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Mechanical injury or wounding in plants can be attributed to abiotic or/and biotic causes.
Subsequent defense responses are either local, i.e. within or in the close vicinity of affected
tissue, or systemic, i.e. at distant plant organs. Stress stimuli activate a plethora of early
and late reactions, from electric signals induced within seconds upon injury, oxidative
burst within minutes, and slightly slower changes in hormone levels or expression of
defense-related genes, to later cell wall reinforcement by polysaccharides deposition, or
accumulation of proteinase inhibitors and hydrolytic enzymes. In the current study, we
focused on the production of reactive oxygen species (ROS) in wounded Arabidopsis
leaves. Based on fluorescence imaging, we provide experimental evidence that ROS
[superoxide anion radical (0,"7) and singlet oxygen ('0,)] are produced following
wounding. As a consequence, oxidation of biomolecules is induced, predominantly of
polyunsaturated fatty acid, which leads to the formation of reactive intermediate products
and electronically excited species.

Keywords: Arabidopsis, confocal microscopy, fluorescent probes, mechanical injury, wounding

INTRODUCTION

In biological systems, the metabolism is affected by non-physiological conditions which lead to
stress reactions (Foyer et al, 1994; Cramer et al, 2011). The stress conditions in plants are
categorized as biotic or abiotic; the former include herbivory, viral, bacterial, and fungal infections
and damage by pests while the later include extreme environmental factors such as temperature, UV
radiation, light, water availability, pH, salinity, toxic chemicals, burning, and mechanical injury
among others (Garces et al., 2001; Johansson Jankanpaa et al., 2013; Kasai et al., 2019). The stressors
can act independently or in various combinations (Savatin et al., 2014).

In plants, active i.e. biochemical defense responses have been well known to occur under the
condition of wounding. Activation of local response to repair the damages occurs via stress-
responsive gene, oxidative burst linked with cell wall reinforcement, deposition of callose, suberin,
synthesis of various phenolics, defensive proteins, lectins, accumulation of phytoalexins etc.
(Reymond et al., 2000; Savatin et al., 2014; Rehrig et al., 2014). The defense responses are known

Abbreviations: ROS, reactive oxygen species; CCD, charge-coupled device; O, superoxide anion radical; LOOH, lipid
hydroperoxide; '0,, singlet oxygen.
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to be mediated by jasmonic acid, salicylic acid, abscisic acid,
brassinosteroids, and strigolactones, ethylene (Verma et al.,
2016). In Arabidopsis, several genes have been shown to be
induced by wounding as summarized by Reymond and co-
workers (Reymond and Farmer, 1998; Reymond et al., 2000).
Plant response to wounding results from a complex network of
physiological responses and depends on the nature of the threat
and developmental stage of the plant (Taylor et al., 2004).

In photosynthetic organism, generation of reactive oxygen
species (ROS) is a quite universal and fast defense mechanism,
known to be associated with various stresses both in vivo and in
vitro (Yadav and Pospisil, 2012; Prasad et al., 2015; Prasad et al.,
2016; Prasad et al., 2017a; Prasad et al., 2018; Kumar et al., 2019),
in both local as well as systemic responses (Grant and Loake,
2000; Slesak et al., 2007). In tomato, it has been observed that
hydrogen peroxide (H,O,) was produced at the site within an
hour of wounding and its level was enhanced even in distant part
(upper unwounded leaves) in the following 4 to 6 h (Orozco-
Cardenas and Ryan, 1999). The wounding of cells stimulates the
influx of ions into the cytoplasm which in turn activates MAP
kinases which are translocated into the nucleus thus activating
genes involved in plant defense (Scheme 1). Furthermore, the
influx of Ca®" activates the production of superoxide anion
radical (O,"") by NADPH-dependent oxidase (Scheme 1).
Under pathogen attack or following wounding, ROS have also
been known to play a key role as signaling molecules (Mittler
et al., 2011; Suzuki and Mittler, 2012).

