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Higher temperatures induced by the on-going climate change are a major cause of
yield reduction in legumes. Pea (Pisum sativum L.) is an important annual legume crop
grown in temperate regions for its high seed nitrogen (N) concentration. In addition to
yield, seed N amount at harvest is a crucial characteristic because pea seeds are a
source of protein in animal and human nutrition. However, there is little knowledge on
the impacts of high temperatures on plant N partitioning determining seed N amount.
Therefore, this study investigates the response of seed dry matter and N fluxes at the
whole-plant level (plant N uptake, partitioning in vegetative organs, remobilization, and
accumulation in seeds) to a range of air temperature (from 18.4 to 33.2°C) during the
seed-filling-period. As pea is a legume crop, plants relying on two different N nutrition
pathways were grown in glasshouse: N2-fixing plants or NO3

−-assimilating plants.
Labeled nitrate (15NO3

−) and intra-plant N budgets were used to quantify N fluxes. High
temperatures decreased seed-filling duration (by 0.8 day per °C), seed dry-matter and
N accumulation rates (respectively by 0.8 and 0.032 mg seed−1 day−1 per °C), and N
remobilization from vegetative organs to seeds (by 0.053 mg seed−1 day−1 per °C).
Plant N2-fixation decreased with temperatures, while plant NO3

− assimilation increased.
However, the additional plant N uptake in NO3

−-assimilating plants was never allocated
to seeds and a significant quantity of N was still available at maturity in vegetative
organs, whatever the plant N nutrition pathway. Thus, we concluded that seed N
accumulation under high temperatures is sink limited related to a shorter seed-filling
duration and a reduced seed dry-matter accumulation rate. Consequently, sustaining
seed sink demand and preserving photosynthetic capacity of stressed plants during
the seed-filling period should be promising strategies to promote N allocation to seeds
from vegetative parts and thus to maintain crop N production under exacerbated
abiotic constraints in field due to the on-going climate change.

Keywords: high temperatures, Pisum sativum L, Seed N amount, N partitioning, 15N labeling, seed-filling,
plant N uptake
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INTRODUCTION

Temperature is one of the main environmental factors explaining
the variations in seed yield and quality in annual crop plants,
especially legumes (Wheeler et al., 2000; Peng et al., 2004;
Schlenker and Roberts, 2009; Asseng et al., 2011; Sita et al.,
2017). The observed global increase in temperature (1.0°C of
global warming above pre-industrial levels) is projected to
continue by 0.2°C per decade due to past and ongoing
emissions (including greenhouse gases) (IPCC, 2018). High
temperatures are thus expected to be more frequent during the
reproductive period of crops in temperate climate. They are
already a major cause of the recent yields stagnation and
projected decline due to the climatic change in Europe
(Brisson et al., 2010; Supit et al., 2012; Trnka et al., 2012).

Pea (Pisum sativum L.) is an important annual legume crop
grown in temperate regions for its high seed nitrogen (N)
concentration. Including legumes in rotations leads to
environmental benefits thanks to their unique capacity to
acquire N via atmospheric N2 symbiotic fixation (Jensen and
Hauggaard-Nielsen, 2003; Nemecek et al., 2008; Siddique et al.,
2012). However, to extend the pea crop area in Europe, pea yield
and seed protein concentration should be increased as well as
their stability, especially in fluctuating climatic conditions
(Siddique et al., 2012; Vadez et al., 2012).

Nitrogen yield (product of the yield and the seed N
concentration) is a crucial characteristic at harvest in pea
because seeds are a source of protein in animal and human
nutrition. During the reproductive phase, N partitioning is the
key process involved in the modulation of N yield. In most grain
crops and, above all, in legumes, newly acquired N is generally
low and insufficient to fulfill the high N demand of seeds,
consequently endogenous N previously accumulated in
vegetative parts is exported to seeds (Sinclair and Wit, 1976;
Salon et al., 2001; Malagoli et al., 2005; Schiltz et al., 2005; Kichey
et al., 2007; Barraclough et al., 2014). This remobilized N derives
from the proteolysis of essential leaf proteins involved in
photosynthesis, mostly Rubisco (Gregersen et al., 2008;
Masclaux-Daubresse et al., 2008). The resulting decrease in leaf
photosynthetic capacity may thus limit yield by shortening the
duration of the seed-filling period (Sinclair and Horie, 1989;
Munier-Jolain et al., 2008; Bueckert et al., 2015). Nitrogen
remobilization not only affects yield, but also N yield since N
remobilized from vegetative parts is the major contributor to
seed N in most grain crops (Malagoli et al., 2005; Schiltz et al.,
2005; Kichey et al., 2007; Araujo et al., 2012).

