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Understanding the wavelength dependence of plant responses is essential for optimizing 
production and quality of indoor plant cultivation. UVA is the main component of solar 
UV radiation, but its role on plant growth is poorly understood. Here, two experiments 
were conducted to examine whether UVA supplementation is beneficial for indoor plant 
cultivation. Lettuce (Lactuca sativa L. cv. "Klee") was grown under mixed blue, red, and 
far-red light with photon flux density of 237 μmol m−2 s−1 in the growth room; photoperiod 
was 16 h. In the first experiment, three UVA intensities with peak wavelengths at 365 
nm were used: 10 (UVA-10), 20 (UVA-20), and 30 (UVA-30) μmol m−2 s−1, respectively. 
In the second experiment, 10 μmol m−2 s−1 UVA radiation were given for 5 (UVA-5d), 10 
(UVA-10d), and 15 (UVA-15d) days before harvest on day 15, respectively. Compared 
with control (no UVA), shoot dry weight was increased by 27%, 29%, and 15% in the 
UVA-10, UVA-20, and UVA-30 treatments, respectively, which correlated with 31% 
(UVA-10), 32% (UVA-20), and 14% (UVA-30) larger leaf area. Shoot dry weight under 
the treatments of UVA-5d, UVA-10d, and UVA-15d was increased by 18%, 32%, and 
30%, respectively, and leaf area was increased by 15%–26%. For both experiments, UVA 
radiation substantially enhanced secondary metabolites accumulation, e.g. anthocyanin 
and ascorbic acid contents were increased by 17%–49% and 47%–80%, respectively. 
Moreover, plants grown under the UVA-30 treatment were stressed, as indicated by lipid 
peroxidation and lower maximum quantum efficiency of photosystem II photochemistry 
(Fv/Fm). We conclude that UVA supplementation not only stimulates biomass production 
in controlled environments, but also enhances secondary metabolite accumulation.

Keywords: UVA radiation, plant production, secondary metabolites, indoor cultivation, lettuce

INTRODUCTION
Light-emitting diodes (LEDs) are a suitable light source for plant growth (Bantis et al., 2018; Pattison et al., 
2018). For a long time, light spectra for plant growth have primarily been selected based on the quantum 
yield of photosynthesis as measured by McCree (1972). Therefore, red and blue light are considered 
essential, as they play pivotal roles for leaf photosynthetic functioning (Hogewoning et al., 2012). 
However, the classic study of McCree (1972) had its limitations, because it was conducted with single 
leaves and on a short time scale that did not take spectral effects on leaf development into account. Apart 
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from leaf photosynthesis, plants also utilize many photoreceptors 
that sense specific wavelengths to direct their growth (Heijde and 
Ulm, 2012; Luo and Shi, 2018). Ultraviolet (UV) radiation is an 
important component of solar radiation. There are many studies 
concerning plant responses to UVB (280–315 nm) due to the 
function of the UVB photoreceptor UVR8, whose function has 
been clearly elucidated (Wu et al., 2012; Wargent and Jordan, 2013). 
While UVA (315–400 nm) accounts for ~95% of solar UV radiation 
at sea level (Gerhardsson, 2003), there is no conclusive evidence to 
show that UVA has its own photoreceptor, similar to that of UVB. 
Instead, UVA can be absorbed by blue light photoreceptors, such 
as phototropins and cryptochromes (Casal, 2013). However, plant 
responses to UVA, mediated by these photoreceptors, have so far 
been poorly investigated (Verdaguer et al., 2017). Thus, the function 
of UVA in affecting plant growth and development, for example in 
indoor plant cultivation, is still unclear.

Plant growth is largely determined by morphological and 
physiological processes that are considerably regulated by the 
prevailing light conditions (Hernández and Kubota, 2014; Kaiser 
et al., 2019). UVB consistently leads to a compact phenotype 
(Ruhland and Day, 2000; Searles et al., 2001; Robson et al., 2015), 
while a number of studies reported that UVA stimulates leaf 
size and biomass production (Tezuka et al., 1993; Bernal et al., 
2013; Bernal et al., 2015). An earlier study from our lab also 
reported that UVA supplementation resulted in a larger leaf area 
and greater stem length in tomato seedlings, thereby facilitating 
better light interception and accelerating biomass production 
(Kang et al., 2018). However, other authors showed that UVA 
can inhibit leaf area expansion and retard biomass accumulation 
(Newsham et al., 1999; Nigel et al., 2005; Zhang et  al., 2014).  
Moreover, regardless of the direction of plant growth in response 
to UVA, it is also unclear whether such a response is dose-
dependent (Verdaguer et al., 2017).

Improving crop nutritional qualities is an often-pursued 
endpoint of plant biology. UV radiation is generally considered to be 
an abiotic stress (Albert et al., 2011; Neugart and Schreiner, 2018), 
and like some other abiotic stresses promotes the accumulation of 
secondary metabolites (Ibdah et al., 2002; Neugart and Schreiner, 
2018). However, UV radiation may also result in the accumulation of 
reactive oxygen species (ROS) in plant tissues (Garg and Manchanda, 
2009), which may lead to membrane lipid peroxidation and protein 
degradation. Plants have developed mechanisms to scavenge ROS, 
such as antioxidative enzymes [e.g. superoxide dismutase (SOD) 
and catalase (CAT)]. Some antioxidants, such as total phenol and 
flavonoids, could be rapidly synthesized to prevent cell damage 
caused by ROS (Garg and Manchanda, 2009). Previous studies 
have reported that UVA exposure induces flavonoid accumulation, 
which plays a significant role in UVA screening and as antioxidant 
(Kotilainen et al., 2008; Kotilainen et al., 2009).

