
Frontiers in Plant Science | www.frontiersin

Edited by:
Pierre-Emmanuel Courty,

INRA Centre Dijon Bourgogne
Franche-Comté, France

Reviewed by:
Ralph Panstruga,

RWTH Aachen University,
Germany

Hannah Kuhn,
RWTH Aachen University,

Germany
Brigitte Mauch-Mani,

Université de Neuchâtel,
Switzerland

*Correspondence:
Alga Zuccaro

azuccaro@uni-koeln.de

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to
Plant Microbe Interactions,

a section of the journal
Frontiers in Plant Science

Received: 09 August 2019
Accepted: 28 November 2019
Published: 16 January 2020

Citation:
Hilbert M, Novero M, Rovenich H,
Mari S, Grimm C, Bonfante P and

Zuccaro A (2020) MLO Differentially
Regulates Barley Root Colonization

by Beneficial Endophytic
and Mycorrhizal Fungi.

Front. Plant Sci. 10:1678.
doi: 10.3389/fpls.2019.01678

ORIGINAL RESEARCH
published: 16 January 2020

doi: 10.3389/fpls.2019.01678
MLO Differentially Regulates Barley
Root Colonization by Beneficial
Endophytic and Mycorrhizal Fungi
Magdalena Hilbert1†, Mara Novero2†, Hanna Rovenich3†, Stéphane Mari4,
Carolin Grimm1, Paola Bonfante2 and Alga Zuccaro1,3*

1 Department of Organismic Interactions, Max Planck Institute of Terrestrial Microbiology, Marburg, Germany, 2 Department
of Life Sciences and Systems Biology, University of Turin, Turin, Italy, 3 Botanical Institute, Cluster of Excellence on Plant
Sciences (CEPLAS), University of Cologne, Cologne, Germany, 4 BPMP, Univ Montpellier, CNRS, INRAE, Montpellier
SupAgro, Montpellier, France

Loss-of-function alleles of MLO (Mildew Resistance Locus O) confer broad-spectrum
resistance to foliar infections by powdery mildew pathogens. Like pathogens, microbes
that establish mutually beneficial relationships with their plant hosts, trigger the induction
of some defense responses. Initially, barley colonization by the root endophyte Serendipita
indica (syn. Piriformospora indica) is associated with enhanced defense gene expression
and the formation of papillae at sites of hyphal penetration attempts. This phenotype is
reminiscent of mlo-conditioned immunity in barley leaf tissue and raises the question
whether MLO plays a regulatory role in the establishment of beneficial interactions. Here
we show that S. indica colonization was significantly reduced in plants carrying mlo
mutations compared to wild type controls. The reduction in fungal biomass was
associated with the enhanced formation of papillae. Moreover, epidermal cells of S.
indica-treated mlo plants displayed an early accumulation of iron in the epidermal layer
suggesting increased basal defense activation in the barley mutant background.
Correspondingly, the induction of host cell death during later colonization stages was
impaired in mlo colonized plants, highlighting the importance of the early biotrophic
growth phase for S. indica root colonization. In contrast, the arbuscular mycorrhizal
fungus Funneliformis mosseae displayed a similar colonization morphology on mutant and
wild type plants. However, the frequency of mycorrhization and number of arbuscules was
higher in mlo-5 mutants. These findings suggest that MLO differentially regulates root
colonization by endophytic and AM fungi.

Keywords: biotrophy, cell death, fungal-root interactions, mutualism, cell wall appositions, Perls/DAB, VPE activity,
susceptibility gene
INTRODUCTION

Plants establish diverse beneficial interactions with fungi from different taxa. Root endophytes
belonging to the order Sebacinales establish long-lasting beneficial relationships with a broad range
of plant species (Weiss et al., 2016). Root colonization by members of this order results in enhanced
growth (Varma et al., 1999; Waller et al., 2005; Serfling et al., 2007; Ghimire et al., 2009; Franken,
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2012), improved tolerance to abiotic stress (Waller et al., 2005;
Baltruschat et al., 2008; Sherameti et al., 2008; Ghimire and
Craven, 2011), as well as increased resistance to pathogens (Stein
et al., 2008; Waller et al., 2008; Lahrmann et al., 2015; Sarkar
et al., 2019). In some cases nutrient status has been reported to
play a role in the interaction of the model sebacinoid fungus
Serendipita indica with some plant species (Shahollari et al.,
2005; Sherameti et al., 2005; Nautiyal et al., 2010; Yadav et al.,
2010; Kumar et al., 2012). However, S. indica colonization of
Nicotiana attenuata and barley had no effect on host phosphorus
(P) and nitrogen (N) content (Barazani et al., 2005; Achatz et al.,
2010), suggesting that nutrient exchange is not central to the
beneficial effects conferred by sebacinoid fungi. S. indica
colonizes the rhizodermis and outer root cortex (Deshmukh
et al., 2006; Jacobs et al., 2011; Weiss et al., 2016). Following an
initial biotrophic growth phase, during which the fungal hyphae
remain surrounded by a plant-derived membrane, S. indica
transitions to cell death-associated colonization that does not
result in host disease (Deshmukh et al., 2006; Jacobs et al., 2011;
Zuccaro et al., 2011; Lahrmann and Zuccaro, 2012; Qiang et al.,
2012; Lahrmann et al., 2013).