High temperatures affect plant phenology and carbon
metabolism through various processes such as hastening
reproductive development (Badeck et al., 2004; Barnabas et al.,
2008; Bueckert et al., 2015; Sita et al., 2017), reducing
photosynthesis (Guilioni et al., 2003; Kirschbaum, 2004; Sage and
Kubien, 2007; Pimentel et al., 2013; Tacarindua et al., 2013), and
reducing seed set (Guilioni et al., 2003; Djanaguiraman et al., 2013;
Edreira and Otegui, 2013; Tacarindua et al., 2013; Bueckert et al.,
2015). Conversely, impacts of high temperatures on assimilate
partitioning remain unclear, especially concerning their effect on
N remobilization to filling seeds. Some authors reported a decrease
Frontiers in Plant Science | www.frontiersin.org 2
inNremobilization fromvegetativeparts tofillinggrain in response
to heat stress in wheat (Triticum aestivum L.) (Tahir and Nakata,
2005) and in rice (Oryza sativa) (Ito et al., 2009). On the contrary,
other authors suggest that high temperatures increase N
remobilization from vegetative organs to seeds causing an
acceleration of senescence (Spiertz, 1977; Morison and Lawlor,
1999; Masclaux-Daubresse et al., 2008; Zhao et al., 2011; Wu et al.,
2012). Moreover, high temperatures may also affect N uptake of
legumes (mainly acquiredviaN2fixation), but unfortunately little is
known about temperate legume crops (Bordeleau and
Prevost, 1994).

Further investigations are thus needed to improve the
understanding of the effect of high temperatures on N
assimilate partitioning during the seed-filling period and to
quantify the impact on seed N yield in legumes. For this
purpose, the present study therefore assessed the response of
seed dry matter and N fluxes at the whole-plant level (seed N
accumulation, N remobilization, plant N uptake, and N amount
variation in vegetative organs) to contrasting temperature
ranging from permissive to heat stress during the seed-filling
period of pea (Guilioni et al., 2003). We compared N2-fixing and
NO3

−-assimilating plants, the first being more representative of
field conditions while the later allow the use of a 15NO3

−-labeled
nutrient solution to assess N fluxes.
MATERIALS AND METHODS

Plant Material and Growth Conditions
Three different glasshouse experiments (Exp. 1, 2, and 3) were
conducted. One single line of spring dry pea (cv. Baccara) has
been used, all plants were genetically identical. Baccara
characteristics are described in Bourion et al. (2002a; 2002b).
Pea seeds were sown in 5 L pots at a density of eight plants per
pot. Pots were filled with a 1:1 (v/v) mixture of sterilized
attapulgite and clay balls (diameter 2–6 mm) in Exp. 1 and 3
or with a mixture of 1/6 vermiculite, 1/3 siliceous sand, and 1/2
clay balls (diameter 2–6 mm) in Exp. 2. After seedling
establishment the plants were thinned to the four most
homogeneous per pot. Plant N nutrition relied exclusively on
NO3

− assimilation in Exp. 1 and 2 due to the high nitrate
availability of the nutrient solution (14 meq NO3

−, P, K, and
micronutrients; Table S1). In Exp. 3, pea plant N nutrition relied
exclusively on N2 fixation due to a nutrient solution without
nitrate (0 meq NO3

−, P, K, and micronutrients; Table S1) and an
inoculation. Seedlings were inoculated with 1ml of
Rhizobacterium leguminosarum bv. Vicieae, strain P221
(MIAE01212, 108 bacteria per plant), the strain usually used in
the laboratory because of its good efficiency in particular with cv.
Baccara (Voisin et al., 2013).

Photosynthetic active radiation was provided to the plants by
day light and mercury lamps (MACS 400 W; Mazda, Dijon,
France) with a 14-h day length. The air temperature was
recorded every 5 min in order to calculate the mean daily
temperature. Prior to the different temperature treatments, the
glasshouse temperature was maintained at a day/night
temperature of 24/16°C.
December 2019 | Volume 10 | Article 1608
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Temperature Treatments During the Seed-
Filling Period
The experiments aimed at testing the effect of temperature
during the seed-filling period. As peas are indeterminate plants
with a sequential flowering up the stem leading to a wide
heterogeneity of seed developmental stages, the temperature
treatments started at the beginning of seed filling of the last
reproductive node (BSL) and ended when seed physiological
maturity was reached at the whole-plant level, as described by
Larmure et al. (2005).

