal area (m2 ha−1), canopy closure (%), light (PAR), mean 
air temperature (°C), and mean soil temperature (°C) followed 
a progression of overstory density (Table 2). Clear-cuts had 
the lowest basal area and canopy closure, resulting in greatest 
PAR. This pattern was consistent along the light progression 
with thinned plots having intermediate basal area and canopy 
closure. Non-thinned plots had the greatest basal area and 
canopy closure, resulting in the lowest PAR. Mean air and soil 
temperature increased with increased thinning density resulting 
in highest temperatures in clear-cut plots. From April 2017 to 
May 2018, average soil moisture was consistently greater in 
vegetation control subplots than non-vegetation control subplots. 
Soil moisture peaked in late summer/early autumn and was often 
greatest in heavy thin plots, followed by clear-cut and light thin, 
and lastly non-thinned plots (Figure 1).
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The interaction of overstory and vegetation control was 
significant for percent vegetation cover (F3,54 = 6.84, p = 0.001) 
as the effect of vegetation control was different between the 
overstory treatments. Vegetation control decreased percent 
vegetation cover in clear-cut, heavy thin, and light thin plots, but 
had no effect in non-thinned plots (Figure 2). Additionally, height 
of competing vegetation was 58.3 cm (± 14.4) in non-vegetation 
control subplots compared to 18.8 cm (± 3.0) in vegetation 
control subplots (F1,57 = 35.56, p < 0.001). Top competing species 
included: Ilex vomitoria, Paspalum notatum, Rubus trivialis, Vitis 
rotundifolia, and Morella cerifera.

Seedling Performance
Initial height and diameter of planted seedlings were similar 
across all treatments with an average height of 48 cm (± 0.9) and 
an average diameter of 3.8 mm (± 0.1). Overall survival after two 
growing seasons was 75.5% (± 1.9). The treatment interaction 
was not significant, however the main effect of overstory was 
significant with increased survival with increased thinning 
intensity (X2

3,794 = 9.86, p = 0.020); clear-cut and heavy thin 
plots had the highest survival at 81.5 and 81.0%, light thin was 
intermediate at 73.0%, and non-thinned had the lowest survival 
at 65.5%.

The interaction of overstory, vegetation control, and time was 
significant for diameter (F6,595 = 13.30, p < 0.001), height (F6,1217 = 
3.22, p = 0.004), and crown width (F3,587 = 13.00, p < 0.001). The 
effect of vegetation control differed among the overstory density 

treatments and the effects varied over time. Overall diameter, 
height, and crown width increased with increased thinning 
intensity. Vegetation control was most beneficial for seedlings in 
clear-cut plots followed by heavy thin plots and had no effect in 
non-thinned plots (Figure 3).

Seedling diameter increased by 400% in clear-cut plots 
with vegetation control and 200% in clear-cut plots without 
vegetation control, while marginal growth occurred in non-
thinned plots regardless of vegetation control treatment. 
Seedling height and crown width increased by 200% in clear-
cut plots with vegetation control and 100% in clear-cut plots 
without vegetation control, while non-thinned plots had little 
growth regardless of treatment. Dieback occurred frequently 
in the non-thinned plots, which resulted in negative relative 
heights after two growing seasons.

Ecophysiology and Leaf Trait 
Measurements
For foliar N, only main effects were significant showing increased 
foliar N with increased thinning intensity (F3,217 = 24.06, p < 0.001) 
and increased foliar N with vegetation control (F1,217 = 34.94, p < 
0.001). While the interaction was non-significant the overstory 

TaBLE 2 | Mean (± SE) target basal area from logging operation, basal area from stand inventory, canopy closure from hemispherical photos. 

Basal area (m2 ha−1) canopy closure (%) PaR (μmol m−2 s−1) air temperature (°c) Soil temperature (°c)

Clear-cut 0 (± 0.0) a 0 (± 0.00) a 803 (± 9.3) a 25.5 (± 0.07) a 23.8 (+ 1.00) a
Heavy thin 16.9 (± 2.3) b 60 (± 0.05) b 446 (± 4.4) b 22.4 (± 0.09) b 22.1 (+ 0.45) ab
Light thin 24.2 (± 1.5) b 67 (± 0.04) b 278 (± 7.5) b 20.1 (± 0.11) c 21.5 (+ 0.20) b
No thin 33.9 (± 3.5) c 78 (± 0.05) b 144 (± 2.5) c 20.7 (± 0.10) c 21.4 (+ 0.40) b

Mean (± SE) PAR levels, air temperature, and soil temperature from data loggers. Different letters indicate significant differences among treatments (α = 0.05).