To our knowledge, rigorous investigations using narrow band 
UVA radiation with different dosage, and its effects on plant 
growth and secondary compound accumulation in controlled 
environments are scarce. This study aims at investigating 
whether UVA supplementation has positive effects on plant 
growth. Lettuce was used, as it is one of the most popular and 
suitable species for indoor cultivation. The study was conducted 
in an environmentally controlled growth room with LED lighting 

sources. We firstly explored the effects of UVA intensity on lettuce 
growth and the accumulation of secondary metabolites. Then, 
we investigated the function of the duration of UVA exposure 
regulating plant growth and secondary metabolites. From these 
results, we expect to provide guidance and information for light 
recipe optimization of indoor farming as well as provide insights 
into UVA effects on plant growth and development.

MATeRIALs AND MeThODs

Plant Material and growth Conditions
Lettuce (Lactuca sativa L. cv. "Klee") seeds were sown in plastic 
germination trays filled with sponge cube blocks (3×3×3 cm) and 
tap water. One seed was sown per cube. Seeds were germinated 
in a growth chamber where temperature was 20°C, relative 
humidity was 65%~70%. The first three days were fully dark, 
thereafter, the photosynthetic photon flux density (PPFD) was 
100 µmol m−2 s−1 with photoperiod of 16 h. Upon unfolding of 
the second leaf (2 weeks after sowing), seedlings were transferred 
to an environmentally-controlled growth room for treatments. 
Plants were cultivated in a customized liquid culture hydroponic 
system with a density of 39 plants per m2. In the growth room, 
CO2 partial pressure was close to ambient, day/night temperature 
was 23/21°C, and relative humidity was 65%~70%. Photoperiod 
was 16 h continued from 06:00 to 22:00. Modified Hoagland 
nutrient solution (pH ≈ 5.8; EC ≈ 1.6 dS m−1) was applied for plant 
cultivation, which was circulated in the system on a daily basis.

In the growth room, two cultivation frames were fixed, and 
each frame was equally divided into three layers. Dimensions of 
each frame were: 130 cm length × 70 cm × width 180 cm height. 
This resulted in six individual cultivation units in the room. The 
upper four cultivation units were used in this study. To avoid light 
contamination, opaque black-white plastic films were covered 
around the cultivation unit. Two ventilation fans (12V, 0.90A) 
were installed in each units to ensure uniform air circulation. LED 
light tubes (iGrowLite Co. Ltd, Guangzhou, China) were installed 
50 cm above the growth plate. Light intensity and spectra (Table 1; 
Figure 1) were monitored using a spectroradiometer (Avaspec-
2048CL, Avates, Apeldoorn, The Netherlands), 10 cm above the 
growth plate. Light intensity was in the range of commercial 
indoor production facilities (150–250 µmol m−2 s−1). In this study, 
we carried out two separate experiments in the same growth room.

In the first experiment, three UVA intensities of 10, 20, and 
30 µmol m−2 s−1 with peak wavelength at 365 nm were used in 
three of the cultivation units, respectively. These are referred to 
as UVA-10, UVA-20, and UVA-30 (Table 1). A fourth treatment, 
without supplemental UVA, is considered to be the control. 
UVA radiation was emitted by UVA LED light tubes that 
connected with a light modulator (iGrowLite Co. Ltd). During 
the experiment, four batches of lettuce were grown in succession, 
each batch for 13 days. The treatment position was randomly 
switched whenever new cultivation started.

In the second experiment, two batches of lettuce were 
grown in succession, and plants were grown for 15 days. UVA 
radiation (10 µmol m−2 s−1) was supplemented at day 0, 5, and 
10, respectively, in three of the cultivation units, meaning that 
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UVA radiation was supplemented for 15 (UVA-15), 10 (UVA-
10), and 5 (UVA-5) days before harvest on day 15. Again, a fourth 
treatment without UVA was added as control.

Destructive Measurements
Destructive measurements were conducted 13 days after start 
of treatments in the first experiment, and 15 days after start of 
treatment in the second experiment. Plants were harvested at 
a younger stage than those in commercial cultivation, in order 
to reduce effects of shading between larger plants. Four plants 
from each cultivation unit were randomly selected at each batch 
of plant cultivation, i.e. 16 plants were harvested per treatment 
for the first experiment, and 8 plants were harvested per 
treatment for the second experiment. Leaves, stems, and roots 
were separated. Leaf area was measured with a leaf area meter 
(LI-3100C, Li-Cor Biosciences, Lincoln, Nebraska, USA). After 
fresh weight determination, leaves, stems, and roots were dried 
in an oven at 80°C for 48 h. Specific leaf area was calculated by 
dividing the leaf area by leaf dry weight.