At BSL, different sets of pots were randomly transferred to
glasshouses maintained at the different day/night temperatures
until plant physiological maturity. The air temperature treatments
tested in Exp. 1, 2, and 3 ranged approximately from20/16°C to 35/
31°C day/night (Table 1). In Exp. 1 and 2 monitoring NO3

−-
assimilating plants, respectively four and three day/night
temperatures were chosen in order to form a range of seven
temperatures. In Exp. 3 monitoring N2-fixing plants, four day/
night temperatures were chosen in order to form a temperature
range similar to that tested for NO3�-assimilating plants.

The temperatures were modified gradually during two
acclimatization days to reach the temperature objectives of each
treatment. All temperature treatments are described in Table 1
including the average ofmean air temperatures actually observed in
the glasshouses (ranging from 18.4 to 33.2°C). Plants were
maintained at the maximum soil water capacity by providing
non-limiting water availability with an automatic watering system.

Plant Sampling and Measurements
Prior to the different temperature treatments, seed water
concentration was destructively measured at each node twice a
week to assess the date of BSL.

For each temperature treatment, randomly chosen pots were
harvested: (1) at the beginning of the temperature treatment, (2)
Frontiers in Plant Science | www.frontiersin.org 3
during the temperature treatment, and (3) after plant
physiological maturity (three pots per treatment for Exp. 1 or
five pots per treatment for Exp. 2 and 3). At each sampling date,
seeds, leaves, stems, pod walls, and roots were collected
separately. Dry matters, seed number, and water concentration
were determined as described by Larmure et al. (2005).

In Exp. 1 and 2, total N concentrations and 15N enrichments
were determined using a dual inlet mass spectrometer coupled
with a CHN analyzer (Sercon, ANCA-GSL-2020). In Exp. 3, total
N concentrations were determined with an elemental analyser
(Carlo Erba).

Determination of N Fluxes
Nitrogen fluxes (seed N accumulation, endogenous-N
remobilization, plant exogenous-N uptake, and N amount
variation in vegetative organs) were expressed in mg seed−1

day−1. This unit is adequate to depict N partitioning to seeds
in plants, because the individual seed N accumulation rate
depends on N available per seed (N from endogenous-
remobilization and exogenous sources) (Lhuillier-Soundélé
et al., 1999; Larmure and Munier-Jolain, 2004). Moreover, this
unit allows to compare N fluxes in plants differing in seed
number and vegetative parts biomass.
Plant 15N Labeling and Calculation of N Fluxes for
NO3�-Assimilating Plants
15N labeling sessionswithNO3

−-assimilating plants (Exp. 1 and 2)
were used to distinguish the remobilization of endogenous-14N
stored before labeling from the exogenous-15N uptake supplied by
15NO3

− nutritive solution with 5% 15NAPE (atom percent excess)
enrichment. Successive 3-day labeling sessions were conducted
during the temperature treatments as described by Schiltz et al.
(2005). Homogenous groups of six pots for Exp. 1 or 10 pots in
TABLE1 | Glasshouse experiments characteristics and seed number, individual seed dry weight, seed N concentration and amount, and vegetative organs N
concentration at maturity.

N nutrition
pathway

Mean temperature during the seed-filling
period

Seed
number at
maturity

Individual
seed dry
weight at
maturity

Seed N
concentration
at maturity

Seed N
amount at
maturity

Vegetative
organs N

concentration
at maturity

Day Night Mean (plant−1) (mg) (mg g−1) (mg plant−1) (mg g−1)
(°C) (°C) (°C)

Exp. 1 NO3
− 20.3 (±0.2) 15.9 (±0.2) 18.4 (±0.2) 18.1a 289a 40.2a 210a 23.5

Assimilation 25.0 (±0.1) 20.7 (±0.1) 23.2 (±0.1) 16.6a 261a 42.7b 185b 26.7
29.4 (±0.5) 26.3 (±1.2) 28.1 (±0.6) 18.7a 199b 46.8c 174bc 41.2
34.5 (±0.5) 31.4 (±0.5) 33.2 (±0.4) 15.1a 169c 47.4c 121de 43.8

Exp. 2 NO3
− 24.1 (±0.5) 18.3 (±0.4) 21.8 (±0.6) 9.1b 305a 38.4a 107ef 23.9

Assimilation 28.0 (±1.7) 22.8 (±1.5) 25.8 (±1.5) 8.9b 275a 40.7ab 100f 27.8
28.9 (±1.9) 23.9 (±2.3) 26.8 (±1.9) 8.6b 258a 43.2abc 96f 29.3

