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Computer vision models that can recognize plant diseases in the field would be valuable 
tools for disease management and resistance breeding. Generating enough data to 
train these models is difficult, however, since only trained experts can accurately identify 
symptoms. In this study, we describe and implement a two-step method for generating a 
large amount of high-quality training data with minimal expert input. First, experts located 
symptoms of northern leaf blight (NLB) in field images taken by unmanned aerial vehicles 
(UAVs), annotating them quickly at low resolution. Second, non-experts were asked to draw 
polygons around the identified diseased areas, producing high-resolution ground truths that 
were automatically screened based on agreement between multiple workers. We then used 
these crowdsourced data to train a convolutional neural network (CNN), feeding the output 
into a conditional random field (CRF) to segment images into lesion and non-lesion regions 
with accuracy of 0.9979 and F1 score of 0.7153. The CNN trained on crowdsourced data 
showed greatly improved spatial resolution compared to one trained on expert-generated 
data, despite using only one fifth as many expert annotations. The final model was able to 
accurately delineate lesions down to the millimeter level from UAV-collected images, the 
finest scale of aerial plant disease detection achieved to date. The two-step approach to 
generating training data is a promising method to streamline deep learning approaches for 
plant disease detection, and for complex plant phenotyping tasks in general.

Keywords: phenotyping, unmanned aerial vehicles, plant disease, deep learning, machine learning, crowdsourcing

INTRODUCTION
Machine learning models for object detection require a large amount of training data, typically 
generated by humans. When the average person can identify the feature or object in question, 
such as a face, a stop sign, or an apple, these data can be generated through crowdsourcing, as 
was done for large datasets such as ImageNet (Deng et al., 2009) and Microsoft COCO (Lin et al., 
2014). Even if the feature is unfamiliar to most people, crowdsourcing may be viable if the task is 
simple and the feature obvious. In a recent study on best practices for crowdsourcing plant feature 
annotation, Zhou et al. (2018) found that, with minimal instruction, anonymous online workers 
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could accurately identify maize male flowers in images where 
they were clearly visible. Accurate identification of many plant 
features requires a certain level of expertise, however. If only a 
handful of human experts are qualified and willing to generate 
training data, the process takes much longer than if tasks could 
be reliably performed by hundreds or thousands of non-experts. 
This places a burden on those experts and creates a bottleneck in 
the model training process.

This dilemma has been addressed by many groups, particularly 
in the field of human medicine, wherein a model trained on low-
quality data could endanger lives, but experts’ time is limited and 
expensive. Different circumstances allow for distinct solutions 
to the problem. For some tasks, such as interpreting X-ray 
radiographs, large amounts of training data are already generated 
and archived under normal protocols, and these data can be used 
as is without need for additional annotations (Gale et al., 2017). 
When untrained workers perform moderately well, but not quite 
on par with experts, their annotations can be used to train a “first 
pass” model that identifies regions of interest (Park et al., 2017), or 
one that performs only those tasks that non-experts can do well 
(Heim et al., 2018). Researchers might have access to a community 
of knowledgeable, enthusiastic amateurs, such as those who enjoy 
identification of birds (Van Horn et al., 2015) or aircraft (Maji et al., 
2013). If nothing but expert annotations will suffice, data sharing 
lessens the burden on any one group. Multiple groups have used 
the International Skin Imaging Collaboration image set of human 
skin diseases (Codella et al., 2015; Haenssle et al., 2018) or the 
PlantVillage image set of plant diseases (Mohanty et al., 2016; 
Ghosal et al., 2018; Picon et al., 2019).

Identifying plant diseases via machine learning presents 
two challenges that limit the feasibility of the above solutions. 
First, qualified expert judgment is needed at some point in 
the annotation process, since there are often many causes 
for tissue death (e.g., disease, abiotic stress, physical damage, 
natural senescence) and the average person has no experience 
distinguishing among these. Second, there are hundreds of 
economically important plant diseases, each with unique 
considerations of host tissue appearance, plant architecture, 
symptomatology, etc. A group aiming to implement machine 
learning detection of a given disease for the first time will likely 
have to generate novel training data.

The identification of plant disease symptoms in an image 
might belong to one of three classes of tasks, per Liu et al. (2018): 
classification, detection, or segmentation. Object classification 
methods detect the presence or absence of features within an 
image on the whole, e.g., “this is an image of wheat stem rust.” 
Object detection methods identify the location and extent 
of symptoms within an image on a coarse spatial level, most 
commonly delineating them with bounding boxes. Semantic 
segmentation methods delineate the boundaries of features, 
assigning each pixel of an image to a given class, e.g., leaf, soil, 
or disease symptom. In this paper, we undertake this last task-
identifying and outlining every diseased region in an image.

