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Random forests (RF) was used to correlate spectral responses to known wet chemistry 
carotenoid concentrations including total carotenoid content (TCC), all-trans β-carotene 
(ATBC), violaxanthin (VIO), lutein (LUT), 15-cis beta-carotene (15CBC), 13-cis beta-
carotene (13CBC), alpha-carotene (AC), 9-cis beta-carotene (9CBC), and phytoene (PHY) 
from laboratory analysis of 173 cassava root samples in Columbia. The cross-validated 
correlations between the actual and estimated carotenoid values using RF ranged from 
0.62 in PHY to 0.97 in ATBC. The developed models were used to evaluate the carotenoids 
of 594 cassava clones with spectral information collected across three locations in a 
national breeding program (NRCRI, Umudike), Nigeria. Both populations contained 
cassava clones characterized as white and yellow. The NRCRI evaluated phenotypes 
were used to assess the genetic correlations, conduct genome-wide association studies 
(GWAS), and genomic predictions. Estimates of genetic correlation showed various 
levels of the relationship among the carotenoids. The associations between TCC and 
the individual carotenoids were all significant (P < 0.001) with high positive values (r > 
0.75, except in LUT and PHY where r < 0.3). The GWAS revealed significant genomic 
regions on chromosomes 1, 2, 4, 13, 14, and 15 associated with variation in at least one 
of the carotenoids. One of the identified candidate genes, phytoene synthase (PSY) has 
been widely reported for variation in TCC in cassava. On average, genomic prediction 
accuracies from the single-trait genomic best linear unbiased prediction (GBLUP) and RF 
as well as from a multiple-trait GBLUP model ranged from ~0.2 in LUT and PHY to 0.52 
in TCC. The multiple-trait GBLUP model gave slightly higher accuracies than the single 
trait GBLUP and RF models. This study is one of the initial attempts in understanding 
the genetic basis of individual carotenoids and demonstrates the usefulness of NIRS in 
cassava improvement.
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INTRODUCTION
Carotenoids are well known for their nutritional and health 
benefits, particularly in the prevention of a number of human 
cancers and eye diseases. Most important is the vitamin A activity 
of the provitamin A carotenoids (PVAC), especially, beta-carotene, 
alpha-carotene, beta-cryptoxanthin, and gamma-carotene (Krinsky 
and Johnson, 2005; Paiva and Russell, 2013). Vitamin A is essential 
for growth and differentiation of a number of cells and tissues and 
vital for the healthy development of the fetus and the newborn 
(Strobel et al., 2007). Inadequate intake of vitamin A is associated 
with impaired vision, poor immunity, retarded growth, and even 
death, particularly among children and pregnant or nursing 
mothers (Strobel et al., 2007; Ceballos et al., 2013; Bechoff et al., 
2015). Also, carotenoids act as antioxidants and some non-PVAC, 
for example, lutein and zeaxanthin, are important components of 
the macular pigment in the eyes, and their deficiencies are linked to 
some eye-related problems (Krinsky and Johnson, 2005; Kim et al., 
2010; Bechoff et al., 2015).

Cassava is the fourth most important basic food after rice, 
wheat, and maize worldwide and provides food for many people, 
particularly in sub-Saharan Africa, where over 600 million 
people depend on it to meet their energy requirements (Oliveira 
et al., 2014; Rabbi et al., 2017). Generally, cassava roots are low 
in nutritional quality, containing mainly carbohydrates (Nweke, 
2004; Ceballos et al., 2017). However, there are ongoing efforts 
to improve the nutritional quality of cassava, taking advantage 
of genetic variability existing in the crop (Ceballos et al., 2013; 
Mugode et al., 2014; Ceballos et al., 2017). Such efforts are 
invaluable in alleviating vitamin A deficiency (VAD) problems 
prevalent among individuals below poverty thresholds who 
cannot afford healthy and balanced nutrition from more 
expensive food sources (Maziya-Dixon et al., 2006; Strobel et al., 
2007). The bio-fortification effort has led to a substantial boost in 
the proportion of carotenoids in cassava roots and the recorded 
success has been largely attributed to the adoption of advanced 
analytical tools (Marini et al., 2013; Belalcazar et al., 2016).

In cassava phenotyping, the conventional use of color 
intensity in quantifying carotenoid content in cassava roots is 
challenging and restricted to a qualitative classification of clones 
into white, cream and yellow categories (Ceballos et al., 2017). 
Other alternatives include the use of high-performance liquid 
chromatography (HPLC) and UV-Visible spectrophotometry, 
which are low-throughput and require skilled labor and favorable 
laboratory conditions (Ceballos et al., 2013; Belalcazar et al., 
2016). Such laboratory facilities and conditions are lacking in low-
resource breeding programs and experimental sites (out-stations) 
where most multilocation evaluations take place. Besides, such 
standard facilities are expensive to install and ineffective for large 
volume analytical procedures. Recently, the use of near infra-red 
spectroscopy (NIRS) has been demonstrated to enable high-
throughput assessment and quantitative evaluation of micro-
nutrients including total and individual carotenoid components 
(Sánchez et al., 2014; Belalcazar, et al., 2016; Ikeogu et al., 2017). 
Such development is necessary for accurate phenotyping and 
understanding of the underlying genetics of PVAC in cassava.