Like sebacinoid fungi, arbuscular mycorrhizae (AM) establish
beneficial interactions with many plant species (Bonfante and
Genre, 2010). AM are obligate biotrophs that rely on their plant
hosts as carbon sources in exchange for soil nutrients including P
and N (Parniske, 2008). Additionally, AM colonization results in
increased plant biomass and confers enhanced resistance to
stress and pathogen infection (Khaosaad et al., 2007; Liu J
et al., 2007; Pozo and Azcon-Aguilar, 2007). Following the
mutual recognition between plant and microbe, AM form
specialized hyphae, called hyphopodia, that adhere to the root
epidermal surface where penetration hyphae emerge. In the
inner root cortex, intracellular hyphae then establish so-called
arbuscules, which represent the active interface for nutrient
exchange (Genre et al., 2008).

The successful establishment of AM symbioses is genetically
controlled by the ancestral common symbiosis pathway (CSP).
In legumes, this pathway is required for the establishment of AM
as well as root nodule symbiosis with rhizobacteria (Kistner et al.,
2005; Gutjahr, 2014; Svistoonoff et al., 2014). In contrast, S.
indica colonization and development is independent of Lotus
japonicus and Arabidopsis thaliana CSP genes, suggesting that
independent host pathways control AM symbiosis and
endophytism (Banhara et al., 2015). However, in both cases
transient and weak activation of defense responses have been
reported during the early phases of colonization that are
effectively suppressed by the fungi as the symbioses progress
(Harrison, 2005; Schäfer et al., 2009; Camehl et al., 2011; Jacobs
et al., 2011). These early defense responses include the formation
of papillae at sites of hyphal penetration attempts of S. indica on
barley (Lahrmann and Zuccaro, 2012). Papillae are dome-shaped
cell wall appositions that play a vital role in resistance to plant
pathogens (Hückelhoven, 2005; Hückelhoven, 2007; Albersheim
et al., 2011; Hückelhoven, 2014). They generally consist of layers
of callose, cellulose, arabinoxylan and phenolyic compounds
(Chowdhury et al., 2014; Hückelhoven, 2014). Additionally,
Frontiers in Plant Science | www.frontiersin.org 2
papillae contain reactive oxygen species (hydrogen peroxide
H2O2) and in barley their formation appears to be dependent
on iron (Fe3+) accumulation in the apoplast (Thordal-
Christensen et al., 1997; Hückelhoven et al., 1999; Liu G et al.,
2007). Depending on their size, composition and the degree of
cross-linking of their constituent parts, papillae can be more or
less efficient in halting penetration (Aist and Israel, 1977; Israel
et al., 1980; von Röpenack et al., 1998; Asaad et al., 2004;
Chowdhury et al., 2014; Hückelhoven, 2014).

In barley, natural as well as chemically induced mutant lines
carrying recessive mlo (MILDEW RESISTANCE LOCUS O)
alleles display broad-spectrum resistance to the obligate
biotrophic pathogen Blumeria graminis f. sp. hordei (Bgh),
causal agent of the foliar powdery mildew disease (Büschges
et al., 1997), and have been successfully employed in agriculture
since the late 1970s (Jørgensen, 1992; Lyngkjær et al., 2000;
Kusch and Panstruga, 2017). Especially barley spring varieties
that are now largely grown in central Europe are resistant to Bgh
following the introgression of mlo alleles (Jørgensen, 1992;
McGrann et al., 2014; Kusch and Panstruga, 2017). Compared
to wild type susceptible cultivars, these lines display faster
formation of larger papillae upon pathogen attack (Jørgensen,
1992; Lyngkjær et al., 2000; Chowdhury et al., 2014). Similar
mutations in orthologous genes of wheat, tomato, pea, A.
thaliana, and many other plant species have since confirmed
the importance of mlo for resistance to various species of
powdery mildew (Elliott et al., 2002; Consonni et al., 2006; Bai
et al., 2008; Humphry et al., 2011; Wang et al., 2014; Kusch and
Panstruga, 2017). In contrast, some hemibiotrophic and
necrotrophic pathogens show enhanced infection on mlo
mutant plants possibly profiting from the spontaneous
induction of leaf cell death (Jarosch et al., 1999; Kumar et al.,
2001; McGrann et al., 2014). The contribution of MLO to host
resistance against root-colonizing microbes is less well
understood. Recent evidence suggests that the mlo genetic
background does not affect barley root infection by the
oomycete pathogen Phytophthora palmivora (Le Fevre et al.,
2016). Similarly, MLO does not seem to play a role in the
establishment of the beneficial relationships between pea and
the rhizobacterium Rhizobium leguminosarum bv. viciae or the
AM fungus Rhizophagus irregularis (syn. Glomus intraradices)
(Humphry et al., 2011). However, transcriptional analyses
showed an upregulation of the Lotus japonicus MLO1-like
(chr1.CM0150.1) gene in cortical cells containing arbuscules of
Gigaspora margarita (Guether et al., 2009) suggesting that MLO
may play a regulatory role in AM colonization.