gas exchange and Chlorophyll 
Fluorescence Measurements
Gas exchange and chlorophyll fluorescence were measured 
in the second batch of plants in the first experiment, on day 
11 after start of treatments, between 8:30 and 16:30. Five 
plants from each cultivation unit were randomly selected, 

and measurements were performed on the uppermost fully 
expanded leaves. Measurements were performed with the 
LI-6400XT photosynthesis system (Li-Cor Biosciences) with 
the leaf chamber fluorometer (Li-Cor Part No. 6400-40, area 
2 cm2), in which a mixture of red (90%) and blue (10%) LEDs 
with peak intensities of 635 and 465 nm, respectively, was 
provided. The starting PPFD was 250 μmol m−2 s−1, followed 
by 1500 μmol m−2 s−1. At each PPFD, measurements were taken 
when the photosynthetic rate reached steady state (~10 min). 
During measurements, CO2 concentration was 450 μmol mol−1, 
leaf temperature was 22°C, leaf-to-air vapor pressure deficit 
(VPDleaf-air) was maintained between 0.7 and 1.0 kPa, and the 
flow rate of air through the system was 500 μmol s−1.

To assess treatment effects on chlorophyll fluorescence, leaves 
were dark-adapted with a leaf clip holder (DLC-8) for 1 h prior 
to measurements. Thereafter, the selected leaf was measured with 
a portable chlorophyll fluorometer (PAM-2100, Walz, Effeltrich, 
Germany). Red light was used for measuring light and for 
saturating flashes. Minimal (F0) and maximal (Fm) fluorescence 
were recorded to determine the maximum quantum efficiency of 
photosystem II photochemistry (Fv/Fm).

Leaf Biochemical Components and 
enzyme Activity Determination
One day before destructive measurements, uppermost fully 
expanded leaves were collected in vials, flash-frozen in liquid 
nitrogen, and transferred to a freezer (−80°C) for storage. 
These samples were later used to determine leaf biochemical 
components and enzyme activity.

Pigment Concentrations
Fresh leaf samples (0.1 g) were submerged in 10 mL 95% ethanol 
at room temperature for 24 h in darkness. The absorbance of the 
extract was measured at 665, 649, and 470 nm using a UV-Vis 
spectrophotometer (UV-1800, Shimadzu, Japan). Chlorophyll 
and carotenoid concentrations were calculated using equations 
derived by Wellburn (1994).

Soluble Sugar and Protein Content 
Leaf soluble sugar content was determined with the phenol–
sulfuric acid method from DuBois et al. (1956). Fresh leaf 
samples (0.1 g) were ground and extracted with boiling water 
and subsequently filtered. Filtrate (0.125 mL ) was collected and 
mixed with 0.375 mL distilled water, 0.25 mL phenol (1 M), and 
1 mL concentrated sulfuric acid (98%) for color reaction (30 
min). Thereafter, the absorbance of the extraction at 485 nm 
was measured with a UV-Vis spectrophotometer (UV-1800). 

FIgURe 1 | Relative photon flux density in the four treatments. The spectral 
distribution was measured by a spectrometer (AVANTES 2500, The 
Netherlands).

TABLe 1 | The photon flux density (PFD) at different wavebands of the four treatments.

Treatment UVA1(µmol m−2 s−1) PAR2(µmol m−2 s−1) FR3(µmol m−2 s−1) Total incident PFD 
(µmol m−2 s−1)

DLI4(mol m−2) UVA/PAR5 (%)

Control 0 230 7 237 13.65 0
UVA-10 10 230 7 247 14.23 4.35
UVA-20 20 230 7 257 14.80 8.70
UVA-30 30 230 7 267 15.38 13.05

1UVA radiation, 315–400 nm. 2Photosynthetic active radiation, 400–700 nm. 3Far-red radiation, 700–750 nm. 4Daily light integral, 315–750 nm. 5UVA/PAR was 7%–8% 
in natural sunlight measured in Beijing.
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Leaf soluble protein content was determined following Snyder 
and Desborough, (1978). Fresh samples (0.1 g) were ground and 
extracted with distilled water and subsequently filtered. Filtrate 
(0.1 mL) was collected and mixed with 1 mL Coomassie Brilliant 
Blue G-250 solution for 2 min. The absorbance of the extract at 595 
nm was measured with a UV-Vis spectrophotometer (UV-1800).

Phenolic and Flavonoid Contents 
Fresh leaf samples (0.1g) were ground in a mortar and pestle 
with liquid nitrogen, and were then extracted with 1 mL 80% 
aqueous methanol in an ultrasonic bath for 10 min, and were 
then centrifuged for 10 min at 15,000 rpm. The contents of total 
phenolic and flavonoid were determined by using the Folin-
Ciocalteu assay and aluminum chloride colorimetric assay, 
respectively, following Khanam et al. (2012). The absorbance 
against prepared reagent blank was determined using a 
microplate reader (Infinite 200 PRO, TECAN, Switzerland). 
For total phenolic content, gallic acid was used as the standard 
reference and gallic acid equivalent (GAE) was expressed as µg 
GAE/100 g fresh mass. For total flavonoid content, Rutin was 
used as the standard reference and RUE was expressed as µg 
rutinum equivalent (RUE)/100 g fresh mass.