Linear regression models have been widely used in developing 
NIRS calibrations—correlating spectral response of each sample 
at individual wavelengths to known chemical concentrations 
from laboratory analysis (Chen and Wang, 2001), but their 
performance is often limited by nonlinear effects including 
baseline drift, light scattering effects, and multicollinearity 
(Büning-Pfaue and Kehraus, 2001; Cen and He, 2007; Sánchez et al., 
2014). Linear models generally perform regression on factor 
analysis components which in many cases, lack direct physical 
meaning (Cristianini and Shawe-Taylor, 2000; Wold et al., 2001; 
Andersson, 2009; Ghasemi and Tavakoli, 2013). Recently, the 
option of nonlinear calibration models has been gaining attention 
as such models are useful in addressing both linear and nonlinear 
multivariate relationships. The growing interest in the use of 
nonlinear models for spectra analyses could be attributed to their 
comparable accuracy, mathematical simplicity, computational 
efficiency, and robustness to noise (Breiman, 2001; Lee et al., 
2012; Ghasemi and Tavakoli, 2013). Random forests (RF), a 
nonlinear model, has been effective in multivariate calibrations 
from modern measuring instruments, including spectrometers, 
chromatographs, and sensor batteries where it has been used to 
provide valuable interpretable results. It also provides an adequate 
fine-tuning mechanism to control overfitting and collinearity 
associated with most spectroscopic data (Svetnik et al., 2003; 
Ghasemi and Tavakoli, 2013; Sila et al., 2016).

The lack of adequate phenotyping tools especially in dissecting 
total carotenoid content (TCC) into its individual components is a 
limiting factor in the genetic studies of PVAC in cassava. Genome-
wide association studies (GWAS), which leverage available marker 
polymorphisms distributed throughout the cassava genome, have 
been useful in identifying the genomic regions associated mainly 
with TCC variation in cassava (Esuma et al., 2016; Rabbi et al., 
2017). GWAS could fill in the limited information on the genomic 
regions associated with most of the individual carotenoids, their 
relative genetic control, and correlations.

Naturally, carotenoids are present in various configurations 
and isomerization (Castenmiller and West, 1998; Paiva and 
Russell, 2013). In addressing VAD, attention should be given 
to the reported bioavailability and bioconversion interactions 
of carotenoid components including a positive interaction 
between β-carotene and concentrations of α-carotene, negative 
interactions between β-carotene and lutein, lycopene, and 
canthaxanthin (Castenmiller and West, 1998). From a breeding 
perspective, it is very important to establish the genetic 
correlations of carotenoid components in cassava and determine 
the relationship between such correlations and the reported 
bioavailability and bioconversion interactions (Castenmiller and 
West, 1998; Strobel et al., 2007; Mugode et al., 2014; Bechoff et al., 
2015). In addition, understanding the relationships between 
TCC and the individual components will help to track the extent 
of progress made thus far or need to be made, including the 
adoption of the best strategy for carotenoids improvement in 
cassava roots.

Unlike GWAS, genomic selection (GS) is a breeding 
technology that is used to predict the genetic potential 
of individuals in a breeding program without necessarily 
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uncovering the underlying genes and quantitative trait loci 
(QTL) behind the traits of interest (Meuwissen et al., 2001; 
Goddard and Hayes, 2007; VanRaden, 2008). It promises to 
accelerate genetic gain over time, shorten breeding cycles and 
reduce the costs of breeding (Habier et al., 2009; Hayes et al., 
2010; de Oliveira et al., 2012; Wolfe et al., 2017). As the field 
continues to grow and new computational methods develop, 
nonlinear GS models have been shown to be useful in estimating 
total genetic values (TGVs) beyond just breeding values (Lorenz 
et al., 2011; Heslot et al., 2012; Wolfe et al., 2017). Being a clonally 
propagated crop, the TGV of a cassava plant can be reproduced 
so that its prediction from nonlinear GS prediction models is 
appropriate in cassava breeding and trait improvement.