FIgURE 1 | Mean soil volumetric water content (m3 m−3) from all plots, 
averaged by overstory treatment from April 2017 to June 2018. Volumetric 
water content was recorded every 2 h. Secondary y axis, monthly total 
precipitation (mm) from Sapelo Island National Estuarine Research Reserve 
Meteorological Monitoring station from April 2017 to June 2018. FIgURE 2 | Mean (± SE) vegetation cover (%) of competing vegetation in a 

1-m2 survey around Quercus virginiana seedlings planted in clear-cut, heavy 
thin, light thin, no thin plots taken at the end of the second growing season. 
Competing vegetation removed for 0 or 2 years. Different letters indicate 
significant differences among treatments (α = 0.05).
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main effect was significant for the calculated light compensation 
(F3,57 = 8.10, p < 0.001) and light saturation points (F3,57 = 23.56,  
p < 0.001). With increased thinning intensity, light compensation 
and saturation points increased. Net CO2 assimilation was greatest 
in clear-cut plots, intermediate in heavy and light thin, lowest in non-
thinned plots (Figure 4), and positively related to growth parameters 
(Supplementary Appendix D). Additionally, the vegetation control 
main effect was significant only for light saturation point with greater 
light saturation points in subplots with vegetation control compared 
to subplots without vegetation control (F1,57 = 5.56, p = 0.022).

For SLA, stomatal density, SPI, and gmax, only main effects were 
significant. With increased thinning intensity, SLA decreased 
(F3,57 = 12.60, p < 0.001), while stomatal density (F3,57 = 21.20, 
p < 0.001), SPI (F3,57 = 24.19, p < 0.001), and gmax (F3,57 = 24.48, 
p < 0.001) all increased (Figure 5). Vegetation control resulted in 
decreased SLA (F1,57 = 6.28, p = 0.015), and increased stomatal 

density (F1,57 = 5.37, p = 0.024), SPI (F1,57 = 6.55, p = 0.013), and 
gmax (F1,57 = 5.69, p = 0.020). More abaxial trichomes (i.e., leaf 
hairs) occurred on stomatal density impression images from 
clear-cut plots followed by heavy thin, light thin, and lastly no 
trichomes in non-thinned plots (F3,57 = 6.38, p < 0.001; Figure 6).

DIScUSSIOn

Light and competing Vegetation
Removal of stand basal area affects environmental characteristics 
such as light, temperature, and soil moisture, which influence 
seedling performance (Gil-Pelegrín et al., 2017b; Villar-Salvador, 
2016). In our study, the pattern reflected in the PAR results 
(clear-cut had greatest PAR, followed by the thinned overstories, 
and lastly non-thinned) corresponded with increased seedling 
survival, diameter, height, crown width, and foliar N. Growth 
parameters were consistently greatest in clear-cut plots, 
intermediate in thinned plots, and lowest in non-thinned 
plots, rather than peaking in the thinned treatments as we 
hypothesized. Foliar N, which is an essential macronutrient for 
seedling establishment and performance (Abrams and Mostoller, 
1995; Soto et al., 2017), was significantly greater in leaves of 
seedlings in clear-cut plots followed by the thinned overstories, 
indicating greater accessibility of this limiting resource to 
seedlings (Kobe, 2006; Uscola et al., 2015). Similar to other 
studies, seedlings in less dense overstory treatments were able 
to use available resources, and thereby increase photosynthesis 
and growth (Gómez-Aparicio et al., 2006; Cooper et al., 2014; 
Soto et al., 2017). Supporting our results, Q. virginiana has been 
reported as a fast growing species that preferentially allocates 
resources to aboveground biomass development (Cavender-
Bares and Pahlich, 2009).

In a dense overstory, such as the non-thinned plots, soil 
moisture and nutrients (e.g., N as seen with low foliar N 
concentrations) are typically limited because of canopy tree 

FIgURE 4 | Mean light response curves (net photosynthesis plotted by 
photosynthetically active radiation) of Quercus virginiana seedlings planted 
either in clear-cut, heavy thin, light thin, or no thin plots taken in June 2018. 
Different letters indicate significant differences among treatments (α = 0.05).