Reactive oxygen species in high concentration can be toxic,
therefore the plants have evolved an antioxidant system which
includes the enzymatic and non-enzymatic antioxidant system
(Foyer and Shigeoka, 2011; Bela et al., 2015). Under the

circumstances, when production of ROS and antioxidant systems
are in homeostasis, the ROS and intermediate products are known
toactas signaling molecules (Waszczak etal., 2018 ; Kreslavski et al.,
2012; Dietz et al., 2016; Czarnocka and Karpinski, 2018). The
polyunsaturated fatty acids (PUFA’s) are the main target of ROS
due to the presence of unsaturated double bonds. (Roach et al.,
2015). The HO® and the O," are known to react with PUFA
methylene groups leading to the formation of lipid alkyl and lipid
peroxyl radicals, lipid hydroperoxides (LOOH), lipid alkoxyl
radicals, and conjugated dienes (Smirnoff, 2000; Devasagayam
et al., 2003; Saeidfirozeh et al, 2018). The peroxyl radicals are
reactive intermediates and are known to be associated with the
propagation part of the lipid peroxidation (Miyamoto et al., 2007).
The lipid peroxidation in the biological membranes is the most
obvious symptoms visible in plants as an outcome of oxidative stress
in plants (Jarvis, 2011; Kumar et al., 2018; Zhang et al., 2018). The
high energy intermediates (dioxetanes and tetroxide) formed
during the oxidative radical reactions decompose to triplet
carbonyls (*C=0*) which can then transfer triplet energy to
molecular oxygen creating 'O, (Di Mascio et al., 1992; Miyamoto
etal,, 2003; Miyamoto et al., 2007; Miyamoto and Di Mascio, 2014;
Miyamoto et al., 2014; Cifra and Pospisil, 2014; Pospisil et al., 2019).

Various methods have been used for the detection of ROS and
oxidative stress which include the use of electron paramagnetic
resonance spectroscopy using various spin traps and spin probes,
optical spectroscopy using fluorescent and chemiluminescent
probes, electrochemical biosensors, chromatography etc.
(Zhang et al., 2018). Within the frame of the current study, we
have attempted to visualize the formation of O,”, LOOH, and
'0, as a result of the mechanical injury in Arabidopsis leaves
using confocal laser scanning microscopy.
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SCHEME 1 | Schematic representation of the induction of mechanical injury in Arabidopsis leaves. The polyunsaturated fatty acids within the plasma and
chloroplast membranes are shown to be oxidized in reactions subsequently leading to the formation of reactive oxygen species (O,°~ and '0,) and LOOH. The lower
panel shows a comprehensive summary of reaction mechanism leading to expression of defense response genes and details on usage of fluorescent probes utilized
in confocal laser scanning microscopy.
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MATERIALS AND METHODS

Fluorescent Probes and Chemical
Reagents

Fluorescent probe, dihydroxyethidium (DHE) was purchased
from Sigma Aldrich GmbH (Germany); Spy-LHP from
Dojindo Molecular Technologies Inc. (Rockville, MD, USA)
and Singlet Oxygen Sensor Green (SOSG) from Molecular
Probes Inc. (Eugene, OR, USA). All other chemicals of
analytical grade were purchased from Sigma Aldrich
GmbH (Germany).

Arabidopsis Plants

Arabidopsis thaliana WT (Columbia-0) was obtained from the
Nottingham Arabidopsis Stock Centre (NASC), University of
Nottingham (Loughborough, United Kingdom). Plants were
grown in Fytoscope FS-WI-HY (Photon Systems Instruments,
Drasov, Czech Republic) using a peat substrate (Klasmann,
Potground H) following 4 days of soaking of seeds in distilled
water. The plants were grown 6 weeks under the following
conditions: photoperiod of 8/16 h light/dark; photon flux
density 100 pumol photons m™* s™'; temperature: 22°/20°C light/
dark and relative humidity: 60%.