Laboratory facilities to assay the full suite of carotenoids are 
not readily available in Nigeria. In order to assess the full spectrum 
of carotenoids in Nigerian cassava germplasm, we leveraged 
a calibration population developed at the International Center 
for Tropical Agriculture (CIAT) in Cali-Palmira, Colombia, to 
predict content of carotenoids in a cassava population of the 
National Root Crops Research Institute (NRCRI) in Umudike, 
Nigeria. We validated the predictions by assessing their genotype 
to phenotype relationships in terms of heritability, genomic 
prediction accuracy, and the identification of significant GWAS 
hits. We used RF, a nonlinear method for NIRs prediction for 
TCC, ATBC, VIO, LUT, 15CBC, 13CBC, AC, 9CBC, and PHY 
in cassava and employed the calibration models in analyzing 
the spectral information of a training population from NRCRI 
in Nigeria. We estimated the genetic correlations, identified 
the underlying genomic regions associated with the variation, 
and demonstrated the potential of using GS for the rapid 
improvement of these traits, comparing linear with nonlinear 
prediction models. While many GS predictions are performed 
on a single trait basis, the use of multiple-trait models has shown 
prediction improvements in various cases (Jia and Jannink, 2012; 
Fernandes et al., 2017; Okeke et al., 2017). Therefore, we also 
compared predictions of single and multiple-trait GS models for 
the improvement of carotenoids in fresh cassava roots.

MATeRIAlS AND MeThODS

Training Population and Spectra Collection
NRCRI has a training population currently used for the 
implementation of GS in cassava which has been fully described 
(Wolfe et al., 2016; Wolfe et al., 2017). The germplasm consists of 
Training Population 1 (TP1) and Training Population 2 (TP2). 
Trials of these two populations were further divided into sets 
(TP1 had two sets and TP2 had four sets) for easy management 
and the control of experimental error and the sets in each trial 
were established as randomized incomplete blocks with three 
replications of a plot size of five plants. TP1 was evaluated at 
Umudike in a single set whereas TP2 was evaluated at Umudike, 
Otobi, and Kano using four sets in the 2015/2016 cropping 
season. Two or three technical replications were taken in each 
clone replication across sets and trials. A total of 594 clones from 
the two populations—221 (TP1) and 411 (TP2) with an overlap 

of 24 clones, were used for analyses. The origin of the NRCRI 
clones has been described (Wolfe et al., 2016). Briefly, most of 
the clones have ancestry from germplasm introduced from the 
International Center for Tropical Agriculture (CIAT), Cali-
Palmira, Colombia (Njoku et al., 2011; Ceballos et al., 2013). 
Also, a cluster analysis of spectral data from CIAT and NRCRI 
roots (data not shown) did not suggest the two populations were 
disjoint. The training population included clones characterized 
as white and few others as yellow provitamin A clones.

Spectral data on the TP were collected using a full range (350 – 
2500 nm wavelength in 1-nm increments) portable visible and 
infrared spectrometer (Vis/NIRS) (QualitySpec Trek: S-10016, 
ASD Inc.). Root samples from two to three sizeable roots were 
randomly selected from a plot and the selected roots were peeled 
with knives, washed, and homogenized into a paste-like mash using 
a portable power-operated grater. Spectral data were collected from 
homogenized mashed samples in quartz sampling cups placed 
against the window of the portable Vis/NIRS device. Each final 
spectral output was a mean of fifty scans (Ikeogu et al., 2017).

Training Population Carotenoids 
Phenotype evaluation
The carotenoids of NRCRI training population were estimated 
from calibration equations derived from a calibration population 
(n = 173) developed from the breeding population of CIAT using 
RF. Usually, the use of NIR instruments for analyses require 
the training, also known as the calibration of the instruments 
for the evaluation of traits of interest. Calibration establishes 
a mathematical relationship between the absorption spectra 
from the NIR instruments and the factor of interest (Chen and 
Wang, 2001; Cen and He, 2007). Developing a calibration model 
requires spectra measurements of samples from a population that 
includes all variances in future prediction and some important 
aspects of calibration development require using a good number 
of samples uniformly covering a wide range of the analytes of 
interest from the calibration set known as a training set to develop 
models. Thereafter, the developed calibration models should be 
validated to test the model performance on future samples on 
the remaining subset of the calibration set (test set) (Cen and 
He, 2007; Lopez et al., 2013). The calibration population has 
been previously described and analyzed using a linear calibration 
model—modified partial least square regression, with mashed 
cassava root samples and HPLC reference values (Ikeogu 
et  al., 2017). Just like the NRCRI population, the calibration 
population contained clones characterized as both white and 
yellow. Calibration was performed in R using the caret package 
(Kuhn, 2008; R Core Team, 2017).

Prior to building calibration models, standard normal variate 
and detrending (SNVD) spectra pretreatment (D = 2, G = 5, S1 = 
2, S2 = 1) was applied to correct for external interferences on 
the spectral data, where D indicates the derivative order number 
(0 indicates no derivation, 1 means the first derivative, and so 
on), G indicates the gap (the number of data points over which 
derivation is computed), S1 indicates the number of data points 
in the first smoothing (1 means no smoothing), and S2 indicates 
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the number of data points in the second smoothing (1 means no 
smoothing) (Davrieux et al., 2016; Ikeogu et al., 2017).