Anthocyanin Content
Anthocyanin content was determined by the pH differential 
method following Giusti and Wrolstad (2001). Fresh leaf 
samples (0.1 g) were extracted with 1% (v/v) HCl-methanol, 
and subsequently incubated for 24 h at 4°C in darkness. The 
mixture was centrifuged (13,000×g, 15 min, 4°C), and 0.4 mL  
supernatant was collected and divided equally into two copies, 
one with potassium chloride buffer (0.025 M, pH 1.0), the other 
with sodium acetate buffer (0.4 M, pH 4.5); the dilution factor 
for the sample was 15. Samples were equilibrated for 15 min, 
after which absorbance of each dilution was measured at 530 and 
700 nm against a blank filled with distilled water using a UV-Vis 
spectrophotometer (UV-1800).

Malondialdehyde (MDA) Content
MDA content was determined using the method of Hodges et al. 
(1999). Fresh leaf samples (0.1 g) were homogenized in 1  mL 
cold (4°C) 10% (w/v) trichloroacetic acid. The homogenate was 
centrifuged (13,000×g, 15 min, 4°C), 0.5 mL supernatant was 
collected for adding 1 mL 6% (w/v) thiobarbituric acid solution, 
which was boiled at 100°C for 20 min. The supernatant was 
cooled to room temperature and then centrifuged (15,000×g) for 
10 min. The absorbance of the extract at 450, 532, and 600 nm 
was measured using a UV-Vis spectrophotometer (UV-1800).

SOD and CAT Activities
Fresh leaf samples (0.1 g) were homogenized with 1 mL ice-
cold extraction buffer (25 mM phosphate buffer, pH 7.8) using 
a commercial assay kit (Comin biotechnology Co. Ltd. Suzhou, 
China) containing 1% polyvinylpyrrolidone. The homogenized 
material was centrifuged (18,000 ×g 4°C) for 30 min. Supernatant 
(1 mL) was collected to assay the activities of SOD and CAT. 
SOD activity was determined by the method of Wu et al. (2007) 
with adaptations, and was assayed by monitoring the inhibition 

of photochemical reduction of nitro-blue tetrazolium chloride 
(NBT). A reaction mixture consisting of 0.1 mL methionine (200 
mM), 0.1 mL NBT (2.25 mM), 0.1 mL EDTA (3 mM), 0.1 mL 
riboflavin (60 mM), 0.5 mL phosphate buffer (25 mM), and 0.1 mL 
enzyme preparation in a total volume of 1.1 mL was used. The 
mixture was placed under a fluorescent light (4000 lux, 25°C) for 
20 min. Absorbance at 560 nm was monitored using a microplate 
reader (Infinite 200 PRO). CAT activity was determined using 
the method of hydrogen peroxide (H2O2) UV absorption 
adapted from Beers and Sizer (1952), using a commercial assay 
kit (Comin biotechnology). Enzyme preparation (35 μL) was 
mixed with 1 mL H2O2 (0.1 M). The initial absorbance at 240 nm 
and the absorbance after 1 min at 240 nm was determined using 
the UV-Vis spectrophotometer (UV-1800).

Determination of Superoxide Anion Radical 
(O2−) Generation
O2

− generation rate was determined with the sulfamate 
colorimetric method of Elstner and Heupel (1976), using 
a commercial superoxide anion radical assay kit (Leagene 
Biotechnology Co. Ltd. Beijing, China). Fresh leaf samples 
(0.1 g) were homogenized by 1 mL cold O2

− lysis buffer. The 
homogenized material was centrifuged (10,000 × g 4°C) for 10 
min. 0.5 mL supernatant was collected and mixed with 0.5 mL 
hydroxylamine hydrochloride (1 mM) and incubated for 1 h at 
25°C. Then, 20 mg of activated carbon was added to the mixture 
and immediately centrifuged (10,000×g, 25°C) for 5 min. The 
activated carbon was added to adsorb macromolecular complexes 
(e.g. anthocyanin) to avoid pigment interference. Supernatant 
(0.5 mL) was mixed with p-aminophenylsulfonic acid (17 mM, 
0.5 mL) and α-naphthylamine (7 mM, 0.5 mL), and incubated 
for 20 min at 30°C. Thereafter, the absorbance at 530 nm was 
measured with a microplate reader (Infinite 200 PRO).

Ascorbic Acid Content 
Ascorbic acid content was determined as in Spínola (2012) 
and Campos (2009) with adaptations. Fresh leaf samples (0.1g) 
were homogenized by 1 mL cold extraction buffer (3% MPA + 
8% acetic acid + 1 mM EDTA solution). The homogenate was 
centrifuged (15,000×g, 4°C) for 10 min, 50 μL supernatant 
was collected and mixed with 10 μL dithiothreitol (750 mM), 
190 μL Tris buffer (200 mM), and 50 μL sulfuric acid (0.4 M), 
which were incubated at 28°C for 30 min. The mixture was 
filtered through 0.22 μm PTFE filters (Jinteng Co. Ltd., Tianjin, 
China). The analysis was performed using the Acquity UPLC 
system (Waters Corp, USA) with an Acquity UPLC® HSS T3 
(2.1 × 100 mm, 1.8 μm, Waters) column, equipped with a Waters 
Acquity UPLC photodiode array (Waters Corp, USA) detection 
system. A standard solution was formulated using L-ascorbic 
acid, the mobile phase was 0.1% (v/v) formic acid and the 
velocity of flow was 0.25 mL/min.

statistics
Data were analyzed by one-way ANOVA in randomized blocks, 
using SPSS 23 (SPSS Inc., Chicago, IL). The experimental 
replicate was regarded as a blocking factor. Data were first tested 
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for normality (Shapiro–Wilk test) and homogeneity of variances 
(Levene’s test). Subsequently, least significant differences of 
treatment effects were determined (P = 0.05).