Exp. 3 N2 21.8 (±0.6) 17.2 (±0.5) 19.9 (±0.5) 18.4a 232ab 40.6ab 173bc 17.6
Fixation 27.8 (±1.1) 23.7 (±0.1) 26.1 (±0.6) 17.4a 210b 41.3ab 150cd 16.1

30.3 (±0.9) 26.3 (±0.5) 28.6 (±0.8) 18.1a 173bc 43.4ab 135de 16.3
32.8 (±1.7) 29.5 (±0.4) 31.3 (±1.5) 16.5a 147c 45.6bc 110ef 19.9
December
 2019 | Volume 1
Pea plants were exposed to temperature treatments during the seed-filling period, i.e. from the beginning of seed filling of the last reproductive node (BSL) to plant maturity. Mean
temperatures during the seed-filling period (with standard error) were assessed as the average of the daily air temperatures observed from BSL to maturity (14-h day length). Values with
the same letter are statistically not different at P = 0.05.
0 | Article 1608

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Larmure and Munier-Jolain High Temperatures and Seed N
Exp. 2 were constituted and randomly used for the each labeling
session. The first labeling session began at the end of the two
acclimatization days. In Exp. 1, three successive labeling sessions
were conducted for all temperature treatments, except for the
warmest treatment permitting only two labeling sessions due to an
earlier physiological maturity. In Exp. 2, two successive labeling
sessions were conducted for all temperature treatments. At the
beginning of each session, unlabeled control pots were harvested
(three pots for Exp. 1 or five pots for Exp. 2). During the session,
labeled pots were supplied during three days with the 15NO3

−

nutritive solution and harvested (three pots for Exp. 1 or five pots
for Exp. 2).

For NO3�-labeled assimilating plants, N fluxes were assessed
using the data of the labeling sessions. Rates of plant N uptake,
seed N accumulation, endogenous-N remobilization to filling
seeds, and variation of N amount in each vegetative organ during
a labeling session were calculated using the total N
concentrations and the 15N enrichment of the labeling nutrient
solution (5 %) as described by Schiltz et al. (2005). Each N flux
value represents the mean value of the two or the three 3-day
labeling sessions. Values resulted from themeasurement of three
(Exp. 1) or five (Exp. 2) biological replicates, each consisting of
one pot with four plants.

Calculation of N Fluxes for N2-Fixing Plants
For unlabeled N2-fixing plants (Exp. 3), rates of plant N uptake,
seed N accumulation, and variation of N amount in each
vegetative organ were assessed as the linear regressions
coefficients of each variable (plant N, seed N, and vegetative
organ N amounts, respectively) v. time (expressed in days).
Values resulted from the measurement of five biological
replicates, each consisting of one pot with four plants.
Endogenous-N remobilized to filling seeds could not be
determined in Exp. 3 using unlabeled N2-fixing plants.

Statistical Analysis
The experiments were conducted with completely randomized
design with three (Exp. 1) or five (Exp. 2 and 3) biological
replications. Each biological replication consisting of one pot
with four plants (one single line, cv. Baccara). Data were analyzed
using SigmaPlot® 12 (Systat Software, Inc.). All data obtained
were subjected to analysis of variance. Differences at P ≤ 0.05
were considered significant.
RESULTS

Seed Number, Individual Seed Dry Weight,
Seed N Amount, and Seed N
Concentration At Maturity
Seed number per plant at maturity was not significantly different
among temperature treatments within an experiment (Table 1).
Seed N amount at maturity and individual seed dry weight
decreased in response to increasing temperatures in all three
Frontiers in Plant Science | www.frontiersin.org 4
experiments (Table 1). On the contrary, seed N concentration
increased with the increase in temperature in all experiments
(Table 1). These changes of seed characteristics at maturity were
significant for Exp. 1 and 3, that explored a wider range of mean
daily air temperature during the seed-filling period than Exp. 2
(Table 1).

Seed number per plant at maturity was significantly different
between experiments: it was lower in Exp. 2 than in Exp. 1 and 3
(Table 1), as was total seed dry matter (Table S2). And thus, seed
N amount at maturity was also lower in Exp. 2 than in Exp. 1 and
3 (Table 1).