The cross-validation of the NIRS calibration models was done 
by dividing the calibration set into training and testing sets in 
a ratio of 3:1 which was repeated 10 times. After assessing the 
performance of the initial calibration models on the testing set, a 
final model was fitted on the full calibration set for each trait in 
order to maximize the number of calibration samples. These final 
RF models were used in predicting the carotenoids of over 4,000 
spectra from 594 clones from NRCRI across Umudike, Otobi, 
and Kano locations.

Genotype Data
The genotype data used in this study have been previously 
described (Wolfe et al., 2016; Wolfe et al., 2017). The data were 
generated using genotyping by sequencing (GBS) with the 
ApeK1 restriction enzyme. SNP calls were carried out with the 
TASSEL GBS pipeline V4 (Glaubitz et al., 2014) and aligned to 
the cassava reference genome (Goodstein et al., 2012; Bredeson 
et al., 2016). Individuals with more than 80% missing SNP calls 
and markers with more than 60% missing calls were removed. 
Missing data were imputed with Beagle (version 4.0) (Browning 
and Browning, 2008) and marker data were then converted to 
a dosage format. After filtering based on MAF > 0.01, a total of 
114,884 SNP markers were used for analyses.

Trait Correlations and Deregressed BlUPS
The estimate of genetic correlations ( )rG

2  among the reported 
carotenoids was obtained by Pearson correlation of estimated 
genetic values (EGV) derived from a mixed linear model for each 
carotenoid response. The linear model was

 y loc clone trial set loc trial rep set= + + + + + +  ( : ) ( ) ,µ ε  

where y = the NIRS predicted phenotypes; μ = population 
mean; loc = fixed effect of location; clone = random effect of 
clone: clone N(  I )clone ~ ,0 2σ ; trial = fixed effect of trial; set 
(loc:trial) = random effect of set nested in trial and location: 
set N~ , ),(0 2I set σ  rep(set) = random effect of clone replication 
nested in set rep N rep: ~ , )(0 2I  σ  and ε = error term: ε σ ε~ , ).(N 0 2I  
Models were fitted using the lmer package in R (Bates et al., 2014; 
R Core Team, 2017).

Since the clones were not replicated equally across locations, 
trials, and sets, our data set was unbalanced and in order to account 
for the variability in predicted error variance (PEV) and unequal 
shrinking of the BLUPS for clones, BLUPs were deregressed on the 
basis of PEV (Garrick et al., 2009). The deregressed BLUPs (dBLUPS) 
were used in the downstream studies. Broad-sense heritability (H2) 
was calculated using the estimated variance components from the 
mixed models according to (Holland et al., 2010) as
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2  = clone variance, σ S

2 =set variance, σr
2 =replication 

variance, σe
2 =error variance,while s , r  and r s  were harmonic 

mean number of sets, mean number of replications, and mean 
number of plots in which each clone was observed, respectively.

GS Models

Single Trait, ST-GBLUP, and ST-RF Models
Genomic estimated breeding values (GEBVs) for the clones were 
extracted using the genomic BLUP (GBLUP) model which is 
defined as

 y u ,= + +1µ Z εε  

where u ~ , ), ~ , )( (   N K N Iu0 0σ σ ε
2 2εε  and y is the vector of 

dBLUPs for each carotenoid; 1 is a vector of ones; μ is the mean 
for the dBLUP values; u is the vector of random additive genomic 
effects (GEBVs) with the corresponding design matrix Z; and K 
is the additive genomic relationship matrix calculated from SNPs 
using method 1 of (VanRaden, 2008). The ST-GBLUP models 
were fitted using the sommer package (Covarrubias-Pazaran, 
2016). RF models were trained to estimate the TGVs. TGVs are 
different from GEBVs since they incorporate nonlinear genetic 
effects. The ST-RF model was carried out with the randomForest 
package in R (Breiman, 2001; Svetnik et al., 2003).

Multiple-Trait, MT-GBLUP Model
The nine carotenoids were modeled as multiple response in the 
multiple-trait model: Y = M + ZU + E, where Y is the response 
matrix of the dBLUPs for the nine carotenoids; M is the matrix for 
the means (M=1μ' where 1 is a vector of ones, and μ is the means 
vector for the nine carotenoids); U is a random matrix of additive 
genomic effects vector (GEBVs) with the design matrix Z and E 
is an independent residual matrix; U and E are assumed to have 
independent matrix variate normal distributions given as N(0, 
VZ, K) and N(0, Vε, In) respectively. The multiple-trait GEBVs 
were derived using the EMMREML package in R (Akdemir and 
Okeke, 2015; R Core Team, 2017). Prediction accuracies were 
derived as the correlation between the deregressed EGV and the 
genetic value predicted by the marker-informed models using a 
fivefold cross-validation scheme (Kohavi, 1995) iterated 30 times.

Genome-Wide Association Analysis
A genome-wide association analysis to identify genetic variants 
associated with the NIRS predicted carotenoids was carried out using 
GCTA software (Yang et al., 2011). Markers were further filtered and 
87,380 SNPs with MAF > 0.05 were retained for the analysis.