Aerial plant disease detection via machine learning has 
aroused much interest in the past few years, as evidenced in many 
reviews, letters, and prospectives (Araus and Cairns, 2014; Singh 
et al., 2016; Tsaftaris et al., 2016; Shakoor et al., 2017; Yang et al., 

2017; Ubbens and Stavness, 2017; Chouhan et al., 2019; Maes and 
Steppe, 2019). Compared to the level of interest, relatively few 
examples have been published. Machine learning classification 
has been used to classify entire plants as virus-infected or not (Ha 
et al., 2017; Sugiura et al., 2018). Object detection methods have 
been used to identify diseased regions of grape plants (Kerkech 
et al., 2018) and diseased leaves of soybean (Tetila et al., 2017). 
Semantic segmentation of unmanned aerial vehicle (UAV) 
images, the task we undertake here, has been implemented in 
soybean (Tetila et al., 2019), tea plants (Gensheng et al., 2019), 
and maize (Stewart et al., 2019).

In the course of our previous work, we labeled over 100,000 
examples of northern leaf blight (NLB), a fungal foliar disease of 
maize that causes gray-brown necrotic lesions (Wiesner-Hanks 
et al., 2018). Each of these annotations consisted of a line drawn 
down the principal axis of a lesion. With these line annotations, we 
trained convolutional neural networks (CNNs) to recognize NLB 
lesions in images taken by hand with 96.7% accuracy (DeChant 
et al., 2017) and in aerial field images with 95.0% accuracy (Wu 
et al., 2019). Delineating lesion boundaries with polygons would be 
ideal, as such annotations can ultimately yield much more precise 
image segmentation than lower-resolution annotations (Bell et al., 
2015). Drawing such polygons is prohibitively time-consuming to 
do with only a small number of trained experts, however.

In this study we describe and implement a two-step approach 
for generating large amounts of high-resolution training data 
that has been vetted by qualified experts. First, experts identify 
disease symptoms, annotating them quickly at low resolution. 
Second, the more time-consuming task of annotating the lesion 
boundaries is outsourced to anonymous online workers through 
Amazon’s Mechanical Turk platform. This two-step approach 
allows us to maintain the reliability of expert diagnosis while also 
exploiting the speed and scale of crowdsourcing, producing a 
model with high accuracy and spatial resolution (Figure 1) with 
only one fifth as many expert-generated annotations.

MATeRIALs AND MeThODs

Image Annotation
All Mechanical Turk human intelligence tasks (HITs) consisted 
of one or more prompts to draw a single bounding polygon 
delineating the boundaries of a single lesion (Figure 2, top right), 
previously annotated with a line down the major axis by one of 
two human experts (Wiesner-Hanks et al., 2018). All images and 
annotations used, generated, or described herein are available in 
an Open Science Framework repository (https://osf.io/p67rz).

For each annotated lesion, a subimage was taken of the same 
width and height of the annotation line, plus 150 pixels padding 
on all four sides, so that workers had some context to the image. 
The annotation lines mostly spanned 400–1200 pixels in the x- 
and y-dimensions (depending on orientation), so this padding 
usually expanded the field of view by 25–75%. Workers were given 
basic instructions asking them to draw a polygon delineating the 
edges of the necrotic lesion with between 10 and 15 vertices, 
along with an example lesion thereof (Supplemental  text, 
Supplemental Figure 1). The annotation lines drawn by experts 
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were included in these subimages in red to make clear which 
lesion to annotate, as there was often more than one lesion in a 
single subimage.

HITs were deployed in three batches over the course of 2 
months. Three unique workers were assigned to complete each 
HIT. Each worker was paid $0.03/HIT, an amount chosen to be 
similar to payment for comparable tasks deployed on Mechanical 
Turk at that time, adjusting for the fact that different HITs involve 
a different number of tasks. An additional $0.01 was paid to 
Amazon each time a worker completed a HIT, resulting in a total 
cost of $0.12/lesion (three workers per lesion, $0.03 per worker, 
$0.01 to Amazon per worker).