Sample Preparation and Confocal Laser
Scanning Microscopy

Mechanical injury of Arabidopsis leaves was carried out using a
sharp razor blade. Leaf pieces of ca 5 x 5 mm were cut out in
HEPES buffer (pH 7.5) and infiltrated with fluorochromes using
a syringe (see protocol in references) (Kumar et al., 2018; Prasad
et al,, 2018). Following 30 min incubation in desired probe
(100uM/250uM DHE, 50 uM Spy-LHP, or 50 uM SOSG),
tissues were transferred into HEPES buffer on a glass slide and

visualized by Fluorview 1000 confocal laser scanning microscope
(Olympus Czech Group, Prague, Czech Republic). The
arrangement of chloroplasts within the mesophyll cells was
visualized (Figure 1). The image shows the spatial distribution
of chloroplasts within mesophyll of Arabidopsis leaves kept
under diffused green light for 90 min prior to imaging. The 2.5
projection represents a series of forty optical sections (x, y)
sequentially acquired at z = 1 um. It can be observed that the
chloroplasts are distributed on the cell surface which is a
characteristic behavior under weak light conditions to absorb
more light (Jarvis, 2011).

The excitation of DHE, SPY, and SOSG was performed using
a 488 nm line of an argon laser and the emission was detected by
a 505-605 nm filter for DHE, 505-550 nm filter for Spy-LHP and
505-525 nm filter for SOSG (Figure 2I). The cell morphology
was visualized using 405nm diode laser excitation by
transmitted light detection module and differential interference
contrast (DIC) filters. Chloroplasts were visualized based on
autofluorescence of photosynthetic pigments with excitation by a
543 nm helium-neon laser, and emission recorded with a 655-
755 nm bandpass filter. The proper intensity of lasers was set
according to unstained samples at the start of each experiment
(Sedlarova et al., 2011). All confocal experiments were done in
several replicates and the representative images have
been presented.

Measurement Setup and Charge Coupled
Device Imaging

It is imperative to control any kind of interference from the stray
photons and thus a dark room specifically designed for
measuring ultra-weak photon emission as described in our
previous studies was utilized (Prasad and Pospisil, 2013). The
ultra-weak photon emission imaging was performed using a

FIGURE 1 | Spatial distribution of chloroplasts within mesophyll of Arabidopsis leaves kept under diffused green light for 90 min prior to imaging. The 2.5 projection
represents a series of forty optical sections (x, y) sequentially acquired at z = 1 um.
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FIGURE 2 | 1. Principles of ROS detection and fluorochrome spectral properties (A) DHE oxidation by O,"~ forming 2-OH-E* providing fluorescence with excitation/
emission maxima of ~500/590 nm. (B) SPY-LHP oxidation by LOOH forming SPY-LHPOx providing fluorescence with excitation/emission maxima of ~524/535 nm.
(C) SOSG oxidation by 'O, forming fluorescent SOSG-EP with excitation/emission maxima of ~504/525 nm). Il. Superoxide anion radical imaging in cells of WT
Arabidopsis leaves detected by confocal laser scanning microscope. The panels (from left to right) represents the Nomarski DIC (A, E) chl fluorescence (B, F) DHEox
fluorescence (C, G) and combined (chl fluo + DHEox) (D, H) channel following 30 min of incubation in DHE [100 uM (upper panel)/250 uM (lower panel)] in the
presence of 0.01% DMSO. The margins indicate the site of mechanical injury visualized under objective of of 20x (upper panel) and 40x (lower panel). The
fluorescence signal was visualized with an excitation (Aex) and emission (hem) wavelengths of 488 nm and 505-605 nm respectively. Chloroplasts imaging was
achieved with laser excitation at 543 nm and emission recorded at 655-755 nm.

highly sensitive CCD camera VersArray 1300B (Princeton
Instruments, Trenton, NJ, USA). The CCD camera was cooled
down to —110°C using a liquid-nitrogen cooling system to reduce
the dark current. The measurement was done in the image format
of 1,340 x 1,300 pixels and the data correction was done by
subtracting the background prior to measurement. Other
experimental conditions were: spectral sensitivity, 350 to 1,000
nm; readout speed, 100 kHz; gain, 2; and accumulation time: 20
min. All other settings were as in Prasad and Pospisil (Prasad and