ResULTs

Biomass and Morphology in Response to 
UVA Intensities
UVA supplementation significantly stimulated biomass 
production of indoor cultivated lettuce (Table 2). Specifically, 
adding 10, 20, and 30 µmol m−2 s−1 UVA radiation resulted in 27% 
(UVA-10), 29% (UVA-20), and 15% (UVA-30) higher shoot dry 
weight, respectively, compared with that of control. Leaf area was 
increased by 31%, 32%, and 14% in the UVA-10, UVA-20, and 
UVA-30 treatments, respectively (Figure 2; Table 2). Moreover, 
leaf number was also stimulated by UVA radiation (11%–18%). 
Specific leaf area, shoot/root ratio, and shoot dry mass content 
were not affected by UVA (Table 2).

Leaf Photosynthetic Properties in 
Response to UVA Intensities
When measured under an identical spectrum (90% red +10% 
blue, no UVA), net leaf photosynthetic rate and stomatal 

conductance were unaffected by UVA at low (250 µmol m−2 s−1, 
close to the growth irradiance) and high (i.e. 1500 µmol m−2 s−1) 
PPFD (Figure 3). Growth under UVA-30 led to a slight decrease 
in Fv/Fm compared with control, while under UVA-10 and UVA-
20 Fv/Fm was unchanged (Figure 4).

Leaf Biochemical Components, 
Pigmentation, and Antioxidants in 
Response to UVA Intensities
Total phenolic and flavonoid contents were increased under 
UVA-20 and UVA-30 treatments (Table 3). Leaves grown 
under UVA showed higher anthocyanin content, in particular 
under UVA-30 (increased by~50%), compared to the control. 
Ascorbic acid content was 60%–80% higher than that of control 
in the three UVA intensity treatments (Table 3). O2

− generation 
rate was increased under UVA-20 and UVA-30, while there was 
no difference between UVA-10 and control. Membrane lipid 
peroxide, measured as MDA content, was increased under 
UVA-30 compared with all other treatments. Furthermore, 
UVA increased the activities of SOD and CAT (Table 3). Also, 
plants grown under UVA had increased soluble sugar and 
protein contents. No significant differences were detected for 
chlorophyll and carotenoid contents (Table 3).

TABLe 2 | Plant growth and morphology in response to different UVA intensities.

Treatment Control UVA-10 UVA-20 UVA-30

Shoot fresh weight (g plant−1) 31.8 ± 1.8c 41.6 ± 2.4a 41.7 ± 1.5a 36.5 ± 2.4b
Shoot dry weight (g plant−1) 1.77 ± 0.10c 2.24 ± 0.11a 2.29 ± 0.09a 2.03 ± 0.12b
Leaf area (cm2 plant−1) 752.1 ± 51.7c 981.6 ± 58.3a 989.8 ± 40.7a 855.9 ± 57.6b
Leaf number 30.2 ± 1.4c 34.4 ± 1.3ab 35.5 ± 1.1a 33.5 ± 1.5b
Specific leaf area (cm2 g−1) 402.7 ± 15.9 435.1 ± 18.6 428.9 ± 15.1 404.4 ± 15.0
Shoot/root ratio 6.4 ± 0.3 6.4 ± 0.4 6.4 ± 0.3 6.6 ± 0.9
Shoot dry mass content (%) 5.6 ± 0.2 5.4 ± 0.2 5.5 ± 0.1 5.6 ± 0.2
Leaf light absorption (%) 
(400–700 nm)

93.2 ± 0.3 92.6 ± 0.8 92.1 ± 0.8 91.4 ± 1.1

Data represent mean ± SE (n = 16). Means followed by different letters within one row differ significantly (P < 0.05) as established by the least significant difference test.

FIgURe 2 | Lettuce plants grown under four different light conditions 13 days after treatment. UVA-10, UVA-20, and UVA-30 represent treatments with 10, 20, and 
30 µmol m−2 s−1 UVA radiation, respectively.
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Biomass and Morphology in Response to 
Different Durations of UVA exposure
Compared with the control, UVA exposure increased biomass 
production (Table 4). Specifically, shoot dry weight was increased 
by 18%, 32%, and 30% under UVA-5d, UVA-10d, and UVA-15d, 

respectively. Leaf area was increased by 15%–26% in the UVA 
duration treatments, compared to control (Table 4).