ReSUlTS

Vis/NIRS Calibration and Carotenoids 
Analyses
The result of the initial calibration models with the 3:1, 
training:test sets showed that correlation between the actual and 
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predicted values within the training set (rc) ranged from 0.66 
in PHY to 0.97 in ATBC (Table 1). Similarly, the correlation 
between the actual values and predicted values in the test set 
(rcv), predicted using the model developed from the training set 
ranged from 0.62 in PHY to 0.97 in ATBC (Table 1). The root-
mean-squared error (RMSE) was highest in PHY (2.9) and lowest 
in AC (0.01). In the final calibration models (combined set of 
training and test sets), the rc was similar to the initial calibration 
with only the training set (Table 1).

Statistical Summary and heritability 
of Carotenoids From NRCRI Breeding 
Program
There was considerable phenotypic variation for all the 
carotenoids from the analyzed NRCRI TP data (Table 2). There 
was a number of both white and yellow root clones similar to 
a population earlier used for GWAS studies for TCC (Rabbi 
et al., 2017). The predicted TCC values ranged from 2 μgg-1 to 
15.39 μgg-1 with an average of 4.72 μgg-1 (fresh weight basis). 
Variation in ATBC ranged from 0.53 μgg-1 to 10.18 μgg-1 with a 
mean of 1.58 μgg-1 (Table 2). Compared to other traits, AC had 
a narrower range of 0.05 μgg-1 to 0.07 μgg-1 with a mean of 0.06 
μgg-1 and standard deviation of 0.004 (Table 2). The broad sense 
heritability for these traits ranged from 0.24 in LUT to 0.80 in 
TCC and 15CBC (Table 2).

Genetic Correlation Among Carotenoids
After calculating the genetic correlations, few values in LUT and 
VIO seem to be influencing the result (data not shown), we used 
a generalized extreme studentized deviate outlier test to identify 

and remove the extreme points and recalculated the correlations 
(Figure 1). The correlation between TCC and the individual 
components was highest in 15CBC (r = 0.98; p-value <0.001) 
and lowest in PHY (r = 0.18; p-value < 0.001) (Figure 1). Among 
the carotenoid components, the highest genetic correlation was 
observed between 9CBC and 13CBC (r ≈ 1). Other associations 
were mostly positive and highly significant (p < 0.001). However, a 
significant (p-value <0.001) and negative correlation was observed 
between PHY and LUT (r = -0.12). Negative but nonsignificant 
associations were recorded between PHY and 9CBC as well as 
13CBC (Figure 1).

Genome-Wide Association Studies
We identified a total of 42 unique markers significantly 
associated with variation in TCC and individual carotenoids 
(i.e., with p-values small than a Bonferroni threshold at an 
alpha of 5%). Most of the significant markers were associated 
with variation in more than one trait (Table S1). There was 
no significant hit for AC and PHY from this study (Figure 2). 
The observed regions associated with variation in the different 
carotenoid components were on chromosomes 1, 2, 4, 13, 14, 
and 15. A total of 20 markers were significant for variation in 
TCC, and 17 of those markers were located between 23.386 
Mbp to 24.709 Mbp on chromosome 1. A single marker 
tagged another peak around 12.739 Mbp on Chromosome 2 
(p-value = 4.71 × 10-7) and the remaining two markers tagged 
another peak around 21.85 Mbp on chromosome 13 (p-value = 
4.34 × 10-7) (Table S1). Interestingly, similar regions tagged by 
almost the same markers for variation in TCC were significant 
for variation in ATBC, 9CBC, 13CBC, and 15CBC. In addition, 
there was a nearby peak at 25.427 Mbp tagged by one marker 

TABle 1 | Calibration statistics of the portable Vis/NIRS spectra analyzed using random forests for total carotenoid content (TCC), all-trans β-carotene (ATBC), 
violaxanthin (VIO), lutein (LUT), 15-cis beta-carotene (15CBC), 13-cis beta-carotene (13CBC), alpha-carotene (AC), 9-cis beta-carotene (9CBC), and phytoene (PHY) 
carotenoids in cassava roots.

Model Stat. TCC AC ATBC lUT VIO 9CBC 13CBC 15CBC PhY

Cal. rc 0.96 0.87 0.97 0.77 0.79 0.90 0.92 0.92 0.66
rcv 0.96 0.86 0.97 0.73 0.77 0.89 0.91 0.91 0.62
RMSE 2.65 0.01 1.6 0.32 0.14 0.26 0.38 0.06 2.9
Nc 132 59 132 84 132 132 132 131 71

Final rc 0.95 0.85 0.96 0.75 0.76 0.88 0.89 0.91 0.52
RMSE 2.51 0.01 1.6 0.33 0.14 0.26 0.33 0.06 2.8
Nc 173 76 173 109 173 173 173 173 91

rc = correlation between predicted and actual values in training set; rcv = correlation between predicted and actual values in test set; RMSE, root-mean-square error;  
Nc = number of observations in the training set.