Response of Seed Dry Matter
Accumulation and Seed N Accumulation
to the Increase in Temperature
Individual seed dry matter accumulation during the seed-
filling period decreased linearly with increasing temperature
for both NO3

−-assimilating and N2-fixing plants (data from
the three experiments gathered) by 19.6 mg seed−1 per °C,
from 227.8 mg seed−1at 18.4°C to 26.5 mg seed−1 at 33.2°C
(R2 = 0.95) (Figure 1A). Individual seed dry matter
accumulation was assessed as the product of the seed-filling
duration and the rate of seed dry matter accumulation during
the temperature treatments. Both variables significantly
decreased with increasing temperature for the three
experiments and for both plant N nutrition pathways
(Figures 2A, B). The seed-filling duration was reduced
progressively by 0.8 day for each additional °C (Figure 2A).
Similarly, the rate of seed dry matter accumulation decreased
progressively by 0.8 mg seed−1 day−1 per °C from 19.8 mg
seed−1 day−1 at 18.4°C to 5 mg seed−1 day−1 at 33.2°C
(Figure 2B).

Individual seed N accumulation during the temperature
treatments decreased linearly with increasing temperature for
both NO3

−-assimilating and N2-fixing plants (data from the
three experiments gathered) by 0.76 mg seed−1 per °C from
10.3 mg N seed−1at 18.4°C to 0.55 mg N seed−1 at 33.2°C (R2 =
0.81) (Figure 1B). Seed N accumulation was assessed as the
product of the seed-filling duration and the rate of seed N
accumulation during the temperature treatments. Both
variables significantly decreased with increasing temperature
from 18.4°C to 33.2°C, for the three experiments and both
plant N nutrition pathways (Figures 2A, C). The rate of seed
N accumulation decreased progressively by 0.032 mg seed−1

day−1 per °C from 0.73 mg seed−1 day−1 at 18.4°C to 0.10 mg
seed−1 day−1 at 33.2°C (Figure 2C).

Effect of High Temperatures on the
Remobilization of Endogenous-N to Filling
Seeds by NO3

−-Assimilating Plants
Endogenous-N remobilization to filling seeds was measured on
labeled NO3

−-assimilating plants in Exp. 1 and 2. The
contribution of remobilized N to the rate of seed N
accumulation exceeded 82 % in both experiments with NO3

−-
assimilating plants (Exp. 1 and 2) for all temperatures
December 2019 | Volume 10 | Article 1608
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(Figures 2B and 3). The temperature increase dramatically
decreased the rate of N remobilization to filling seeds from
0.71 mg seed−1 day−1 at 18.4°C to 0 at 33.2°C (Figure 3). The
detrimental effect of increasing temperature suggests a full stop
of N remobilization at a temperature around 33°C (intersection
of regression and X-axis in Figure 3).

Effects of High Temperatures on the Plant
N Uptake by NO3

−-Assimilating and N2-
Fixing Plants
The rate of plant N uptake during the seed-filling varied between
0.11 and 0.64 mg seed−1 day−1 whatever the plant nutrition
pathway. The variation range of the plant N uptake rate for N2-
fixing plants was included in the variation range for NO3

−-
assimilating plants.
Frontiers in Plant Science | www.frontiersin.org 5
The rate of plant N uptake relying exclusively on NO3
−

assimilation significantly increased from 0.11 mg seed−1 day−1

at 18.4°C to 0.64 mg seed−1 day−1 at 33.2°C (Figure 4A). Plant N
uptake was not significantly modified by the small range of
increasing temperature from 21.8 to 26.8°C in Exp. 2, while it
increased linearly with increasing temperature from 18.4 to 33.2°
C in Exp. 1 (Figure 4A).

Conversely, for N2-fixing plants in Exp. 3 the temperature
increase significantly decreased the rate of N uptake in plants
FIGURE 1 | Decrease in individual seed dry matter accumulation (A) and
individual seed nitrogen accumulation (B) with increasing temperature of the
treatments during the seed-filling period. Pea plants were exposed to
temperature treatments from the beginning of seed filling of the last
reproductive node (BSL) to plant maturity. The vertical bars represent SE
(when larger than symbol). The data were fitted with a linear regression.
FIGURE 2 | Decrease in seed-filling duration (A), the rate of individual seed
dry-matter accumulation (B) and the rate of individual seed nitrogen-
accumulation (C) with increasing temperature of the treatments during the
seed-filling period. The vertical bars represent SE (when larger than symbol).
The data were fitted with a linear regression.
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following a linear relationship from 0.39 mg seed−1 day−1 at 19.9°
C to 0.13 mg seed−1 day−1 at 31.3°C (Figure 4B).