Leaf Biochemical Components and 
Antioxidants in Response to Different 
Durations of UVA exposure
With 10 µmol m−2 s−1 supplemental UVA, anthocyanin content 
significantly increased under different durations of UVA 
exposure. Five days of UVA exposure (UVA-5d) resulted in 
~17% higher anthocyanin content compared to the control 
(Table 5). The ascorbic acid content was increased by 47%–63% 
under the three UVA durations, without a difference between 
these treatments. For total phenolic, a significant difference was 
detected only in the UVA-10d treatment (Table 5), although 
there was a trend for an increase under the other UVA treatments 
as well, compared with control. Total soluble sugar content was 
increased by 22%, 42%, and 37% under UVA-5d, UVA-10d, and 
UVA-15d, respectively, compared with control (Table 5).

DIsCUssION
Plant responses to UVA radiation are so far poorly understood 
and the available literature often contains contradictory 
information (Verdaguer et al., 2017; Neugart and Schreiner 
2018). This may partly be due to limitations of past experimental 
approaches that suffered from a paucity of available LEDs. 
Consequently, many of these experiments were performed 
outdoors, where natural UV-exposure was modulated using cut-
off filters (Martz et al., 2007; Morales et al., 2009; Kataria et al., 
2013). These past approaches make it difficult to fully take into 
account all the possible side effects such as interaction with UVB 
and PAR. Due to rapid advances in LEDs that allow for much 
finer control of spectrum and intensity of UVA, we now are able 
to expose plants to well-defined UVA intensities and durations 
under fully controlled conditions. Here, we show that adding 
UVA in a controlled environment not only stimulates biomass 
production (Tables 2 and 4), but also improves the nutritional 
quality of lettuce (Tables 3 and 5). In natural sunlight, the ratio 
of UVA/PAR is 7%–8% (measured in Beijing). While a UVA/
PAR ratio of 4.35% (i.e. UVA-10) substantially improved lettuce 
production and quality, a further increase to 8.7% (i.e. UVA-
20) and 13.05% (i.e. UVA-30) did not have additional effects 
(Tables  2 and 3). This indicates that in commercial indoor 
lettuce cultivation, the ratio of UVA/PAR higher than the natural 
sunlight is not necessary.

UVA Increases Biomass Production, But 
Only to an Optimum
Plant biomass production is highly correlated with growth 
conditions. We showed that UVA supplementation resulted 
in 15%–29% higher shoot dry weight (Table 2). This is in 
agreement with several previous studies that have reported that 
UVA has a stimulatory effect on biomass accumulation (Tezuka 
et al., 1993; Lee et al., 2014; Bernal et al., 2015). However, others 
reported an inhibitory effect of UVA on plant growth (Krizek 

FIgURe 4 | Effects of UVA on maximum quantum efficiency of photosystem 
II photochemistry (Fv/Fm) of lettuce leaves. Error bars show ± SE (n = 5). 
Letters show statistically significant differences (P < 0.05).

FIgURe 3 | (A) Net leaf photosynthetic rate (Pn) and (B) stomatal conductance 
(gs) of lettuce leaves in response to low (250 µmol m−2 s−1) and high (1500 μmol 
m−2 s−1) photosynthetic photon flux density (PPFD). Error bars show ± SE (n = 5).
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et al., 1997; Krizek et al., 1998; Kataria et al., 2013). Verdaguer 
et al. (2017) proposed that such variable responses might be 
caused by interaction with other environmental factors (Bernal 
et al., 2013), as well as dependent on the species or even on the 
genotype (Kataria and Guruprasad, 2012). Moreover, differences 
in UVA peak wavelength applied in different studies may also 
play a role for this controversy.

Plant biomass production is to a large extent mediated by the 
plant light interception and daily light integral (Li et al., 2014). 
In this study, the daily light integral in the three UVA treatments 
was 4.2%–12.7% higher than in the control (Table 1). Although 
in horticulture, it is often assumed that roughly, 1% additional 
light results in 1% additional growth and production (Marcelis 
et al., 2006), this apparently does not agree with the current 
study, because the extra light here is UVA, which has extremely 
low photosynthetic quantum yields in comparison with visible 
radiation (McCree, 1972). Thus, the increase in leaf area and 

plant biomass seen under UVA is unlikely to have resulted from 
a direct increase of photosynthesis due to a hypothetical larger 
availability of radiation that could be used for photosynthesis.

Light interception is dependent on plant architecture (Sarlikioti 
et al., 2011). Therefore, the increase in leaf area due to UVA 
exposure (14%–32%) might play a pivotal role for contributing 
to increased biomass, because the larger leaf area mean higher 
light interception, which is one of the driving forces behind plant 
photosynthesis (Sarlikioti et al., 2011). On the other hand, light 
is a major determinant of plant architecture, and this process is 
mediated by a range of photoreceptors (Casal, 2013). For instance, 
UVB consistently inhibits stem elongation and leaf expansion 
through UVR8 (Heijde and Ulm, 2012). Consistent with our 
observation, previous studies reported that supplemental UVA 
substantially increased rosette diameter of Arabidopsis thaliana 
(Jansen and Biswas, 2012) and flag leaf area in some Sorghum 
bicolar varieties (Kataria and Guruprasad, 2012). In this context, 

TABLe 3 | Leaf biochemical components and antioxidant enzyme activities in response to different UVA intensities.