In this study, we used the endophyte S. indica and the AM
fungus F. mosseae, both of which have intracellular lifestyles, to
investigate the role of MLO in barley root symbioses.
Comparative colonization analyses showed differential
regulation by MLO during endophytism and mycorrhization.
The decreased colonization by S. indica coincided with enhanced
defense responses and papillae formation, highlighting the
importance of the biotrophic growth phase for the
establishment of the long-term beneficial relationship between
S. indica and its plant hosts.
January 2020 | Volume 10 | Article 1678
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MATERIALS AND METHODS

Plant Material and S. indica
Growth Conditions
Seeds of mlo-3, -4, and -5 mutant lines backcrossed to barley cv.
Ingrid (Peterhänsel et al., 1997; Jarosch et al., 2003) were kindly
provided by Ralph Panstruga. Wild type (WT) barley (Hordeum
vulgare L. cv. Ingrid) and mutant seeds were surface-sterilized by
washing in 70% ethanol for 1–5min, rinsing in sterile distilled water
and soaking in 4%–12% sodium hypochlorite for 1–1.5 h. Seeds
were then thoroughly washed in sterile distilled water, placed onto
sterile wet filter paper and kept in the dark at room temperature for
3–5 days to allow germination. S. indica Sav. Verma, Aj. Varma,
Rexer, G. Kost & P. Franken (DSM11827, Deutsche Sammlung von
Mikroorganismen und Zellkulturen, Braunschweig, Germany) was
grown in liquid complex medium (CM) (Pham et al., 2004) at 130
rpm or on CM medium supplemented with 1.5% agar at 28°C.

Barley Inoculation With S. indica
Three-day-old seedlings were placed into sterile jars containing
1/10 plant nutrition medium (PNM) (Basiewicz et al., 2012). For
inoculation, S. indica chlamydospores were collected from CM
agar plates in 0.1% Tween20-water, filtered through Miracloth
and pelleted by centrifugation at 3,500 g for 5 min. Spores were
washed two more times in 0.1% Tween20-water and then re-
suspended to a final concentration of 5x105 spores/ml. Mock
treatment consisted of 0.1% Tween20-water only. Three
milliliters of spore suspension was added onto roots of barley
seedlings. Jars were transferred to a growth chamber with a 16 h/
8 h day/night (light intensity of 108 µmol/m2/s) cycle at 22°C/18°
C and 60% humidity. All experiments were prepared with three
to four biological replicates consisting of pooled material from 4
plants/jar, and two to three independent replicate experiments.

Quantification of S. indica Colonization
Mock-treated and S. indica-colonized roots were harvested at 3, 5,
7, and 10 days post inoculation. Roots were washed in water and
sections of the first 3 cm below the seed were cut and frozen in
liquid nitrogen. Genomic DNA from 200 mg of freshly ground
material was isolated according to (Doyle and Doyle, 1987). To
remove contaminating RNA, samples were treated with 1 µL 10
mg/mL RNaseA (Thermo Fisher Scientific, Schwerte, Germany)
and incubated at 37°C for 20 min. Quantitative PCR was
performed with 10 ng gDNA template and primers targeting the
S. indica TEF (SiTEF) the barley ubiquitin (HvUBI) genes (see
Supplementary Table 1) in 10 µl SYBR green Supermix (BioRad,
Munich, Germany) using the following amplification protocol:
initial denaturation for 16 min at 95°C, followed by 40 cycles of 15
s at 95°C, 20 s at 59°C, and 30s at 72°C, and a melt curve analysis.
The relative amount of fungal vs. plant gDNA was calculated
according to the 2-DCt method (Schmittgen and Livak, 2008).

Vacuolar Processing Enzyme (VPE)
Activity Assay
Mock-treated and S. indica-colonized roots of WT and mutant
plants were harvested at 10 dpi. Vacuolar processing enzyme
Frontiers in Plant Science | www.frontiersin.org 3
(VPE) activity was measured as described previously (Lahrmann
et al., 2013). Briefly, roots were washed in water and sections of
the first 4 cm below the seed were cut and frozen in liquid
nitrogen. Extracts were prepared from 100 mg freshly ground
root material ground in liquid nitrogen with 1 ml extraction
buffer [10 mM sodium acetate pH 5.5, 100 mM NaCl, 1 mM
EDTA , 2mM d i t h i o t h r e i t o l ( D TT ) a n d 1mM
phenylmethylsulfonyl fluoride (PMSF)]. Plant debris was
pelleted by centrifugation at max speed and 4°C for 10 min.
To measure VPE activity, 100 µM of the fluorescent VPE-specific
substrate Ac-ESEN-MCA (Peptide Institute Inc., Osaka, Japan)
was added to 100 µl of root extract supernatants aliquoted into a
96-well plate. Fluorescence intensities were measured in a
TECAN Infinite microplate reader (TECAN, Männerdorf,
Switzerland) with 360 and 465 nm excitation and emission
wavelengths, respectively, at 10 min intervals for 1 h. Buffer
with and without substrate was used as control.