Pospisil, 2013). In order to avoid any kind of intervention of
delayed luminescence, the Arabidopsis plant was dark-incubated
for approximately 2 h. The mechanical injury was induced using
a sharp blade in the presence of diffused green light with
precaution not to exert any external mechanical pressure on
other parts of the Arabidopsis plant/leaves. The data
accumulation was started 20 min after the mechanical injury.
All measurements were done in at least three replicates and the
representative images have been presented.
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RESULTS AND DISCUSSION

Wounding and Superoxide Anion Radical
Imaging

The O," formation in mechanically injured Arabidopsis leaves
was studied using the fluorescent probe, DHE using confocal
laser scanning microscopy. Figure 2II and Supplementary Data
1 represent Nomarski DIC [11I (A), (E) and S1(A)], chlorophyll
fluorescence [11I (B), (F) and S1(B)], DHEOx fluorescence [11I
(C), G and S1(C)], and a merge of chlorophyll and DHEOx
fluorescence channel images [11I (D), (H) and S1(D)] measured
in a mechanically injured Arabidopsis leaf. The presented result
shows that there is a formation of O,” on the cut edge of
Arabidopsis leaves [1II (C) and 1II (G)]. It can be clearly
observed that in cells succeeding the mechanical injury, the
DHEOx fluorescence is from the cellular volume of the cells
which apparently includes the chloroplast, plasma membrane,
and the cytoplasm. It is believed that in these cells, there is an
overall higher impact due to mechanical injury. Images of the
merged channels depict that a high extent of both chloroplast/
plasma membrane integrity is maintained, however, some non-
visible disturbance in the cellular integrity can be taken into
consideration which might have resulted in DHEOx fluorescence
observed in the cytoplasm [1II (C) and 1II (G)]. In addition to
this, it can also be hypothesized that the DHEOx fluorescence
observed in the cytoplasm can be a consequence of potential
diffusion of O, because of the porous membrane formed as a
result of the mechanical injury. To validate the production of O,"
~, the effect of superoxide dismutase (SOD), which leads to the
dismutation of O, to H,0, on ultra-weak photon emission was
tested and has been described later.

Dihydroxyethidium is a widely used ethidium-based, redox-
sensitive fluorescent probe which is known to passively diffuse into
cells and commonly used to detect cytosolic O,” (Wojtala et al,
2014a). It has been shown to be oxidized by O, to form 2-
hydroxyethidium (2-OH-E') emitting at 590 nm [Figure 2I]
(Zielonka and Kalyanaraman, 2010). Histochemical staining
using nitroblue tetrazolium (NBT) was used in the past to detect
O, in wounded leaves which is in agreement with our study
showing the formation of O, in and around the vicinity of the
mechanically injured site (Wohlgemuth et al., 2002; Morker and
Roberts, 2011). Dihydroxyethidium has been the most commonly
used fluorescent probe for the detection of O, although it was
shown to undergo unspecific oxidation by ONOO- or HO" into
ethidium (Wojtala et al., 2014b). Therefore, it is highly
recommended that precise control experiments should be
performed to avoid any misinterpreting of results.

Wounding and Lipid Hydroperoxide
Imaging

The LOOH formation in mechanically injured Arabidopsis
leaves was monitored using a fluorescent probe, Spy-LHP. Spy-
LHP is a swallow-tailed perylene derivative predominately used
for live cell imaging of phospholipid peroxide (Figure 2I) (Soh et
al., 2006; Soh et al., 2007). Spy-LHP is highly selective to LOOH
and does not react with H,0,, HO", O,"", nitric oxides,