TABle 2 | Summary statistics and heritability of total carotenoid content (TCC), all-trans β-carotene (ATBC), violaxanthin (VIO), lutein (LUT), 15-cis beta-carotene 
(15CBC), 13-cis beta-carotene (13CBC), alpha-carotene (AC), 9-cis beta-carotene (9CBC), and phytoene (PHY) from cassava roots.

Stat. TCC AC ATBC lUT VIO 9CBC 13CBC 15CBC PhY

Min. 2.20 0.05 0.53 0.14 0.22 0.23 0.28 0.05 3.68
Max. 15.39 0.07 10.18 1.45 0.61 1.15 1.44 0.26 8.99
Mean 4.72 0.06 1.58 0.25 0.33 0.44 0.56 0.10 5.41
SD 2.085 0.004 1.536 0.098 0.055 0.163 0.212 0.039 0.701
H2 0.8 0.65 0.81 0.24 0.61 0.79 0.78 0.8 0.71
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(p-value = 3.50 × 10-7) and significant for variation in both 
13CBC and VIO. On the other hand, five hits were associated 
with variation in LUT on chromosome 1, tagged by four 
significant markers of which three were localized between 4.81 
Mbp and 4.86 Mbp and the remaining marker around 17.48 
Mbp, five markers tagged a peak around 22.54 Mbp to 23.69 
Mbp on chromosome 4 and a marker on each of chromosome 
13 (6.09 Mbp and p-values = 1.04 x 10-7), chromosome 14 

(24.24 Mbp and p-values = 3.28 x 10-7), and chromosome 15 
(14.17 Mbp and p-values = 1.86 × 10-8).

The cassava genome (v6.1) (Bredeson et al., 2016) on Phytozome 
(v12.1.6) (Goodstein et al., 2012) was queried to identify 
annotated genes within 0.5 Mb of the genomic regions occupied 
by significant SNPs. The candidate gene Manes.01G124200, 
a phytoene synthase (PSY) gene known for increasing the 
accumulation of carotenoid in cassava roots (Welsch et al., 2010; 

FIGURe 1 | Genotypic correlation of total carotenoid content (TCC), all-trans β-carotene (ATBC), violaxanthin (VIO), lutein (LUT), 15-cis beta-carotene (15CBC), 
13-cis beta-carotene (13CBC), alpha-carotene (AC), 9-cis beta-carotene (9CBC), and phytoene (PHY) carotenoids in cassava roots.

FIGURe 2 | The Manhattan (A) and QQ (B) plots of genome-wide association studies on cassava root total carotenoid content (TCC), all-trans β-carotene (ATBC), 
violaxanthin (VIO), lutein (LUT), 15-cis beta-carotene (15CBC), 13-cis beta-carotene (13CBC), alpha-carotene (AC), 9-cis beta-carotene (9CBC), and phytoene 
(PHY) carotenoids.
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Esuma et al., 2016; Rabbi et al., 2017) and Manes.01G001200 gene 
also associated with carotenoid biosynthesis (Goodstein et al., 
2012; Bredeson et al., 2016), located within the genomic regions 
(~24.15 to 24.16 Mbp, forward, and 25.21 to 25.48 Mbp, forward, 
respectively) were found around the regions of the significant 
markers on chromosome 1, which was associated with variation 
in TCC, ATBC, 9CBC, 13CBC, 15CBC, and VIO. There were 
other noncarotenoid candidate genes (not reported) found in the 
other regions associated with variation in the studied carotenoids 
on chromosomes 2, 4, 13, 14, and 15.

Genomic Predictions
The result of the genomic predictions for the studied carotenoids 
showed a slight increase in prediction accuracies using ST-RF 
compared to the linear ST-GBLUP models (Figure 3). On 
the other hand, the MT-GBLUP models had slightly higher 
accuracies than the ST-RF model except in 9CBC and 13CBC 
where the accuracies were similar. Overall, prediction accuracies 
ranged from 0.16 in PHY to 0.52 in TCC (Figure 3).

DISCUSSION
Robust calibration performance has been previously reported 
using the same calibration set that was used in this study (Ikeogu 
et al., 2017). It is important to note that both the CIAT calibration 
set and the NRCRI test set were mixed, containing cassavas 
characterized as white and yellow. Trait heritabilities, correlations, 
and prediction accuracies reported here are therefore valid only 
for such mixed populations, which would not be typical of 
breeding populations. The use of ST-RF in this study was valuable 
in accounting for any potential nonlinear relationship between 