Staining and Microscopy of S. indica-
Inoculated Barley Root Sections
Confocal pictures were taken using a TCS-SP5 confocal
microscope (Leica, Bensheim, Germany). Colonized root tissue
of WT and mutant plants was collected at indicated time points,
boiled for 2 min in 10% potassium hydroxide, washed three
times in deionized water, and three additional times in 1x PBS
(pH 7.4) for 30 min. Roots were stained by infiltrating colorants
four times for 4 min at 260 mbar with 1 min atmospheric
pressure breaks. To visualize fungal structures, roots were
infiltrated with 10 mg/mL fluorescent Wheat Germ Agglutinin
(WGA) AF488 (Invitrogen, Thermo Fisher Scientific, Schwerte,
Germany) in 1x PBS. Papillae were visualized following
infiltration of 10 mg/mL fluorescent concanavalin A (ConA)
AF633 (Invitrogen, Thermo Fisher Scientific, Schwerte,
Germany) in 1x PBS. For iron staining, samples were fixed,
embedded in resin, sectioned and then stained with the Perls/
DAB procedure, as described previously (Roschzttardtz et al.,
2009). This method is a sensitive histological test for iron
accumulation in plants (Roschzttardtz et al., 2013).

Barley Inoculation With the Mycorrhizal
Fungus F. mosseae
Following germination on wet filter paper, seedlings were kept 3
days in continuous light (light intensity of 80 µmol/m2/s). For
each experiment, four seedlings of barley WT and mlo-5 were
placed into separate pots filled with a 7:3 mix of sterile quartz
sand/granular F. mosseae inoculum (v/v). The F. mosseae
inoculum was composed of newly formed spores and Sorghum
root pieces already colonized by F. mosseae. The inoculum was
purchased from MycAgro Lab (Dijon, France) and contained a
minimum of 10 active propagules/g. Plants were transferred to a
growth chamber with a 14 h/10 h day/night cycle at 23°C/21°C.
After 2 months of cultivation, one half of the root apparatus was
sampled from each plant and stained with Cotton Blue (0.1% in
lactic acid) to evaluate the intraradical colonization. The other
half was treated with WGA conjugated with the fluorescent
probe fluorescein isothiocyanate (FITC) to analyze fungal
January 2020 | Volume 10 | Article 1678

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Hilbert et al. Root Symbiosis Modulation by HvMLO
penetration in the root epidermal cells by confocal microscopy.
The experiment was performed twice.

Quantification of the AM Colonization
For each plant at least 1 m of root tissue was observed under an
optical microscope to evaluate the degree of mycorrhizal
colonization (Trouvelot et al., 1986). Four parameters were
considered: F% (frequency of mycorrhization) reporting the
percentage of segments showing internal colonization, M%
(intensity of mycorrhization in the root cortex) indicating the
average percentage of colonized root segments, a% (percentage
of arbuscules in the infected areas) quantifying the average
presence of arbuscules within the infected areas, A%
(percentage of arbuscules in the entire root apparatus)
quantifying the presence of arbuscules in the whole root system.

Details of the AM Penetration
To analyze the fungal penetration through the root epidermis, fifty
0.5 cm root segments were fixed in 4% paraformaldehyde in 0.05
M phosphate buffer pH 7.2, for 4 h at room temperature. Fixed
segments were embedded in 8% agarose (Agarose type II-A,
Sigma-Aldrich, Taufkirchen, Germany) and cut into 50 µm
sections with a vibratome. The sections were incubated for 5
min in 1:30 commercial bleach/phosphate buffer (v/v), carefully
rinsed with buffer and incubated for 2 h at room temperature in 1
mg/mlWGA-FITC. Sections were then observed with a Leica TCS
SP2 confocal microscope equipped with an Ar/HeNe laser with
543 nm excitation and 580–650 nm emission wavelengths.