Annotations drawn by Amazon Mechanical Turk (MTurk) 
workers were first screened to see how much they agreed with the 
other annotations drawn on the same lesion. If a given worker 
drew polygons that rarely agreed with those drawn by other 
workers, their annotations were potentially suspect. After a batch 
was completed, the Intersection over Union (IoU), also called the 
Jaccard similarity, was calculated for each pair of polygons drawn 
on the same lesion by taking the area in pixels of their intersection 
divided by the area in pixels of their union. Each polygon was 
thus compared to the two other polygons drawn by other workers 
on the same lesion. If the mean Jaccard similarity between all 
annotations drawn by a given worker and those drawn by other 
workers was <0.5, the worker was flagged for manual review. This 
threshold was set at 0.5 because the vast majority of workers had 
overall mean IoUs in the 0.5–0.8 range, while a small number, 

FIgURe 1 | Examples of lesion segmentation on original images taken in the field by unmanned aerial vehicle. Regions classified as disease lesions by model 
outlined in magenta.

FIgURe 2 | Comparison of annotations used and results of expert-
drawn-lines model (left; Wu et al., 2019) and crowdsourced-polygon 
model described here (right). Top row: original image with annotations 
overlaid. Middle row: heatmap created by applying convolutional neural 
network in sliding window across image, brightness indicating probability 
of lesion at a given point (white = lesion, black = non-lesion). Bottom 
row: binary mask output of conditional random field segmentation using 
original image and heatmap.
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who mostly completed only a handful of HITs each, had mean 
IoUs in the 0–0.5 range (Supplemental Figure 2). Manual review 
was deemed necessary, since a worker may have drawn their high-
quality annotations compared to low-quality annotations. If their 
work was found to be unacceptable, all of their annotations were 
rejected and lesion subimages were redeployed as needed until 
three unique workers had acceptably annotated each. In all cases, 
workers whose annotations were rejected appeared to be drawing 
polygons at random.

The IoU was also used to filter out low-quality lesions. Entire 
UAV images were filtered automatically prior to annotation and 
manually during annotation, as described previously (Wiesner-
Hanks et al., 2018), but individual lesions in an image could 
still vary in how clear and defined the visible symptoms were. 
Preliminary manual inspection of MTurk annotations revealed 
that lesions on which otherwise well-performing workers drew 
lesions with low overlap with one another were often blurry, 
ambiguous, or otherwise unacceptable. Only lesions for which all 
three polygon annotations had an IoU >0.6 with one another (a 
threshold chosen to filter out roughly the bottom 25% of lesions) 
were used to generate images for model training as described 
below. The mean and standard deviation of pixel red, green, and 
blue (RGB) values, used for later normalization of images, were 
calculated on these whole images.

Training, validation, and test data were generated based on the 
method used with polygon annotations in the OpenSurface dataset 
(Bell et al., 2015). Multiple square subimages, hereafter referred to 
as “patches,” were cropped from the entire UAV image and classified 
as “lesion” or “non-lesion” based on whether the exact center point 
of the image lay within a lesion. To generate positive patches (the 
“lesion” class), pixels lying within at least two of three annotation 
polygons were used as a search space. From these, random points 
were sampled via Poisson-disk subsampling (scipython.com/blog/
poisson-disc-sampling-in-python/), with minimum distance of 
200 pixels between each point. Negative patches (the “non-lesion” 
category), were chosen by randomly sampling points from the 
pixels in each image that were not included in any of the annotation 
polygons. Negative training images thus could contain a lesion, so 
long as they were not centered on one.

Because the original UAV images consisted mostly of non-
lesion area, many more non-lesion patches could be extracted 
from the images than lesion patches. Preliminary model testing 
with sample images suggested that using a balanced dataset with 
an equal number of lesion and non-lesion patches biased model 
predictions toward false positives, i.e., detecting lesions where 
there were none (data not shown). We thus used a moderately 
unbalanced dataset and accounted for the class imbalance using 
weights in the loss function, as described below.

In order to make the model more generalizable, training 
images were augmented via random transformations that 
preserved the image class, i.e., the location of the central pixel 
in a lesion or not. Images were horizontally and/or vertically 
flipped, rotated by 0 to 90° either clockwise or counterclockwise, 
and scaled between 0.75x and 1.33x. As these images were 
taken from directly overhead, there was no need to preserve 
image orientation.

Network Construction
We used a ResNet34 model (He et al., 2016) that had been pre-
trained on the ImageNet dataset of several million labeled images 
(Russakovsky et al., 2015) as a generalized feature extractor, 
replacing the final fully connected layer with a fully connected 
layer of output dimension 2. The output tensor for each input 
image was a two-dimensional vector of scores for the two classes: 
centered on a lesion or not centered on a lesion (note that images 
containing a lesion but not exactly centered on it belong to this 
second class). A weighted cross-entropy loss function was used, 
which normalizes the scores into estimated probabilities via the 
softmax function, then takes the negative log of these probabilities 
and multiplied by the class weights to account for class imbalance. 
Class weights of 0.36 and 1.0 were used for lesion and non-lesion 
images, proportional to the number of images in each class.