Treatment Control UVA-10 UVA-20 UVA-30

Total phenolic (mg GAE g−1∙FW) 1.80 ± 0.06b 1.84 ± 0.07b 1.99 ± 0.06ab 2.12 ± 0.08a
Total flavonoids (mg RUE g−1∙FW) 6.0 ± 0.3b 7.3 ± 0.4ab 8.4 ± 0.6a 8.9 ± 0.6a
Anthocyanin (mg 100 g−1∙FW) 16.0 ± 0.8c 22.1 ± 0.8ab 20.5 ± 0.6b 23.9 ± 1.1a
Ascorbic acid (μg g−1∙FW) 204.8 ± 9.5c 340.2 ± 9.5b 368.9 ± 4.9a 329.8 ± 11.5b
Total MDA (nmol g−1∙FW) 3.14 ± 0.14b 3.69 ± 0.17b 3.53 ± 0.25b 4.40 ± 0.19a
O2

− generation rate (nmol min−1 g−1∙FW) 19.5 ± 0.5c 20.5 ± 0.6c 22.8 ± 0.7b 24.6 ± 0.6a
SOD activity1 (U min−1 g−1∙FW) 169.0 ± 2.3b 181.7 ± 2.5a 180.5 ± 2.3a 186.9 ± 2.3a
CAT activity2 (U min−1 g−1∙FW) 328.3b ± 3.4 366.9 ± 4.1a 374.8 ± 3.9a 362.8 ± 2.6a
Chl (a + b) (mg m−2) 612.7 ± 34.0 662.5 ± 34.5 662.2 ± 29.5 682.4 ± 39.2
Carotenoid (mg m−2) 155.6 ± 9.0 166.6 ± 8.9 167.3 ± 7.4 172.4 ± 9.7
Soluble sugar content (mg g−1∙FW) 15.7 ± 0.5c 19.8 ± 0.6a 17.7 ± 0.6b 17.7 ± 0.8b
Total soluble protein (mg g−1∙FW) 5.1 ± 0.3c 6.3 ± 0.3a 6.1 ± 0.3ab 5.8 ± 0.3b

Data represent mean ± SE (n = 16). Means followed by different letters within one row differ significantly (P < 0.05) as established by the least significant difference test.
150% of the photoreduction of nitroblue tetrazolium (NBT) is used as an enzyme activity unit.
21 nmol of H2O2 degradation per minute is defined as an enzyme activity unit.

TABLe 4 | Plant production and morphological properties in response to different durations of UVA exposure.

Treatment Control UVA-5d UVA-10d UVA-15d

Shoot fresh weight (g plant−1) 39.1 ± 1.5c 46.1 ± 1.2b 50.8 ± 1.0a 49.9 ± 1.4a
Shoot dry weight (g plant−1) 2.11 ± 0.08c 2.48 ± 0.10b 2.79 ± 0.09a 2.75 ± 0.12a
Leaf area (cm2 plant−1) 908.4 ± 34.8c 1047.1 ± 17.4b 1146.6 ± 16.4a 1105.1 ± 26.5ab
Leaf number 36.4 ± 0.9b 40.1 ± 0.7a 40.6 ± 1.1a 40.8 ± 0.9a

Data represent mean ± SE (n = 8). Means followed by different letters within one row differ significantly (P < 0.05) as established by the least significant difference test.

TABLe 5 | Leaf biochemical components and antioxidant enzyme activities in response to different durations of UVA exposure.

Treatment Control UVA-5d UVA-10d UVA-15d

Total phenolic (mg GAE g−1∙FW) 1.62 ± 0.05b 1.97 ± 0.11ab 2.05 ± 0.13a 1.97 ± 0.14ab
Total flavonoids (mg RUE g−1∙FW) 7.9 ± 0.5 8.7 ± 1.0 8.5 ± 0.8 8.8 ± 0.8
Anthocyanin (mg 100 g−1∙FW) 20.3 ± 0.4c 23.8 ± 0.2b 23.9 ± 0.3b 25.2 ± 0.6a
Ascorbic acid (μg g−1∙FW) 208.4 ± 16.2b 307.3 ± 15.4a 340.1 ± 7.7a 322.4 ± 14.8a
Soluble sugar content (mg g−1∙FW) 16.6 ± 0.6c 20.2 ± 0.8b 23.6 ± 0.6a 22.7 ± 0.4a

Data represent mean ± SE (n = 8). Means followed by different letters within one row differ significantly (P < 0.05) as established by the least significant difference test.
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the underlying mechanisms of UVA affecting plant morphology 
are distinct from the function of UVB on plant morphology.

Although data from previous studies are insufficient for 
generating a dose response of UVA effects on plant growth 
(Verdaguer et al., 2017), we showed that biomass production and 
leaf area of indoor cultivated lettuce were not linearly increased 
with the intensity of UVA. On the contrary, they were inhibited 
at 30 μmol m−2 s−1 in comparison with 10 μmol m−2 s−1. This 
indicates that growth of indoor cultivated lettuce may have a 
saturating response to UVA. For further validation, we carried 
out another experiment in which treatments had the same UVA 
intensity but different durations of UVA exposure, which showed 
that UVA exposure for 10–15 days resulted in similar biomass 
production and leaf area, again indicating a saturating response. 
More treatments with different UVA intensities or exposure 
durations would be useful for figuring out the specific saturating 
UVA dose.