Statistical Analyses
Statistically significant effects of plant genotypes on VPE activity
in colonized and mock-treated root tissue were determined with
ANOVA using R (v3.3.2). Significant differences between
treatments were determined with Tukey’s post hoc test from
the Stats package (Miller, 1981; Yandell, 1997). Letters displaying
similarities and differences were extracted using the
multcompView package (v0.1-7) (Donoghue, 2004; Piepho,
2004). Statistically significant effects of plant genotypes on
fungal colonization and activation of defense responses
(papillae size and number) were determined using the Welch
Two Sample t test from the Stats package in R. Asterisks indicate
these differences.
RESULTS AND DISCUSSION

MLO Loss-Of-Function Mutations Result in
Reduced Barley Root Colonization by
S. indica
Removal of host genes that are required by invading pathogens for
plant colonization, termed susceptibility genes, has been shown to
provide disease resistance (van Schie and Takken, 2014). Several
natural and mutagen-induced changes in the barley MLO locus
confer broad-spectrum resistance to the powdery mildew pathogen
Blumeria graminis f. sp. hordei (Jørgensen, 1992; Büschges et al.,
1997; Lyngkjær et al., 2000; Kusch and Panstruga, 2017). Similarly,
Frontiers in Plant Science | www.frontiersin.org 4
TALEN- and CRISPR-Cas9-introduced targeted mutations in
three MLO homeoalleles of bread wheat showed their
requirement for resistance to wheat powdery mildew (Wang
et al., 2014). However, the recessive loss-of-function mlo alleles
in barley resulted in increased susceptibility to some other fungal
pathogens (Jarosch et al., 1999; McGrann et al., 2014). To
investigate the role of MLO in the establishment of the long-term
beneficial relationship between barley and the root endophyte
Serendipita indica, we used the mlo-5 allele backcrossed (BC)
into barley cv. Ingrid (hereafter referred to as mlo-5), which
carries a point mutation in the start codon and is a predicted
null allele (Büschges et al., 1997). Mutant and WT plants were
inoculated with S. indica spores suspended in Tween20-water or
Tween20-water alone as mock treatment. To assess the effect of the
mlo-5 mutation on S. indica colonization, we quantified the relative
abundance of S. indica gDNA as a proxy for fungal biomass in
roots ofWT barley cv. Ingrid andmlo-5 plants by quantitative PCR
at 3, 5, and 7 days post inoculation (dpi), representing early and late
biotrophic interaction stages and the initial cell death-associated
phase, respectively. We observed a significant reduction in fungal
biomass in mutant compared to control plants from early through
late colonization stages (Figure 1A). To confirm this phenotype,
we also quantified S. indica biomass in roots of colonizedmlo-3 and
mlo-4 mutant lines, which display frame shift mutations in exon 11
and 4, respectively, and likewise are predicted null alleles. Similar to
mlo-5, mlo-3 and -4 were less colonized by S. indica compared to
WT control plants (Supplementary Figure 1), suggesting that
MLO is required for barley root colonization by S. indica. This is in
contrast to earlier findings where mlo triple mutants of A. thaliana
displayed similar levels of S. indica colonization as wild type plants
(Acevedo-Garcia et al., 2017). In A. thaliana there are 15 members
of the MLO family. It could be that in A. thaliana roots other MLO
members play a role in fungal accommodation than the three
mutated genes. Alternatively, it has previously been shown that S.
indica displays different colonization strategies on barley and A.
thaliana host plants (Lahrmann et al., 2013). It is, therefore,
conceivable that MLO-controlled defense does not play an
important role in S. indica accommodation in A. thaliana roots.

S. indica-Colonized mlo-5 Mutant Plants
Display Enhanced Papilla Formation
During Biotrophic Growth
Enhanced barley resistance to powdery mildew in mlo mutants
has been associated with enhanced cell wall apposition, or
papillae, formation (Skou et al., 1984; Bayles et al., 1990;
Wolter et al., 1993). Due to the reduction in S. indica
colonization in mlo plants, we compared papillae formation in
inoculated mlo-5 mutant and WT roots. To visualize fungal
structures and papillae, colonized root tissue was stained with the
chitin-specific wheat germ agglutinin (WGA-AF488) and a-
mannopyranosyl-/a-glucopyanosyl- specific concanavalin A
(ConA-AF633) for confocal microscopy, respectively. While
both barley genotypes responded with papillae formation to S.
indica hyphal penetration attempts, these cell wall appositions
were significantly bigger in mlo-5 plants compared to the
controls (Figures 1B, C). The number of papillae increased
January 2020 | Volume 10 | Article 1678
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over time both in WT and mlo-5 plants but was significantly
higher at 5 dpi in mutant plants (Figure 1D). These phenotypes
are reminiscent of mlo-mediated resistance to Bgh in leaves,
where the fungus is arrested at the prehaustorial stage when
papillae formation occurs in epidermal cells (Skou et al., 1984),
highlighting an interesting parallel between mlo-dependent leaf
and root responses to fungal colonization.