In order to determine which patch size and learning rate was 
most appropriate, we analyzed performance on a smaller sample 
set of images. For both image classes (lesion and no lesion), 5% 
of the training and validation sets were randomly sampled. The 
above network was trained and validated on this 5% subsample 
with six patch sizes (square patches of size 200, 400, 500, 600, 
800, or 1,000 pixels, using the same centerpoints for each size) 
and seven learning rates (1e−5, 3e−5, 1e−4, 3e−4, 1e−3, 3e−3, 
and 1e−2). With each combination of patch size and learning 
rate, the network was trained for 10 epochs with a step size of 
10 and gamma of 0.1, corresponding to a 10-fold decrease in the 
initial learning rate every 10 epochs.

The best-performing parameters were then used to train the 
network on the entire training and validation set for 20 epochs 
with a step size of 10 and gamma of 0.1. Patches were resized 
to 224 by 224 pixels and treated with a random horizontal flip, 
then normalized using the previously calculated mean and 
standard deviation of pixel RGB values. To compare learning 
rate dropouts, the model was also trained using step sizes of 5 
and 20, maintaining a gamma of 0.1. Weights were optimized 
using stochastic gradient descent with weights of 1.0 and 0.36 
for the non-lesion and lesion labels, respectively, proportional to 
the number of images in each category. All training was done on 
an Nvidia GTX 1070 Ti GPU with batch size 120, randomizing 
image input order.

To visualize the model-estimated probability of a given region 
containing a lesion or not, heatmaps were generated by applying 
the final CNN on a sliding window across whole UAV images, 
then applying softmax transformation to generate probabilities 
for the two classes (centered on a lesion or not). To account for 
varying lesion sizes, we used the resizing approach of Bell et al. 
(2015). The image was resized by three separate scaling factors: 
the original scale r used in model training (such that a 500x500 
window was resized to 224x224 pixels), r*sqrt(2), and r/sqrt(2). 
At these scales, a window of size 500x500, 690x690, or 345x345 
pixels, respectively, mapped to 224x224 pixels. Images were 
padded on all sides via reflectance padding, and the trained model 
was applied via a sliding window approach across the entire 
image with a stride of 50 pixels in both dimensions. The resultant 
output was then resized to the original 4,000x6,000 pixels via 
bilinear interpolation. The three resultant heatmaps were then 

Frontiers in Plant Science | www.frontiersin.org December 2019 | Volume 10 | Article 1550

http://scipython.com/blog/poisson-disc-sampling-in-python/
http://scipython.com/blog/poisson-disc-sampling-in-python/
https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Millimeter-Level Plant Disease DetectionWiesner-Hanks et al.

5

averaged, and this averaged heatmap was used for downstream 
analyses. For comparison, the trained model described by Wu 
et al. (2019) was applied in an identical manner. As the scaling 
used for training purposes was identical between these two 
models, the same scales were used for heatmap generation.

Image segmentation
Pixel-wise classification was performed using the fully 
connected conditional random field (CRF) method of 
Krähenbühl and Koltun, (2011), implemented in Python 
via pydensecrf. CRF optimization was performed using 
three separate color spaces: the original, untransformed 
RGB values, RGB values transformed to maximize contrast 
between lesion and non-lesion pixel values, and L*a*b* color 
space. For the second method, the pixels surrounding each 
polygon annotation were found by dilating the polygon mask 
(expanding the mask along its edges to include pixels for which 
a kernel overlaps with the mask) for five iterations using a 
20 pixel by 20 pixel square kernel, then subtracting the area 
created by performing only one dilation of the mask. The RGB 
values of pixels within these regions and those lying within 
polygon annotations were then downsampled by a factor of 10 
and analyzed via linear discriminant analysis (LDA) to obtain 
a transformation maximizing between-group differences in 
Euclidean distance between values in the two regions. RGB 
to L*a*b* transformation was performed using OpenCV, 
producing 0–255 integer-valued L*a*b* coordinates.