the variables (Svetnik et al., 2003; Lee et al., 2012; Ghasemi and 
Tavakoli, 2013). Most importantly, it was relevant in restricting 
negative prediction of constituents by using average prediction 
technique obtained from several trees of RF (Breiman et al., 1984; 
Qi, 2012). The coefficient of correlation (r) and determination 
(R2) have been used in assessing calibration performance (Duan 
et al., 2012; Wang et al., 2014) and the values obtained in this study 
(Table 1), which are similar to previous calibration results with 
linear models, are most valuable for screening and quantification 
of constituents (Cai et al., 2012; Fox et al., 2012; Lebot, 2012). 
Nevertheless, there is still a need for calibration improvement. 
Possible adoption of specific mathematical treatments for each 
trait, increasing the number of calibration samples and the use of 
variable selection approaches could potentially help to improve 
the current calibration models (Centner et al., 1996; Tosato et al., 
2016). Also, the revalidation model approach and the use of local 
regression could be useful in improving predictions particularly 
when the target constituents evolve in breeding programs 
(Davrieux et al., 2016). This initial calibration and the application 
of NIRS in the assessment of traits in a low-resource national 
breeding program is promising especially when there are no 
cost-effective and efficient alternatives for such evaluations. This 
study provides an opportunity for rapid improvement of many 
valuable traits in cassava.

Several studies have shown that TCC is a highly heritable trait 
in cassava (Morillo et al., 2012; Ceballos et al., 2013; Esuma et al., 
2016; Rabbi et al., 2017). Besides TCC, we observed moderately 
high heritability for most of the carotenoids, though it is unclear 
what heritabilities might be in a population composed only of 
yellow cassavas (Ceballos et al., 2013). High heritability for TCC 
and the individual carotenoid components has been reported in 
maize (Kandianis et al., 2013).

FIGURe 3 | Genomic predictions for total carotenoid content (TCC), all-trans β-carotene (ATBC), violaxanthin (VIO), lutein (LUT), 15-cis beta-carotene (15CBC), 
13-cis beta-carotene (13CBC), alpha-carotene (AC), 9-cis beta-carotene (9CBC), and phytoene (PHY) cassava root carotenoids. For each trait: ST = single trait 
GBLUP, RF = single trait random forest and MT = multiple-trait GBLUP models.
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Understanding the genetic relationship especially between TCC 
and its components is vital in assessing the amount of progress 
made so far or required for a simultaneous increase TCC and its 
corresponding components, most especially, the PVAC in cassava. 
Previous efforts, especially in most of the low resource breeding 
programs, have centered mainly on the qualitative improvement of 
TCC partly due to the lack of effective and standardized phenotyping 
protocols. The high and positive phenotypic and genotypic 
relationships observed between TCC and the PVAC (especially AC, 
ATBC, VIO, 9CBC, 13CBC, and 15CBC) were encouraging and 
suggested that these traits could be improved concurrently. Because 
of its health benefits, the positive and significant genetic association 
between LUT and the PVAC (Figure 1) have a favorable implication 
for the health of millions of people that depend on cassava as a 
major staple. Lutein is a very important component of the macular 
pigment in the eyes and its deficiency is closely associated with some 
eye-related problems (Krinsky and Johnson, 2005; Kim et al., 2010; 
Bechoff et al., 2015). The positive associations offer the opportunity 
for simultaneous improvement of these traits and improving the 
nutritional value and health of millions of cassava users, especially 
women and children in sub-Saharan Africa. However, the low and 
significantly negative association between PHY and LUT requires 
further biochemical and genetic insights, including the design of 
adequate strategies in improving these traits. High and positive 
correlations especially between AC and PHY as well as between 
AC and ATBC have been reported in carrot (Santos et al., 2005). 
Although a negative interaction between β-carotene and lutein 
was reported, the positive interaction between β-carotene and 
concentrations of α-carotene were in agreement with previously 
reported bioavailability and bioconversion studies in carotenoids 
(van Vliet et al., 1996; Castenmiller and West, 1998).

The GWAS result was in agreement with the previous GWAS 
reports on TCC in cassava (Esuma et al., 2016; Rabbi et al., 
2017). The identified candidate gene, phytoene synthase gene 
(Manes.01G124200) has been reported as a single genomic region 
associated with quantitative variation in TCC using both a panel of 
partial S1 and S2 inbreds (Esuma et al., 2016) and a diverse African 
germplasm collection phenotyped using an indirect color chart 
and a Chromameter value (Rabbi et al., 2017). However, other than 
the single major locus associated with qualitative or quantitative 
measures of TCC, the possibility of more than one associated locus 
has been widely suggested (Iglesias et al., 1997; Akinwale et al., 2010; 
Esuma et al., 2016; Rabbi et al., 2017). Previous genetic study of the 
progeny (F2 population) of a cross between yellow and white parents 
suggested that yellowness in cassava is controlled by two major 
genes, one controlling the transport of the product of precursors 
to the roots and the other responsible for the accumulation process 
(Chavez et al., 2000). This study uncovered additional regions for 
variation in TCC as well as the individual carotenoids. We identified 
regions that are significant for more than a single carotenoid which 
suggests the possibility of pleiotropic effects. Epistatic effects of the 
major genes had been earlier reported for TCC in cassava (Chavez 
et al., 2000). Some evidence of pleiotropic effects on multiple 
carotenoids have been reported by various genetic mapping studies 
especially in maize (Harjes et al., 2008; Yan et al., 2010; Kandianis 
et al., 2013). However, further investigations will be necessary to 
fully understand the physiological processes and interactions 

surrounding the carotenoid biosynthetic pathway in cassava 
(Mayfield et al., 1986; Shumskaya and Wurtzel, 2013).