At early stages of WT barley root colonization by S. indica,
transient papillae development has previously been observed at
penetration sites and coincides with the activation of weak barley
defense responses at the transcriptional level during the fungus’
biotrophic growth phase (Schäfer et al., 2009; Zuccaro et al.,
2011; Lahrmann and Zuccaro, 2012). However, most of the
papillae formed during the biotrophic colonization of the
rhizodermis do not prevent S. indica hyphal penetration and
disappear once the fungus reaches the root cortex (Zuccaro et al.,
2011; Lahrmann and Zuccaro, 2012). The role of papillae in
resistance against host cell penetration has been discussed for
decades (Zeyen et al., 2002). Recent evidence suggests that so-
called effective papillae [cell wall appositions that are formed in
response to a local colonization attempt and that cannot be
penetrated; (Hückelhoven, 2014)] contain higher quantities of
callose, arabinoxylan and cellulose than ineffective papillae in
barley (Chowdhury et al., 2014). Noncovalent bonds between
arabinoxylan and cellulose have been proposed to maintain the
barley cell wall, potentially forming a network of highly cross-
linked polysaccharides (McNeil et al., 1975; Chowdhury et al.,
2014). Phenolic compounds present in papillae could further
enhance the degree of cross-linking giving rise to a tight structure
resistant to mechanical penetration. The resistance to
mechanical force, however, is unlikely to play a role in the
interaction between S. indica and barley, since S. indica does
not form appressorium-like structures. The genome of S. indica,
like the genome of its orchid mycorrhizal relative S. vermifera,
harbors a large number of genes encoding hydrolytic enzymes
comparable to genomes of hemibiotrophic and necrotrophic
pathogens, as well as several white rot saprotrophs (Lahrmann
et al., 2013; Lahrmann et al., 2015). The up-regulation of genes
encoding putative cell wall degrading enzymes during the pre-
penetration stage (Zuccaro et al., 2011) suggests that S. indica
uses hydrolytic enzymes for host cell penetration. The
phenotypic alteration of papillae formed in mlo-5 plant roots
suggests a change in composition similar to that proposed for
papillae in leaves of resistant mlo barley plants. Considering that
S. indica colonization is efficiently arrested in mlo-5 mutant
plants, we hypothesize that the arsenal of hydrolytic enzymes
and effector proteins produced by S. indica is not sufficient to
overcome altered defenses in mlo-5 plants. Additionally,
accumulation of toxic compounds at the penetration site in the
mlo-5 background could decrease the capability of S. indica to
penetrate the host cell.

The early arrest of S. indica colonization in plants carrying the
mlo-5 allele indicates that the biotrophic phase plays an
important role for the establishment of the beneficial barley-
endophyte interaction. To test whether a reduction in biotrophic
colonization would have an effect on fungal development, we
Frontiers in Plant Science | www.frontiersin.org 5
assessed the induction of host root cell death, which is a hallmark
of the S. indica-plant interaction during later colonization stages,
using a well-established vacuolar processing enzyme (VPE)
activity assay (Deshmukh et al., 2006; Qiang et al., 2012;
Lahrmann et al., 2013). At 10 dpi, root sections of colonized
WT and mlo-5 plants were collected for total protein extraction.
Protein extracts were then incubated with the fluorescent VPE-
specific substrate Ac-ESEN-MCA to measure VPE-mediated
proteolytic cleavage of MCA. We observed a significant
reduction in VPE activity in S. indica-treated mlo-5 plants
compared to WT controls (Figure 1E) suggesting a decrease in
host cell death. This finding is in agreement with lower
colonization levels in mlo mutant plants (Figure 1A,
Supplementary Figure 1), Thus, the recessive mlo allele effect
on the early biotrophic fungal growth also affects the cell
death phase.

Reduced S. indica Colonization Correlates
With an Early Accumulation of Iron At the
Epidermal Layer of mlo-5 Mutant Plants
The production of reactive oxygen species (ROS) represents a
key factor in pathogen resistance, and has been reported to play a
role in a number of beneficial associations (Enkerli et al., 1997;
Hückelhoven et al., 1999; Fenster and Hause, 2005; Zuccaro et al.,
2011; Lahrmann and Zuccaro, 2012). In addition to their direct
antimicrobial effects, ROS have been implicated in the
fortification of papillae and are emerging as signaling
components during plant immunity (Thordal-Christensen
et al., 1997; Torres et al., 2006; Baxter et al., 2014).

In cereals, the extracellular production of H2O2 and the
resulting oxidative burst in response to biotic stress are
dependent on the accumulation of iron (Liu G et al., 2007). To
visualize iron accumulation, root tissue of infected and mock-
treated plants was stained with Perls/DAB. Consistent with our
observations on papillae formation in mlo-5 mutant plants, iron
accumulation was apparent at 5 dpi in S. indica-colonized
mutant plants (Figure 2A), whereas iron depositions started to
appear at 6 dpi in WT plants (Figure 2B). Iron accumulated at
the cell periphery throughout the rhizodermal cell layer,
suggesting a systemic reaction of this layer. In leaves it was
shown that accumulation of Fe3+ occurs specifically around the
cell wall appositions just below the site of Bgh penetration
attempts, where it facilitates H2O2 production (Greenshields
et al., 2007; Liu G et al., 2007), suggesting that the mechanisms
underlying iron accumulation and its role in ROS generation
may be different in the rhizodermal cell layer. Together, these
findings indicate that defense responses are enhanced and occur
earlier in the mlo-5 mutant resulting in reduced S.
indica colonization.