CRF performance is controlled the θ parameters, which 
determine how strongly pixel classification is influenced by 
proximity (is it close to many pixels believed to be NLB lesions)? 
and color (is it the same color as pixels believed to be NLB 
lesions)?. Because optimizing these is difficult (Krähenbühl 
and Koltun, 2011), we used a simple grid search to find suitable 
parameters, evaluating CRF performance for all combinations of 
θ values on a set of 118 training images. These were selected from 
the entire set of training images by choosing images in which 
the annotation polygons of all three workers agreed fairly well 
(each one having IoU > 0.8 with the union of all three, a cutoff 
chosen to be fairly stringent) for all lesions in the image. CRF 
performance on each image was evaluated under each color space 
with slightly different parameters, as appropriate for each. For 
the RGB and LDA-transformed color spaces, the kernel width 
θα, corresponding to the spatial dimension of pixel correlation 
and deviation, was evaluated at values ranging from 10 to 600 
by a step size of 10. For the untransformed RGB color space, θβ, 
corresponding to the color-space correlation and deviation of 
pixels, was evaluated at values ranging from 1 to 40, step size 1. 
For the LDA-transformed RGB values, θβ was evaluated at values 
ranging from 0.1 to 0.4, step size 0.1. For the L*a*b* color space, 
separate kernel widths were used for the distance along the L 
dimensions and distance in a–b dimensions. CRF performance 
was analyzed for θα (still the spatial kernel width, unrelated to 
the a* color dimension) ranging from 10 to 500 with step size 10, 
θL ranging from 1 to 25 with step size 1, and θab from 1 to 20 with 
step size 1. CRF performance on the model of Wu et al. (2019) 
was tested only in the RGB color space.

ResULTs

Mechanical Turk Annotations
MTurk workers drew 15,240 polygon annotations on 5,080 
lesions, cropped from 752 parent images collected by the UAV. 
Training data for the CNN were generated only from those 
images in which, for all lesions in the image, all three polygon 
annotations had an IoU of at least 0.6 with one another, leaving 
us with 588 UAV images containing 3,834 annotated lesions. 
Poisson-disk subsampling of the lesion polygon annotations 
yielded 22,193 centerpoints that were used to generate 22,193 
positive images (Table 1). From the same 588 UAV images, we 
sampled 58,800 negative images, 100 from each image. Both 
positive (centered on a lesion) and negative (not centered on a 
lesion) images were divided into training, validation, and test sets 
in a 70:15:15 ratio.

Most workers annotated only a few images, with a small 
number of workers annotating several hundred (Supplemental 
Figure 3). On average, it took an MTurk worker 32 s to annotate 
a single lesion (median 27 s, standard deviation 19 s). All sets 
of deployed HITs were fully annotated in under 2 h. Workers 
generally performed fairly well, as shown by the fact that any 
two annotations drawn on the same lesion tended to overlap 
(Figure 3). Most pairs of polygons (83.2%) had an IoU of at least 
50%. Manual examination found that many of the annotations 
with low IoU were on images that were blurry, ambiguous, or 
otherwise undesirable. Workers were paid $0.03/lesion, resulting 
in an average payment of only $3.75/h for annotation.

Model Performance
Testing classification accuracy of the crowdsourced CNN on a 
subsample of training and validation images, we found a learning 
rate of 3e−3 and a patch size of either 500 or 800 to be best 
(Figure 4). Though classification accuracy was slightly higher 
when using a patch size of 800 compared to a patch size of 500, 
we chose a patch size of 500 to be consistent with that used in 
the model trained on expert-drawn-lines (Wu et al. in press) to 
facilitate comparisons between the two.

The accuracy of the crowdsourced CNN on the validation 
set of image crops converged by 15 epochs (Figure 5). One 
concern with any machine learning model is the possibility of 
overfitting: training a model that performs well on the specific 
data set being used, but that is not generalizable and performs 
poorly on new data. Loss on the validation set did not tend 
to increase after reaching a global minimum, suggesting that 
overfitting was not a major concern (James et al., 2017), though 
the gap between training loss and validation loss suggested some 

TABLe 1 | Number of images sampled of each label (lesion vs. no lesion) and 
their division into training, validation, and test sets.

Phase Number of images

Lesion No lesion

Training 14,783 41,160
Validation 3,168 8,820
Test 3,168 8,820
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overfitting (Figure 5). On the final held-out test set of image 
crops, the crowdsourced CNN performed well, achieving an 
overall classification accuracy of 0.9741, precision [TP/(TP+FP)] 
of 0.9351, recall [TP/(TP+FN)] of 0.9694, and F1 (harmonic 
mean of precision and recall) of 0.9520 (Table 2).