FIgURE 3 | Mean (± SE) (a) diameter (mm), (B) height (cm), and (c) crown 
width (cm) growth of Quercus virginiana seedlings after the second (2018) 
growing season. Planted in overstory density (clear-cut, heavy thin, light thin, 
or no thin plots) and vegetation control treatments (0 or 2 years of subplots). 
Different letters indicate significant differences among treatments (α = 0.05).
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dominance and competition (Cooper et al., 2014). Seedlings 
in non-thinned plots with dense overstories may have arrested 
development due to low light levels preventing their progression 
from seedlings to saplings (Zavala et al., 2011; Soto et al., 2019). 
Artificially regenerated Q. virginiana did not appear to benefit 
from the shade of the pine plantations as identified with Q. ilex 
L. (Gómez-Aparicio et al., 2009); however, this advantage may be 
expressed during a prolonged drought or on drier coastal sites or 
if studying natural regeneration. Thus, effects may also be due to 
the density of the pine plantations (33.9 m2 ha−1 basal area) in our 
study. Sites with pine overstory densities closer to the heavy thin 
treatment (16.9 m2 ha−1 basal area) may see the benefit of directly 
underplanting in a plantation.

As hypothesized, we found a consistent interaction between 
overstory and vegetation control treatments, with vegetation 
control benefiting growth parameters in clear-cut plots and not 
in non-thinned plots (Figure 3). Without thinning, light and 
soil moisture were more limiting to Q. virginiana performance 
than understory vegetation competition. Semi-evergreen 
Quercus spp. have varying photosynthetic responses to different 
environments, with a range of growth rates and shade tolerance 
(Gratani et al., 2003; Cavender-Bares and Ramírez-Valiente, 
2017; Villar et al., 2017). Within the clear-cut and heavy thinning 
treatments, higher PAR contributed to understory vegetation 

becoming more abundant and thus more competitive (Ter-
Mikaelian et al., 1999). In our study, vegetation control promoted 
seedling growth, particularly on sites with more light (i.e., clear-
cut and heavy thin). The significant interaction illustrated a shift 
in pressure from light limited environments to resource limited 
environments (i.e., greater foliar N concentrations and increased 
soil moisture in vegetation control subplots). Overall, our 
results align with past studies indicating that vegetation control 
enhances seedling establishment and performance, particularly 
when released from dense overstories (Wagner and Zasada, 
1991; Fleming et al., 2006). In cases where competing vegetation 
is expected to be high and vegetation control is not feasible, 
however, maintaining an overstory may reduce competition and 
the need for costly and sometimes controversial (i.e., herbicide) 
competing vegetation removal (Thiffault and Roy, 2011; Löf et al., 
2014; Villar-Salvador, 2016).

Ecophysiology and Leaf Trait Responses
Trees are long lived organisms that may experience several 
environmental changes and associated stresses and plasticity is 
an adaptive strategies to promote survival under environmental 
fluctuations (Cavender-Bares and Ramírez-Valiente, 2017; Gil-
Pelegrín et al., 2017a). Our results indicate that Q. virginiana 

FIgURE 5 | Mean (± SE) (a) specific leaf area (cm2 g−1), (B) stomatal density (stomata mm−2), (c) stomatal pore index, and (D) maximum theoretical stomatal 
conductance (gmax, mmol m−2 s−1) of Quercus virginiana seedlings planted in clear-cut, heavy thin, light thin, or no thin plots. Different letters indicate significant 
differences among treatments (α = 0.05).

Frontiers in Plant Science | www.frontiersin.org November 2019 | Volume 10 | Article 1526

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Plasticity of Quercus virginiana RegenerationThyroff et al.

8

can acclimate to varying environments as maximum net CO2 
assimilation occurred in clear-cuts (Figure 4), which aligns with 
the increased growth and foliar N in clear-cut plots. With higher 
light compensation and saturation points, seedlings in clear-
cuts took longer to achieve positive CO2 assimilation, but were 
able to utilize increased PAR with higher net CO2 assimilation 
rates. Similar to studies with other oaks, Q. virginiana seedlings 
responded to the other overstory treatments in a linear 
progression with respect to light availability (Cavender-Bares 
and Pahlich, 2009; Cooper et al., 2014). Seedlings in the non-
thinned plots reached positive net CO2 assimilation quickest 
at the lowest PAR; however, non-thinned seedlings also 
reached light saturation point quicker at a lower PAR. Net CO2 
assimilation, therefore, was limited and lowest for seedlings 
in non-thinned plots. Greater net CO2 assimilation rates were 
supported by more stomata, not larger stomata (Supplementary 
Appendix A), resulting in greater gas exchange potential as 
seen with stomatal density, SPI, and gmax. Ability to regulate 
stomatal development (stomatal density and SPI) and capacity 
for high gmax rates leads to seedling acclimation to a wide 
range of environments. Additionally, seedlings in more shaded 
environments with decreased SPI can allow for higher water 
use efficiency (Yoo et al., 2009; McElwain et al., 2016; Liu et al., 
2017). In other studies, Mediterranean evergreen oaks such as 
Quercus oleoides Schltdl. & Cham. and Quercus ilex have also 
shown phenotypic plasticity in growth rates, CO2 assimilation, 
and leaf development (Cavender-Bares and Ramírez-Valiente, 
2017; Gil-Pelegrín et al., 2017b; Ramírez-Valiente et al., 2017). 