peroxynitrite, and peroxyl radicals. Figure 3I shows Nomarski
DIC [3I(A) and 3I(E)], chlorophyll fluorescence [3I (B) and 3I
(F)], Spy-LHPOx fluorescence [3I (C) and 3I (G)], and a merge
of chlorophyll and Spy-LHPOx fluorescence channel images [3I
(D) and 31 (H)] measured in Arabidopsis leaves. The observation
that the localization of chlorophyll fluorescence overlaps
precisely with the localization of Spy-LHPOx fluorescence
confirms that LOOH is formed mostly in chloroplasts [3I (D)
and 31 (H)]. It can also be clearly seen that only one layer of the
cells at the cut edge of the leaf has a brighter green fluorescence in
comparison to DHEOX fluorescence where a few adjoining cell
layers show the fluorescence signal from cellular volume
(Figures 2II, 31, and Supplementary Data 1). Hence, it can be
stated here that Spy-LHPOx fluorescence signal is even more
localized close to the site of mechanical injury which can be
justified by the fact that LOOH is comparatively larger
intermediates compared to O,". Our results presented on
Arabidopsis leaves/Chlamydomonas cells with the employment
of lipoxygenase mutant/use of inhibitors of lipid peroxidation
also favors the conclusion that lipid hydroperoxide formation is
prevalent in photosynthetic samples (Supplementary Data 2)
(Prasad and Pospisil, 2011; Prasad et al., 2017b).

Spy-LHP was developed by Soh and co-workers as a fluorescent
probe for the detection of live-cell imaging of lipid hydroperoxide
(Soh et al., 2006). It has been one of the most widely used probe for
this purpose, mostly in photosynthetic cells. We have recently
tested Spy-LHP usability for detection of protein hydroperoxide
(Pathak et al., 2017); however, its selectivity in presence of protein
and lipid hydroperoxides mixture is presumed to be inclined
toward the lipid hydroperoxides. Spy-LHP is still regarded as the
most appropriate probe which should be considered for
investigating the LOOH. However, it suffers from the limitation
due to its limited solubility in a low cytotoxic organic solvent such
as ethanol and dimethyl sulfoxide (DMSO) and high
hydrophobicity (Yamanaka et al.,, 2012).

Wounding and Singlet Oxygen Imaging

To visualize the 'O, formation in the mechanically injured leaves
of Arabidopsis leaves, the fluorescent probe, SOSG was used.
Singlet Oxygen Sensor Green is known for its high selective
properties for 'O, and does not show any appreciable response to
HO’ or O,"". Under normal conditions, SOSG exhibits weak blue
fluorescence, but in the presence of 'O,, it emits green
fluorescence with the maximum wavelength at 525 nm (Figure
2I). Figure 31II demonstrates the Nomarski DIC images [31II (A)
and 3II (E)], the chlorophyll fluorescence [3II (B) and 3II (F)],
the SOSG endoperoxide (SOSG-EP) fluorescence [31I (C) and 311
(G)], and the merge of chlorophyll and SOSG-EP fluorescence
channels images [31II (D) and 31I (H)] measured in mechanically
injured Arabidopsis leaves. It can be clearly observed that the
signals from both channels overlap. It is evident that 'O, has
limitation pertaining to diffusion which can be because of its
shorter half-life; however, it is well known to bear signaling role
(Kochevar, 2004; Kim et al., 2008; Triantaphylides and Havaux,
2009) mediated via the local and systemic responses. Our results
were further validated using ultra-weak photon emission
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FIGURE 3 | I. Imaging of lipid hydroperoxide within Arabidopsis leaves by confocal microscopy. The panels (from left to right) represent DIC (A, E); chlorophyll fluorescence
(B, F); Spy-LHPOX fluorescence (C, G) and combined channel (chl fluorescence + Spy-LHPOX) (D, H) following 30 min of incubation in 50 uM Spy-LHP under objective of
20x (upper panel) or 40x (lower panel). The formation of LOOH was measured in Arabidopsis leaves with excitation (Aex) and emission (Aem) wavelength of 488 nm and
505-550 nm, respectively. Il. Confocal microscopy imaging of singlet oxygen formed during mechanical injury of Arabidopsis leaves. The panels represent (from left to right):
DIC (A, E); chl fluorescence (B, F) SOSG-EP fluorescence (C, G) and combined channel (chl fluorescence + SOSG-EP) (D, H) under 20x and 40x objective following 30 min
of incubation in 50 uM SOSG. The SOSG-EP fluorescence was excited by 488 nm and emission recorded at 505-525 nm.

imaging in the presence of 'O, scavenger histidine and has been
described later.