Image segmentation
Applying a fully connected CRF to the heatmaps generated by the 
crowdsourced CNN and the held-out test images, we were able to 
accurately classify each pixel of an image as lesion or non-lesion 
with high spatial resolution (Figure 2, bottom row). Pixel-wise 

FIgURe 3 | Histogram of Intersection over Union (IoU) between all pairs of 
polygon annotations drawn by Amazon Mechanical Turk workers, calculated as 
the area in pixels of intersection divided by the area in pixels of the union. Median 
IoU (0.7265) indicated by solid line, mean IoU (0.6832) indicated by dotted line.

FIgURe 4 | Comparison of crowdsourced convolutional neural network accuracy on 5% subsample of training/validation images across various parameters of 
learning rate (LR) and patch size in pixels.

FIgURe 5 | Accuracy (blue) and loss (red) of convolutional neural network on 
training images (dashed lines) and validation images (solid lines) converged 
by 15 epochs. Gray area shows standard deviation of accuracy over five 
replications of training on the same training/validation sets.
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classification accuracy was high even when heatmaps were clearly 
not suitable, as the vast majority of most images is non-lesion, so 
a model that classified all pixels as non-lesion would still achieve 
an accuracy of 0.9940. For this reason, F1 was taken to be a more 
suitable metric for image segmentation performance than accuracy.

Exhaustive grid search found the best-performing θ 
parameters for each color space to be θα = 50, θβ = 5 for the 
standard RGB color space, θα = 110, θL = 25, and θab = 1 for 
the L*a*b* color  space, and θα = 70 and θβ = 0.7 for the LDA-
transformed color space (Figure 6). Transforming images into the 
L*a*b* color space moderately increased segmentation accuracy. 
The best-performing CRF parameters segmented images with 
an accuracy of 0.9957 and F1 of 0.6695 in the RGB color space, 
compared to peak accuracy of 0.9977 and F1 of 0.6777 in the 
L*a*b* color space. Transforming the RGB values using the 
matrices obtained via LDA was the most effective, yielding a 
peak accuracy of 0.9981 and F1 of 0.7153. The parameters that 
segmented LDA-transformed images with the highest F1 score 
also did so with near-maximum accuracy (Figure 7).

CRF segmentations could be used to accurately estimate 
the proportion of an image covered by lesions (Figure 8). The 
proportional lesion coverage estimated by CRF was highly 

correlated to ground truth estimates. The heatmaps themselves 
could also be used to estimate proportional lesion coverage in 
an image, bypassing the CRF step. Thresholding probability 
heatmaps at 0.5 produced binary images, in which pixels had 

FIgURe 8 | Correlation between the proportion of a test image classified 
as lesion in ground truth (consensus polygons of three high-quality Amazon 
Mechanical Turk annotations), conditional random field segmentation, and 
heatmap thresholded at 0.5. Red lines depict 1:1 ratio.

FIgURe 7 | Pixel-wise F1 score of lesion/non-lesion segmentation vs. 
accuracy thereof across different levels of θα and θβ. The conditional random 
field parameters that yielded the highest F1 score (red point) also yielded 
near-maximum accuracy of segmentation. Each point represents a single 
combination of θα and θβ tested in the grid search (Figure 5).

TABLe 2 | Predictions of the final network on the held-out test set.

Prediction Image

Lesion No lesion

Lesion 3,071 213
No lesion 97 8,607

FIgURe 6 | Heatmap of pixel-wise F1 score of conditional random field 
(CRF) segmentation across different levels of θα, corresponding to the spatial 
scale of correlations between pixel color values, and θβ, corresponding 
to the color space scale of correlations. Values were determined using 
images transformed with red, green, and blue values transformed via linear 
discriminant analysis-derived differentiation transformation, as this was the 
color space in which CRF segmentation performed best.
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a value of 1 if the interpolated predicted softmax probability 
of the “lesion” prediction was higher and a value of 0 if that 
of “non-lesion” was higher. However, the lesion coverages 
estimated by CRF segmentation were proportional to the 
ground truth areas in an approximately 1:1 manner, while the 
areas generated from thresholding probability heatmaps were 
artificially inflated (Figure 8).