Mlo Loss-Of-Function Mutations Result in
Enhanced Mycorrhization
Like S. indica, F. mosseae has an intracellular lifestyle.
Transcriptome studies comparing mycorrhizal to non-
mycorrhizal conditions in Lotus japonicus suggested that MLO
might play a regulatory role in AM colonization (Guether et al.,
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https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Hilbert et al. Root Symbiosis Modulation by HvMLO
2009). To test this hypothesis, WT and mlo-5 barley plants were
inoculated with F. mosseae and the rate of AM colonization was
determined after 2 months of co-cultivation. Microscopically, we
did not observe evident differences in the mycorrhizal
phenotype. The extraradical mycelia developed in both plant
genotypes (Figure 3A, upper panel) and the hyphopodia (Figure
3A, middle panel) consisted of similarly swollen hyphae at places
where hyphae were in direct contact with the plant epidermal
cell. Moreover, arbuscules were produced in cortical cells with a
typical branched appearance in colonized WT andmlo-5 mutant
plants (Figure 3A, lower panel). These findings indicate that
MLO is not essential for the establishment of AM symbiosis and
cannot be listed as one of the genes of the AM symbiosis
signaling module that are required for the perception of AM-
Frontiers in Plant Science | www.frontiersin.org 6
derived signaling molecules (Vigneron et al., 2018). To analyze
the first step of the colonization (i.e. the penetration of the
epidermal cells) in greater detail, we stained vibratome sections
of colonized mlo-5 root tissue with WGA-FITC. Confocal
microscopy of stained sections revealed that F. mosseae follows
an intracellular penetration mechanism in the mutant
background (Supplementary Figure 2), as has been described
for G. margarita on Medicago truncatula roots (Genre et al., 2005;
Genre et al., 2008). Similar to G. margarita, F. mosseae hyphae
proliferating from the hyphopodium directly cross the wall of the
epidermal cells to which the hyphopodium is adhering
(Supplementary Figure 2).

We then assessed the success of F. mosseae colonization by
quantifying the frequency of mycorrhization (F%), the intensity
FIGURE 1 | Reduced S. indica colonization of barley mlo-5 coincides with enhanced root defense. Three-day-old barley seedlings were inoculated with a S. indica
chlamydospore suspension at a final concentration of 5x105 spores/ml in Tween20-water or Tween20-water alone as mock treatment. (A) At 3, 5, and 7 days post
inoculation (dpi) seedlings were removed from jars and gDNA was extracted from inoculated root sections as described in the Materials and Methods. Fungal
colonization in each biological replicate was confirmed by quantitative PCR (n = 3). Statistically significant differences in the relative abundance of fungal gDNA during
colonization of wild type (WT) and mutant mlo-5 plants were determined with Welch two sample t tests (*p < 0.5). (B) Roots of inoculated WT and mlo-5 plants were
collected and stained with 10 mg/ml Wheat Germ Agglutinin (WGA-AF488, cyan) and 10 mg/ml concanavalin A (ConA-AF633, magenta) for visualization of fungal
structures and papillae, respectively. Confocal microscopy shows extraradical growth of S. indica and hyphal penetration attempts of WT and mlo-5 root tissue. At
these sites, the barley host responds with papillae formation. (C) Sizes of papillae formed in colonized WT (n=95) and mlo-5 (n = 61) roots were determined based
on confocal microscopy pictures taken at 3, 4, 5 and 7 dpi. The statistically significant difference in papilla size between wild type (WT) and mutant mlo-5 plants
throughout colonization was determined with the Welch two sample t test (***p < 0.001). (D) The number of papillae formed in colonized WT and mlo-5 roots was
quantified based on confocal microscopy pictures taken at 2, 3, 4, 5, 7, and 10 dpi (n = 2-4). Statistically significant differences in papilla quantity between barley
genotypes were determined with Welch two sample t tests (*p < 0.5). (E) Mock-treated and S. indica-colonized roots of WT and mutant plants were harvested at 10
dpi. Root cell death was quantified by measuring vacuolar processing enzyme (VPE) activity-dependent fluorescence (Qiang et al., 2012). Letters represent
statistically significant differences in VPE activity according to two-way ANOVA (F(1,110) = 7.077, p < 0.01) and Tukey’s post hoc test.
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of mycorrhization in the root cortex (M%), the percentage of
arbuscules in infected areas (a%), and the presence of arbuscules
in the entire root system (A%). In our experiments, F%, a%, and
A% were higher in mlo-5 mutants compared to WT control
plants, while the intensity of mycorrhization did not seem to be
affected by the plant phenotype (Figure 3B). This is in contrast
to the results presented by Ruiz-Lozano and colleagues (1999)
Frontiers in Plant Science | www.frontiersin.org 7
who described a negative effect of the mlo-5 mutation on F.
mosseae colonization at 6 weeks. This discrepancy is likely due to
differences in inoculum efficiency and the large difference in root
material analyzed here (1 m/plant) compared to the earlier study
(30 cm/3 plants), or in the time points analyzed. We cannot
exclude that colonization of the mlo-5 mutant plants would be
negatively affected at earlier stages, but our data indicate that the
FIGURE 2 | Early accumulation of iron in the epidermal cells of the Ingrid mlo-5 mutant upon S. indica colonization. Light microscopic pictures show root sections
stained with Perls/DAB at 5 (A) and 6 dpi (B). Black precipitates, indicative of iron accumulation, appear around root epidermal cells in mlo-5 at 5 dpi, whereas iron
accumulation in WT plants is only visible after 6 days of S. indica colonization (black arrowheads). Size bar = 100 µm unless otherwise indicated. R, rhizodermis; C,
cortex; E, endodermis; V, vasculature.
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absence of this gene is not negatively affecting the symbiosis in
the long run. Our observations suggest that MLO may be
required for optimal AM colonization levels and could be
grouped with other so-called downstream genes, which are
Frontiers in Plant Science | www.frontiersin.org 8
involved in the re-organization of the plant host cell and
facilitate nutrient exchange (Vigneron et al., 2018). While
mutations in many of these downstream genes lead to a
decrease in colonization success (Wang et al., 2019), the mlo-5
allele enhances host susceptibility. MLO genes encode plant-
specific proteins with seven membrane-spanning domains
(Büschges et al., 1997; Devoto et al., 1999; Elliott et al., 2005;
Kusch et al., 2016). Despite considerable effort, our knowledge on
the biochemical functions of this group of proteins remains
limited. However, it has been demonstrated that mlo-mediated
resistance against Bgh relies on actin cytoskeleton function in
epidermal cells (Miklis et al., 2007). Similarly, the cytoskeleton is
likely involved in the biogenesis of the perifungal membrane,
which is an extension of the host plasmalemma surrounding the
growing AM intracellular hyphae (Genre and Bonfante, 2002;
Genre et al., 2012). Thus, MLO may exert control over the
number of produced arbuscules through the regulation of
cytoskeletal assembly.
CONCLUSIONS