Effects of High Temperatures on the
Variation of the N Amount Within the
Different Vegetative Organs During the
Seed-Filling Period of NO3

−-Assimilating
and N2-Fixing Plants
A net export of N represents a decrease in the N amount of a
vegetative organ during the temperature treatment application
through the seed-filling period, while a net import represents an
increase in the N amount (Figure 5).

Considering NO3
−-assimilating plants (Exp. 1 and 2), the effect

of temperature on rates of the N amount variation during the seed-
filling period was significant only in leaves and to a lesser extent in
stems (Figure5A). In the leaves,Nfluxes switched fromNexport to
N import approximately above 26.3°C (Figure 5A). At the lowest
temperature (18.4°C) leaves and stems respectively exported 0.34
and 0.15mg seed−1 day−1, while at the highest temperature (33.2°C)
leaves and stems respectively imported 0.59 and 0.04 mg seed−1

day−1 (Figure 5A). Thus, the rate of theN amount variation during
the seed-filling period in leaves was by far the most responsive to
temperature among vegetative organs in NO3

−-assimilating plants
(Figure 5A).

Considering N2-fixing plants (Exp. 3), all vegetative organs
presented a net export of N whatever the temperature (Figure
5B). The temperature increase (from 19.9 to 31.3 °C) had no
significant effect on the rate of the N export whatever the
vegetative organ of N2-fixing plants (Figure 5B).

At maturity, N concentrations of vegetative organs (roots,
pod walls, stems, and leaves) were above 16 mg g−1, for both
NO3

−-assimilating and N2-fixing plants and whatever the
temperature treatment (Table 1).
Frontiers in Plant Science | www.frontiersin.org 6
DISCUSSION

The present study quantifies and explains, for the first time, the
effects of high temperatures on N partitioning to filling seeds in
pea, an annual legume crop. Plants differing in seed number
between experiments allow us to assess trends representative of
various field conditions. The wide range of mean air temperature
explored (from 18.4 to 33.2°C) is representative of the present
and future climatic conditions expected in field during the seed-
filling period of most annual crops in Western Europe (June-
July): mean monthly temperatures above 18°C and an increase in
the frequency, intensity, and duration of heat waves (Christensen
et al., 2007; Vliet et al., 2012; Xu et al., 2012). This temperature
range was similar for the two plant N nutrition pathways tested:
19.9 to 31.3°C for NO3

−-assimilating plants allowing to measure
endogenous fluxes and 18.4 to 33.2°C for N2-fixing plants, more
representative of field conditions. Temperature treatments
started when all seeds had begun to fill. At this stage, pea
FIGURE 3 | Decrease in the rate of endogenous-N remobilization from
vegetative parts (roots, pod walls, stems, and leaves) to filling seeds with
increasing temperature of the treatments during the seed-filling period. The
vertical bars represent SE (when larger than symbol). The data were fitted
with a linear regression.
FIGURE 4 | Opposite responses to temperature increase of exogenous-N
uptake rate in plants during the seed-filling period for NO3

−-assimilating plants
(A) and N2-fixing plants (B). The vertical bars represent SE. The data were
fitted with a linear regression.
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plants had no longer the possibility to adjust the number of seed
sinks to assimilate availability as earlier in their development
(Ney et al., 1993). Indeed, seed number per plant at maturity was
equal for all temperature treatments within an experiment.

Decrease in Seed Dry Matter and N
Accumulation With Increasing High
Temperature, Resulting Effects on Seed N
Concentration and N Yield
The rate of individual seed dry matter accumulation and seed-
filling duration in pea were reduced by 0.8 mg seed−1 day−1 and
0.8 days, respectively, for each additional °C of mean
temperature from 18.4 to 33.2°C. Therefore, individual seed
weight decreased with increasing temperature. These results
are consistent with previous reports of a reduction in seed
weight at high temperatures due to a decrease in the rate of
seed fill and an abbreviated seed-filling duration (Singletary et al.,
1994; Kim et al., 2011; Bueckert et al., 2015).
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Our study demonstrates that seed N accumulation was also
reduced by 0.76 mg seed−1 day−1 for each additional °C of mean
temperature from 18.4 to 33.2°C, for both NO3

−-assimilating and
N2-fixing plants. Results showed that, whatever the plant N
nutrition pathway, the decrease of seed N accumulation with
increasing temperature was due to the reduction of both the rate
of individual seedNaccumulationandtheseed-fillingduration.The
rate of individual seed N accumulation progressively decreased by
0.032mg seed−1 day−1 for eachadditional °C temperature from18.4
to 33.2°C. Therefore the amount of N accumulated in seeds
significantly decreased with increasing temperatures.