Image segmentation using the crowdsourced CNN and 
CRF tended to outperform human experts. There were seven 
instances in which the proportion of a test image classified as 
“lesion” diverged highly between CRF segmentation and ground 
truth (Figure 8, outliers lying off of the red 1:1 line). This was 
surprising, as precision of CRF segmentation was higher than 
recall (0.7388 vs. 0.6937) on a pixel-wise basis. Examining these 
seven cases more closely, we found that five of them were due 
to the model correctly locating lesions missed by the experts, 
while only two were due to the model misidentifying senescent 
leaves as lesions (Figure 9). Excluding the five images in which 
the CRF outperformed human experts, the Pearson’s correlation 
between the proportion of pixels in an image labeled as lesions in 
the ground truth masks and the proportion classified as lesions 
by the CRF segmentation rose from 0.8893 to 0.9428. Thus, while 
there is room to improve the model by addressing false positives, 
it was more often than not outperforming trained human experts.

The two-step image segmentation process was fairly slow, 
however. Heatmap construction by the sliding-window approach 
using three different scales took a mean of 38.1 s on a 4,000x6,000 
image: 10.8 s at original scale r, 6.2 s at scale r/sqrt(2), and 21.1 
s at scale r*sqrt(2). CRF segmentation of a 4,000x6,000 image 
took 2.8 s on average. Newer end-to-end segmentation methods 
should be able to improve on this, as discussed below.

Benefits of Crowdsourcing
Using crowdsourced polygon annotations greatly improved 
the spatial resolution of the final model with far less time 
investment from experts. We compared two CNNs of similar 
structure and implementation: one trained on lines drawn by 
experts (Wu et al., 2019) and the one trained on crowdsourced 
polygons, described here. These models were used to perform 
semantic segmentation using the same approach, via applying 
the CNN on a sliding window across images to generate 
probability heatmaps, then feeding these heatmaps into an 
optimized CRF to perform the final segmentation. Using the 
same approach with both model outputs isolated the effects of 
using the more information-rich crowdsourced polygons, rather 
than differences in segmentation methods.

Using the crowdsourced annotations provided three key 
benefits. First, the greater spatial resolution of polygon annotations 
allowed us to reliably delineate individual lesions with millimeter-
level accuracy (Figure 10), which could not be done with line 
annotations alone. CRF segmentation using the crowdsourced 
CNN output was able to segment images into lesion and non-
lesion pixels with a maximum F1 of 0.76 on the validation image 
set, while segmentation using expert-drawn lines achieved a 
maximum F1 of only 0.21.

Second, the crowdsourced-polygon model was able to achieve 
this higher spatial resolution using only one-fifth as many 
annotations. The crowdsourced CNN was trained, validated, 
and tested on only 5,080 expert-drawn lesions, compared to the 
25,508 used for the expert-drawn-lines model (Wu et al., 2019).

Third, crowdsourcing allowed us to generate these polygons 
more quickly than would be possible using only a handful of 
experts. Drawing a line took far less time than drawing a polygon. 

FIgURe 9 | Original image (top row), ground truth annotations drawn by Amazon Mechanical Turk workers (middle row), and conditional random field (CRF) 
segmentation (bottom row) for all seven test images in which CRF segmentation and ground truth diverged highly. In left five images, crowdsourced-polygon model 
outperformed humans by identifying lesionated areas where human experts had missed them. In the right two images, the model falsely classified senescent leaf 
tissue as lesions. White = lesion, black = non-lesion.
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Examining the timestamps of the annotations, we found that 
experts took 4.38 s on average to annotate a lesion with a line, 
while it took an MTurk worker a mean of 32 s to draw a polygon. 
An expert could thus annotate 1,000 lesions with lines in 73 min 
on average, while a non-expert would take 533 min to annotate 
1,000 lesions with polygons. The more complex non-expert task 
thus took 7.3x more time than the simpler expert task. Due to the 
parallel nature of crowdsourcing, however, all 5,080 lesions were 
annotated by MTurk workers in less than 15 h.

A comparison of the total time needed to generate training 
data at the scale used in this study shows the benefits of a two-step 
crowdsourcing approach. A single human expert can annotate 5,000 
lesions in roughly 6 h, which could then be completely annotated 
with polygons by MTurk workers in one to 2 days. Assuming this 
expert worked as fast as the average MTurk worker (including 
locating lesions, which MTurk workers were not required to 
do), drawing these polygons would take them roughly 44 h. 
Crowdsourcing the more laborious part of the task as described 
here is a more efficient use of plant scientists’ time and expertise.