Singlet Oxygen Sensor Green has been used during the past
decade and has faced criticism predominantly when used under
exogenous light illumination (Hideg, 2008; Ragas et al., 2009).
However, recently we have discussed (Sedlarova and Luhova,
2017) and presented a comprehensive study on the limitation
associated with its usage for sensitive and selective detection of
10, (Prasad et al., 2018). Nevertheless, considering the concerns,
it is critical to combine methods especially when in-vivo/ex-vivo
experiments utilizing fluorescent probes are performed since

biological systems have complex cellular environment where
actual redox state can interfere with the ongoing signal leading
to false positive result or cross-sensitivity to cellular antioxidants
that compete with the ROS probes thereby leading to false
negative results (Ortega-Villasante et al., 2018).

Wounding, Oxidative Radical Reaction,
and Ultra-Weak Photon Emission

Mechanical injury in Arabidopsis is known to generate triplet
excited carbonyls (*C=0*) through induction of oxidative radical
reactions. Figure 4 shows a photograph (A) and two-dimensional
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imaging of ultra-weak photon emission measured in Arabidopsis
plant. The parts of the Arabidopsis leaves marked with a red circle
indicates the mechanical injury. It can be clearly seen that ultra-
weak photon emission was considerably enhanced as compared to

non-wounded parts of the leaves. Based on the spatial distribution,
higher intensity of ultra-weak photon emission is only prevalent at
the injured site leading to the conclusion that the oxidative radical
reaction is restricted only to the site of mechanical injury which is

with an accumulation time of 20 min.

FIGURE 4 | Two-dimensional imaging of the ultra-weak photon emission from the plant of Arabidopsis thaliana. The figure shows photographs (A) and the
corresponding two-dimensional images of ultra-weak photon emission recorded by a highly sensitive CCD camera (B). The Arabidopsis plant was kept in the
complete darkness for a period of 2h prior to the measurement. Ultra-weak photon emission imaging was measured 20 min after wounding (indicated by red circles)

-histidine +histi'dine

-histidine *~  +histidine

FIGURE 5 | Ultra-weak photon emission imaging measured in mechanical injured Arabidopsis leaves in the absence and presence of 10 mM histidine (upper panel)
and 400U/ml superoxide dismutase (SOD) (lower panel). The integration time of 30 min was kept and all other experimental conditions as in Figure 4.

Frontiers in Plant Science | www.frontiersin.org 7

January 2020 | Volume 10 | Article 1660


https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Prasad et al.

ROS as Response to Wounding

in good agreement with the presented data about ROS formation
from confocal laser scanning microscopy. It can be suggested that
the ROS are generated as a consequence of wounding in
Arabidopsis leaves. The overall photon emission observed at the
site of injury can be attributed to ROS produced and consecutive
oxidative radical reactions which led to the formation of
electronically excited species. The ultra-weak photon emission
observed in Figure 4 can be attributed to the emission from
>C=0* and singlet chlorophylls ('Chl*) formed from excitation
energy transfer from *C=0* to chlorophylls and/or 'O, dimol
emission (Scheme 1) (Prasad et al., 2017). The results were
validated using histidine and SOD (Figure 5).

Several challenges must be overcome during the usage of
fluorescent probes in confocal laser scanning microscopy which
include the short half-life of ROS, cross-reactivity of fluorescent
probes, uneven uptake of probes by cells within tissues, dose-
dependent toxicity (either of the fluorescent compounds and/or
solvent). Besides problems, the use of fluorescent probes is among
the best methods to sensitively and selectively identify the reactive
species and intermediates. Since the ROS and related redox changes
modulate the signaling event, the use of fluorescent probes is
considered beneficial in understanding signaling in plants.

DATA AVAILABILITY STATEMENT
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