The benefits of GS as a breeding tool in reducing breeding cycle 
time and accelerating the rate of genetic gain, especially that of 
complex traits, has been demonstrated in cassava (Oliveira et al., 
2014; Okeke et al., 2017; Wolfe et al., 2017). GS has been widely used 
in many plants and animal breeding programs (Lorenz et al., 2011; 
Daetwyler et al., 2013; Zhang et al., 2015) and its adoption in cassava 
improvement is vital in fast-tracking product delivery in terms of 
varieties to meet the food and upcoming industrial demand for the 
crop. On average, we obtained higher prediction accuracies with the 
multiple-trait GBLUP while the nonlinear single trait RF had higher 
accuracies than the linear single trait GBLUP models. Multiple-
trait models use the estimate of genetic and residual covariance in 
deriving GEBV for the traits of interest (Jia and Jannink, 2012; Okeke 
et al., 2017; Montesinos-Lopez et al., 2018). The benefit of multiple-
trait models is very effective especially in the joint analyses of low 
and high heritable traits with medium to high genetic correlations 
(Calus and Veerkamp, 2011; Okeke et al., 2017). The advantage of 
nonlinear GS over linear models has been widely reported (Heslot et 
al., 2012; Pérez-Rodríguez et al., 2012; Crossa et al., 2014). Nonlinear 
models help to capture dominance and epistatic effects and enable 
the prediction of TGV rather than GEBV (Spindel et al., 2015; Wolfe 
et al., 2017). The prediction of TGV is valuable for crops like cassava 
and rice where released varieties are clones and inbreds, respectively.

Although genotyping costs are drastically decreasing, it could 
still be considered relatively expensive for resource-limited 
breeding programs to genotype a large collection of genetic 
materials, especially at the early breeding generations. Offsetting 
the high genotyping and classical phenotyping costs in such 
setups, NIRS provides an opportunity to incorporate certain 
descriptors in improving genomic predictions and overall breeding 
cost-efficiency (Hayes et al., 2017). Near-infrared spectroscopy 
wavelengths significant for some important traits could be targeted 
for candidate genes. The use of NIRS as a high-throughput, 
low cost, and nondestructive tool in the indirect capture of 
endophenotypic variants and the computation of relationship 
matrices for predicting complex traits has been suggested (Rincent 
et al., 2018) and this will be a very useful concept for low-resource 
breeding programs. The combination of rapid phenotyping using 
NIRS and the adoption of genomic breeding tools in cassava 
will lead to the reduction of phenotyping cost and time, enable 
the addition of more individuals for selection, promote genetic 
diversity, and shorten breeding cycle time. Due to its flexibility, 
NIRS can be useful in tracking carotenoid concentrations in 
cassava roots before and after processing. This is important in the 
current effort in increasing the content of carotenoids in a crop 
where increases in fresh weight gains need to be translated into 
dry weight in the final cassava products, given that the relationship 
between carotenoid concentrations on fresh and dry weight basis 
is not always linear (Iglesias et al., 1997; Ceballos et al., 2017).

CONClUSION
This study complements the current effort in addressing 
vitamin A deficiency in many regions of the world through 
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the bio-fortification of major staple foods (Chávez et al., 2005; 
Pillay et al., 2014). The quantitative evaluation of total and 
individual carotenoids offers a tremendous opportunity in 
understanding the natural genetic diversity and the underlying 
architecture of these traits in cassava. The positive and high 
genotypic associations observed in this study underscores the 
fact that any effort in increasing TCC could lead to an increase 
in the individual components. Such information is beneficial in 
designing the best strategy for improving carotenoids content in 
cassava (Bouis et al., 2011; Ceballos et al., 2013). The identified 
loci associated with variation in carotenoids could be used 
in MAS for improved nutritional quality in cassava. Also, the 
information from the GWAS analysis could be incorporated into 
GS to improve predictions of carotenoid content in the genetic 
background of other relevant agronomic traits (Spindel et al., 
2015; Wolfe et al., 2016).

This study supports the usefulness of GS in accelerating 
the improvement of carotenoids in cassava as demonstrated in 
other traits and species (Hayes et al., 2010; Ly et al., 2013; Hayes 
et al., 2017; Wolfe et al., 2017). The use of nonlinear GS models 
has the potential to capture nonlinear underlying relationships 
between dependent and independent variables and are beneficial 
in predicting TGVs in cassava (Heslot et al., 2012; Wolfe et al., 
2017). In addition, the use of multiple-trait models could help 
improve GS prediction accuracies.
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