DIsCUssION
Our full method, combining a CNN applied across a sliding 
window and image segmentation via a fully connected CRF, was 
able to identify and delineate disease lesions at the millimeter level, 

the smallest spatial scale reported so far for aerial plant disease 
detection. The two-step approach for generating training data, in 
which experts annotate symptoms in low detail and non-experts 
annotate them further in high detail, was critical to achieve high 
spatial resolution. Without the non-expert polygon annotations, 
our previous effort was able to identify lesions with high accuracy 
at a sub-leaf scale (Wu et al., 2019), but not at sufficient resolution 
to accurately segment an image and delineate individual lesions. 
With them, we were able to segment images down to the millimeter 
with sensitivity surpassing that of human experts: in five out of 
seven cases in which human ground truth and model predictions 
diverged, the model had correctly identified disease symptoms 
where experts had missed them (Figure 9).

Using Mechanical Turk, thousands of images could be 
annotated in only a few hours, reducing what was until then a 
major bottleneck in the model training process. Despite the 
fact that these workers (presumably) have no experience in 
plant disease diagnosis, their annotations were generally of high 
quality and could be used to train the model without the need 
for an expert to look over each one. With three annotations 
for each image, we were able to identify and filter both low-
performing workers, whose annotations tended not to agree with 
others, and low-quality images, on which multiple (otherwise 
well-performing) workers drew annotations that did not 
agree. There are several possibilities for improving the MTurk 
annotation process. Increasing the number of workers per image 

FIgURe 10 | Close-up view of image segmentations performed by conditional random field using heatmaps generated by the crowdsourced convolutional neural 
network. Magenta outline shows lesion boundaries from 12 randomly selected images in the test set.
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could increase the quality of annotation polygons or the ease of 
identifying low-quality images.

The cost of crowdsourcing via MTurk was quite low, at $0.03/
lesion, implying a wage of $3.75/h based on the average time to 
annotate a lesion. Future studies would ideally compare different 
payment structures in order to maximize worker payment, 
minimize overhead, and maintain or increase annotation quality. 
Restructuring the HIT so that each consists of annotating 
multiple lesions, rather than just a single lesion, would decrease 
the payment to Amazon per image while paying workers the 
same per HIT. Many HITs posted on MTurk require a short 
qualification test to vet workers. In our case, workers could be 
asked to annotate three lesions adequately in order to be approved 
to complete HITs. Increasing worker payment in tandem with this 
could attract and retain better-performing annotators, providing 
workers with a higher wage while decreasing the amount of post-
processing needed to filter out low-confidence annotations.

We used a two-step method for semantic segmentation, first 
training a model to classify lesions, then using a sliding window 
approach and CRF to turn these classifications into semantic 
segmentation of a full image. This allowed us to make a useful 
comparison to a model trained on coarse, expert-generated 
annotations, since the same segmentation method could be used 
with both models’ output, isolating the impact of the annotation 
data rather than the segmentation approach used. However, 
newer methods for semantic segmentation, such as region 
proposal networks (Ren et al., 2016) or atrous convolution (Chen 
et al., 2017) might well perform the task better and faster.

A chief limitation of this method is the difficulty of 
acquiring field images at high enough resolution and clarity 
such that individual lesions can be discerned. Capturing 
images in which each pixel represented a millimeter or less 
at canopy level required slow flights at low altitude with a 
high-zoom lens (Wiesner-Hanks et al., 2018), not ideal for 
comprehensively imaging a large area. This challenge would 
be even greater when working with a disease with small or 
inconspicuous symptoms—chlorosis, leaf curling, lesions 
only a few millimeters in diameter—as opposed to the large, 
obvious lesions of NLB. Targeted sampling of a field, rather 
than attempting to image every plant, can still give growers 
a large amount of information with which to make decisions 
regarding disease management. Acquiring images and 
diagnosing lesions every 10 m or so would only analyze a very 
small proportion of a field’s total area, but it would provide 
much more information compared to the zig-zag walking 
paths commonly used when scouting for pests and diseases 
(Doll et al., 2016).

UAVs are now a common part of many US growers’ field 
operations, and interest continues to grow (Luck et al., 2018; 
Miller and Adkins 2018; Purdue Extension Annual Report 
2018). The use of UAVs for disease diagnosis is still in its infancy, 
however. We predict that UAV-based disease phenotyping will 
be most readily adopted in crops with a high value per acre 
where fungicide usage is common, such as grapes or almonds. 
In such crops, the added benefit of fast, frequent, reliable disease 
screening is most likely to outweigh the time and monetary costs 
needed to develop the diagnostic platform. As UAV and imaging 
technology progress, and more and more image datasets are 
generated and freely shared among researchers, we believe that 
UAV-based deep learning will become simpler to implement and 
will soon be a useful tool for growers and geneticists across many 
crops and pathosystems.
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