In this study, we show that MLO differentially regulates the
establishment of beneficial symbioses with the endophyte S.
indica and the AM fungus F. mosseae in barley. During WT
colonization by S. indica and F. mosseae, non-specific defense
responses are largely repressed. In contrast, inoculation of mlo-5
mutant plants with S. indica results in an early activation of
strong defense responses, such as accumulation of iron and
papillae formation, limiting S. indica colonization at the
epidermal layer during biotrophic growth and at the onset of
the cell death-associated phase, while F. mosseae mycorrhization
is enhanced in cortex cells at a late colonization stage. Based on
these findings, we conclude that the regulatory role of MLO may
be cell type specific. This hypothesis is in accordance with the
recent finding that the mlo-5 mutation diminishes P. palmivora
infection only in young leaf tissue (Le Fevre et al., 2016).
Moreover, there seems to be a difference in mlo contribution
to resistance between monocot and dicot plant species since mlo
barley and A. thaliana mutants display contrasting phenotypes
during the interaction with S. indica. One explanation could be
the prominent role of iron (Fe3+)-mediated oxidative (H2O2)
cross-linking of cell wall appositions in barley and other cereals,
which does not occur during the A. thaliana-S. indica interaction
(Greenshields et al., 2007; Liu G et al., 2007; Lahrmann et al.,
2013). Additionally, the results presented here corroborate the
pleiotropic effects of mlo in various plant-microbe interactions.
Other genes have been shown to display variable regulative roles
depending on the colonization strategy of the microbe. For
example, in M. truncatula the gene Nod Factor Perception
(MtNFP) is essential for the establishment of N-fixing
symbiosis, and, as a consequence Mtnfp mutants cannot
establish the beneficial interaction (Rey et al., 2013). However,
Mtnfp mutant lines are more susceptible to pathogens including
Aphanomyces euteiches and Colletotrichum trifolii, indicating
that the regulation of plant-microbe symbioses is often
dependent on the interacting microbe.
FIGURE 3 | The barley mlo-5 allele promotes mycorrhization. Three-day-old
seedlings were inoculated with F. mosseae inoculum with ≥10 active
propagules/g mixed into the soil. After 2 months of cultivation, intraradical
colonization was assessed by light microscopy of Cotton blue-stained root
tissue in WT and mlo-5 plants (A). Black arrowheads indicate extraradical
mycelia (EM; upper panel), hyphopodia (H; middle panel), and arbuscules (A;
lower panel). (B) Mycorrhization was quantified using root tissue stained with
fluorescein isothiocyanate-conjugated Wheat Germ Agglutinin (WGA-FITC)
following confocal microscopy (n = 2). F% reports the percentage of
segments showing internal colonization, M% indicates the average percent
colonization of root segments, a% quantifies the average presence of
arbuscules within the infected areas, A% quantifies the presence of
arbuscules in the whole root system. Statistically significant differences in
mycorrhization between barley genotypes were determined with Welch two
sample t tests (*p < 0.5, **p < 0.01).
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