Seed N concentration at maturity is the ratio of seed N and
seed dry matter accumulation rates during the seed-filling
period. Our results demonstrate that the decrease of the
individual seed N rate with increasing high temperatures was
lower than that of the individual seed dry matter rate (0.032 and
0.8 mg seed−1, respectively). Thus seed N concentration
increased with increasing high temperatures. This result is
consistent with previous reports of higher seed N
concentration when temperatures rise during the seed-filling
period (Karjalainen and Kortet, 1987; Tashiro and Wardlaw,
1991; Wardlaw and Wrigley, 1994; Larmure et al., 2005; Farooq
et al., 2018).

In Europe, the current and projected warming rate in summer
(June to August) is between 4.5 and 6.8°C/century, higher than
for other seasons (Rowell, 2005; Xu et al., 2012; Terray and Boe,
2013). Consequently, the on-going climate warming has caused
and will continue to cause severe seed N yield losses in pea
without adaptation strategies. From our study, it can be expected
that at the field scale, seed N yield in pea could decrease by 1.8 gN
m−2 for each additional °C of mean temperature during the seed-
filling period, considering 2,400 seed m−2. From the perspective
of French pea production, it represents more than 13 % loss of
recent seed N yield (~13.8 gN m−2 calculated with the mean yield
and seed N concentration from 2013 to 2017: respectively 3.83
t·m−2 and 36.2 mgN·g−1; UNIP and ARVALIS, 2013, 2014;
Terres Inovia and Terres Univia, 2015, 2016, 2017). Our study
enables the identification of plant mechanisms involved in these
seed N yield losses in order to provide levers for improving
varieties tolerating heat stress.
Nitrogen Sources Availability Does Not
Explain the Decrease in Seed N Amount
With Increasing High Temperature
Nitrogen for pea seeds comes from two sources: current plant N
uptake and N remobilization from vegetative organs (Lhuillier-
Soundélé et al., 1999; Schiltz et al., 2005). Nitrogen availability
from plant sources is known to determine seed N accumulation
(Lhuillier-Soundélé et al., 1999; Martre et al., 2003; Larmure and
Munier-Jolain, 2004; Kinugasa et al., 2012) . However, our results
contradict the possibility of a decrease in seed N accumulation at
high temperatures resulting of a limitation in N supply.

Indeed, plant NO3
− assimilation provides higher N availability

under high temperatures (with non-limiting water availability) as
plant N uptake of NO3

−-assimilating plants significantly increased
with increasing temperature by 0.032 mg seed−1 day−1 for each
FIGURE 5 | Impacts of the temperature increase on the rate of net N export or
import in vegetative organs (roots, pod walls, stems, and leaves) during the seed-
filling period for NO3

−-assimilating plants (A) and N2-fixing plants (B). a
represents the linear regressions correlation coefficient of the net N export (or
import) in each vegetative organ v. temperature. NS, not significantly different
from 0 (P < 0.05). Values with different letters are statistically different at P = 0.05.
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additional °C temperature. NO3
− assimilation may have been

enhanced by the increase in plant transpiration with increasing
temperature under our no-limiting water conditions, because the
transportofwater andNsolutes fromroots toshoots isdrivenby the
evaporative loss of water (Salon et al., 2011). Indeed, the
transpiration of well-watered plants is expected to increase by 1–
5% for each additional °C temperature between 5 and 35°C
(Kirschbaum, 2004). Contrary to NO3

− assimilation, plant N2

fixation was reduced under high temperatures: plant N uptake of
N2-fixingplantsdecreasedwith increasing temperatureby0.022mg
seed−1day−1 for eachadditional °C temperature.High temperatures
maydecreaseN2-fixationefficiencybyaffectingnitrogenase activity
and/ornodule longevity (BordeleauandPrevost,1994;Hungriaand
Vargas, 2000), as no nodule production occurs during the seed-
filling period of N2-fixing plants (Voisin et al., 2003; Bourion
et al., 2007).

Despite the opposite effect of increasing temperature on plant
N uptake acquired via N2 fixation or NO3

− assimilation, a lot of
N was still available at maturity in vegetative organs (leaves,
stems, pod walls, and roots), whatever the plant N nutrition
pathway and the temperature treatment. Concentrations of
vegetative organs at maturity were all above 16 mg g−1, much
higher than the threshold of non-remobilizable N concentration
(Larmure and Munier-Jolain, 2004). This result suggests that the
shorter duration of seed-filling at high temperature was not due
to a reduction of photosynthetic activity caused by N
remobilization from vegetative organs to seeds. Indeed, the
present study using 15NO3

−-labeled N source clearly
demonstrates a gradual limitation of the rate of endogenous-N
remobilization from vegetative organs to filling seeds above 18.4°
C. N remobilization was nevertheless the major contributor to
the N filling of pea seeds whatever the temperature, consistently
with the previous observations at non-stressing temperatures in
oilseed rape (Brassica napus) and in pea (Malagoli et al., 2005;
Schiltz et al., 2005).