UVA Does Not Downregulate Leaf 
Photosynthetic Capacity, But 
Photoinhibits Leaves At high Intensity
UVA radiation has been considered as a damaging factor for 
photosynthesis (Vass et al., 2002; Tyystjarvi 2008). However, 
our data show that plants grown under the three UVA intensity 
treatments had similar leaf photosynthetic rates as the control 
(Figure 3). These data do not reflect short-term effects of UVA 
treatments on photosynthesis under their respective growth 
condition as they were measured without UVA. Rather, these 
data reflect possible long-term (acclimation) effects of these 
treatments on the photosynthetic apparatus; the data indicate that 
leaf photosynthetic activity and stomatal conductance (measured 
under 250 and 1500 μmol m−2 s−1) were not downregulated by 
UVA exposure.

Leaves grown under UVA-30 exhibited signs of 
photoinhibition (lower Fv/Fm, Figure 4) that did not affect leaf 
photosynthetic rates (Figure 3A). This indicates that plants 
grown under this treatment were experiencing harmful effects 
of UVA on photosystem II protein D1 turnover (Vass et al., 
2002). On the other hand, a previous study reported that UVA 
can enhance photosynthetic rates when supplemented at non-
saturating levels of visible light, and this effect was mainly caused 
by UV-induced violet-blue-green fluorescence that is harvested 
by photosynthetic pigments to drive electron transport (Mantha 
et al., 2001). This stimulating effect was observed under a short-
term exposure to UVA (Mantha et al., 2001). It is unclear whether 
such a mechanism also occurred in the current study. Therefore, 
further work is needed to assess whether the above-mentioned 
enhancement effect occurs in the plants that are developed under 
UVA radiation.

UVA Promotes secondary  
Metabolite Production
UV radiation has traditionally been considered as environmental 
stressor that can lead to the generation of ROS (Wargent and 
Jordan, 2013). We also observed that plants grown under UVA 

treatments had higher superoxide anion radical (O2
−) generation 

rate, in particular under the UVA-30 treatment (Table 3). ROS 
can cause considerable cellular damage through oxidation 
of lipids, proteins, and DNA (Garg and Manchanda, 2009). 
Therefore, the UVA induced increase in antioxidant contents act 
as an effective ROS scavenger (Treutter, 2006). Here we showed 
that increasing UVA intensity or extending the duration of UVA 
exposure did not remarkably increase the concentration of total 
phenolics in lettuce (Table 3). This is in line with Verdaguer et al. 
(2017), who suggested that for understanding the effects of UVA 
on plant metabolites, attention should be given to the alterations 
in individual phenolic compounds, rather than the total phenolic 
content.

Flavonoids are a major group of phenolics, which is often 
associated with plant responses to UV radiation (Treutter, 2006). 
Therefore, it is not surprising that lettuce grown under higher 
intensities of UVA (i.e. UVA-20 and UVA-30) had higher total 
flavonoid contents than that of control (Table 3). Such UVA 
induced flavonoids could play a significant role both in UVA 
screening and as antioxidants in order to prevent cell damage 
caused by UVA (Treutter, 2006). Anthocyanins are important 
components of flavonoids, and their contents were significantly 
increased by UVA (Table 3), and these results are similar to 
Lee et al. (2014). Anthocyanins plays a photoprotective role in 
enhancing plant tolerance to abiotic stresses: for example, they 
absorb a fraction of yellow/green and ultraviolet wavelengths, 
and consequently may reduce the damage to photosystem 
II (Landi et  al., 2015). Ascorbic acid also acts primarily as 
antioxidant (Garg and Manchanda, 2009), and was substantially 
increased by UVA in our study (Tables 3 and 5), consistent with 
Jeong et al. (2009). Secondary metabolite synthesis requires 
substrate availability, i.e. photosynthates (Coley et al., 1985). 
In this context, increased secondary metabolite contents in the 
UVA treatments might be correlated with higher soluble sugar 
content (Tables 3 and 5).

Plant oxidative protection also depends on antioxidant 
enzymes (Gill and Tuteja, 2010; Vighi et al., 2017), such as 
SOD and CAT, which were significantly upregulated by UVA 
radiation (Table 3). These enzymes are indispensable for ROS 
detoxification (Willekens et al., 1997). To mitigate possible 
detrimental effects caused by UVA, therefore, plants could 
maintain a balance between antioxidative protection and ROS 
production. However, such a balance was likely broken under 
the UVA-30 treatment, indicated by a significantly higher MDA 
content (Table 3), as MDA is a typical end product of lipid 
peroxidation and is considered as the first type of oxidative 
damage (Taylor et al., 2002).

CONCLUsION
Supplementing UVA radiation to LED light in a controlled 
environment induced larger leaf area, thereby facilitating 
better light interception and substantially increased biomass 
production. Moreover, UVA radiation also enhanced secondary 
metabolite accumulation in lettuce. Under high UVA intensity, 
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plants were stressed, as indicated by lipid peroxidation (i.e. 
higher MDA content) and lower maximum quantum efficiency 
of photosystem II photochemistry (Fv/Fm). Our results suggest 
that the stimulating effect of UVA on lettuce growth exhibits a 
saturation response to the UVA dose.
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