Niinemets and Valladares (2006) classified Q. virginiana as 
drought-tolerant and intermediate in shade tolerance. Not 
only is maximizing performance under high-light conditions 
beneficial, but also the capability of shade adaptation is 
beneficial to seedling survival (Valladares and Niinemets, 2008). 
Similarly, Quercus velutina Lam. is a drought-tolerant and light 
demanding oak for which Ashton and Berlyn (1994) showed 
great leaf anatomical plasticity with high net CO2 assimilation 
compared to other temperate deciduous oaks.

Leaf variation of Quercus spp. tends to be on the lower end 
of the leaf economic spectrum, aligning with early to mid-
successional classification (Wright et al., 2004; Niinemets 
and Valladres, 2006; Gil-Pelegrín et al., 2017b). Following 
a conservative resource strategy, lower SLA leaves on semi-
evergreen oaks can help to maintain function and extend 
photosynthesis (Cavender-Bares and Ramírez-Valiente, 2017). 
Thicker leaves are also more resistant to environmental stressors 
such as aridity, freezing temperatures, and solar radiation 
(Cavender-Bares and Ramírez-Valiente, 2017; Gil-Pelegrín 
et al., 2017b; Pemán et al., 2017). Whereas SLA was negatively 
associated with CO2 assimilation, stomatal density was 
positively associated with CO2 assimilation. Similarly, Ramírez-
Valiente et al. (2017) found that SLA was negatively associated 
with net CO2 assimilation and Q. seedling growth. In clear-
cut plots with low SLA (i.e., smaller, thicker leaves), seedling 
growth was greatest. Higher stomatal density and SPI increases 
gas exchange potential and gmax, which increases net CO2 
assimilation (Wright et al., 2004; McElwain et al., 2016). Along 

FIgURE 6 | Impression images of abaxial trichomes Quercus virginiana seedlings planted in each of the overstory treatments [(a) clear-cut, (B) heavy thin, (c) light 
thin, and (D) no thin].
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with increased gas exchange potential, comes increased risk 
of desiccation; therefore, a trade-off is necessary to maximize 
performance, which was seen in the opposite associations of 
SLA and stomatal density with net CO2 assimilation. Trichomes 
are commonly found in many Quercus spp. and trichomes in 
the abaxial surface may be a mechanism to reduce water loss 
(Bickford, 2016; Gil-Pelegrín et al., 2017b) as seen in the higher 
light plots (Figure 6). Additionally, a smaller leaf typically has a 
thinner leaf boundary layer, which facilitates cooling in drier and 
warmer climates (e.g., clear-cuts) (Gil-Pelegrín et al., 2017b). In 
our experiment, Q. virginiana showed phenotypic plasticity for 
growth rates, gas exchange, and leaf development in response 
to silvicultural treatments that modified seedling environments 
as was observed in similar evergreen oak regeneration studies 
(Ramírez-Valiente et al., 2015).

cOncLUSIOnS
We demonstrated that Q. virginiana is capable of acclimating 
to varying resource availability, with a high tolerance to 
full sunlight. Developmental responses of underplanted Q. 
virginiana did not follow the predicted trend of peaking in the 
heavy/light thin pine plantation overstory, but rather in clear-
cuts. Nonetheless, thinning is among the most effective practices 
for preventing or mitigating pine beetle outbreaks by creating 
barriers to population growth and spread (Nowak et al., 2015; 
Asaro et al., 2017). Additionally, a canopy buffering-effect in 
thinned stands may be more beneficial for oaks on drier sites 
or during prolonged drought (García-Plazaola et al., 2017). 
Thus, rather than prescribing a single treatment (e.g., clear-cut) 
that optimizes Q. virginiana development, an alternative may 
be to prescribe several treatments that result in cost-effective 
restoration and reduce the need for costly competing vegetation 
control. Forest species with high plasticity and rapid growth, such 
as Q. virginiana in our study, will obtain rapid canopy closure, 
allowing favorable conditions for establishment of associated 
mid-and late-seral maritime forest species (Gómez-Aparicio 
et al., 2009; Bertacchi et al., 2016), helping to create resilient, 
diverse, and complex forests (Löf et al., 2019).
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