Sink Strength Determines Plant N Fluxes
to Filling Seeds Under Heat Stress
Conditions
Our results demonstrate a sink limitation of seed N
accumulation by high temperatures (from 18.4 to 33.2°C).
Actually, additional plant N uptake in NO3

−-assimilating
plants at high temperature provided by the xylem was never
allocated to seeds but stored in leaves and to a lesser extent in
stems. This findings are in line with the observation that the
majority of seeds N intake is attributable to phloem (Pate and
Hocking, 1978). This hypothesis of sink limitation at high
temperature is consistent with (1) the shorter duration of seed-
filling with increasing temperature observed in our study, that
leads to a progressive premature reduction of seed sink; (2) the
decrease of the individual seed dry matter accumulation rate with
increasing temperature that reduces seed sink; and (3) previous
studies reporting a decrease in photoassimilates translocation to
filling seeds at high temperatures due to reduced sink activity
rather than source activity (Ito et al., 2009; Suwa et al., 2010; Kim
et al., 2011). Early loss of individual seed sink activity at high
Frontiers in Plant Science | www.frontiersin.org 8
temperature may result from a reduction of the activity of starch
synthesis-related enzymes in the seed (Ito et al., 2009; Suwa et al.,
2010; Yamakawa and Hakata, 2010; Kim et al., 2011). At high
temperature, synthesis of hemicelluloses, cellulose, and starch in
grain declines while sucrose accumulates (Ito et al., 2009; Suwa
et al., 2010; Yamakawa and Hakata, 2010). While increasing
temperatures might impede phloem transport, they also might
hasten the preferential unloading of carbon (C) along the stem to
meet local increasing respiratory demand (Atkin and Tjoelker,
2003; Sevanto, 2014). The resulting enrichment in N relative to C
in the phloem sap reaching the seeds would explain its higher N
concentration (Layzell and Larue, 1982).

Definition of Plant Senescence Under Heat
Stress and Strategies to Develop Cultivars
Adapted to Higher Temperatures Due to
Climate Change
The original results of our study throw a new light on the regulation
of N remobilization and definition of senescence in plants
submitted to abiotic stress, such as heat-stress. At moderate
temperatures senescence is linked to N remobilization to filling
seeds, a mechanism to compensate the limitation of N uptake by
roots (Hebbar et al., 2014). On the other hand, this research
established that the heat-induced senescence (noticeable through
the reduction of seed-filling duration) is surprisingly not associated
with an acceleration of N nutrient remobilization to filling seeds.
Under high temperature, shorter duration of seed-filling with
increasing temperature may more likely result from alterations in
various photosynthetic attributes and carbon budget than from
plant N resources remobilization to cope with the heat stress
(Wahid et al., 2007; Mathur et al., 2014).

Our results demonstrate that seed N yield processes are and
will continue to be very frequently sink-limited by high
temperatures during the seed-filling period in the warming
climate context. It is worth noting that under the current and
future climate change context, the increased frequency of early
heat waves are and will be often associated to water deficit in
field, resulting from either decreased precipitation and/or
increased evaporation (Dai, 2013; Sehgal et al., 2018). The
combined effects of water deficit and heat-stress on crops are
more severe (Sehgal et al., 2018). Both abiotic constraints were
previously reported to enhance assimilate remobilization from
source to sink (Pic et al., 2002; Sehgal et al., 2018). On the
contrary, our study using labeled nitrate demonstrates that N
assimilate remobilization was reduced and most likely sink-
limited under heat stress. Consequently, sustaining seed sink
demand and preserving photosynthetic attributes of stressed
plants during the seed-filling period should be promising
strategies to maintain crop N production under exacerbated
combined heat and water-deficit stresses in field due to the on-
going climate change. Such improvements may especially require
further investigations in order to elucidate how sink activity
could be modulated at high temperature and water deficit. While
water deficit can be mitigated by irrigation (Bueckert et al., 2015),
few cultural practices are available to leverage high temperatures
stress. A better understanding of mechanisms controlling C and
December 2019 | Volume 10 | Article 1608
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N allocation to sinks, are required to build robust
sustainable practices.
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