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RPM1 is a CC-NBS-LRR protein that was first shown to be required for resistance to
Pseudomonas syringae pv. maculicola in Arabidopsis thaliana. Our previous study
showed that TaRPM1 gene in wheat was upregulated about six times following
infection by Puccinia striiformis f. sp. tritici (Pst) under high temperature, compared with
normal temperature. To study the function of TaRPM1 in wheat high-temperature
seedling-plant (HTSP) resistance to Pst, the full length of TaRPM1 was cloned, with
three copies each located on chromosomes 1A, 1B, and 1D. Transient expression of the
TaRPM1-GFP fusion protein in Nicotiana benthamiana indicated that TaRPM1 localizes in
the cytoplasm and nucleus. Profiling TaRPM1 expression indicated that TaRPM1
transcription was rapidly upregulated upon Pst inoculation under high temperature. In
addition, TaRPM1 was induced by exogenous salicylic acid hormone application.
Silencing TaRPM1 in wheat cultivar Xiaoyan 6 (XY 6) resulted in reduced HTSP
resistance to Pst in terms of reduced number of necrotic cells and increased uredinial
length, whereas no obvious phenotypic changes were observed in TaRPM1-silenced
leaves under normal temperature. Related defense genes TaPR1 and TaPR2 were
downregulated in TaRPM1-silenced plants under high temperature. We conclude that
TaRPM1 is involved in HTSP resistance to Pst in XY 6.

Keywords: wheat stripe rust, high-temperature seeding plant resistance (HTSP), non-species-specific, virus-
induced gene silencing (VIGS), NBS-LRR
INTRODUCTION

Wheat (Triticum aestivum) yield can be greatly reduced by stripe rust caused by obligate biotrophic
pathogen Puccinia striiformis f. sp. tritici (Pst) (Wellings, 2011; Chen, 2014). Currently, stripe rust
control is primarily achieved through the use of resistant cultivars (Chen, 2014) and fungicide
sprays (Chen et al., 2013). However, the loss of resistance in wheat cultivars has been happening
frequently due to rapid emergence of new virulent races in Pst (Chen et al., 2009; Hu et al., 2014).
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Wheat high-temperature (HT) resistance to Pst, a non-race-
specific and durable resistance, can be classified into two types:
high-temperature adult-plant (HTAP) and high-temperature
seedling-plant (HTSP) resistance (Chen, 2013). HTAP
resistance expresses or increases when plants are in the adult
stage and weather becomes warm, whereas HTSP resistance
expresses when wheat seedlings are temporarily exposed to 20°C
for only 24h at the initial stageofPst incubation (Wanget al., 2017a;
Wang et al., 2019). Xiaoyan 6 (XY 6) is a typical example of wheat
cultivars with HTSP resistance to Pst.

Plants have evolved various defense mechanisms against biotic
(e.g., bacterial and fungal pathogens) and abiotic stresses (e.g.,
high temperature, drought, salt, and heavy metals) (Jones and
Dangl, 2006; Bhattarai et al., 2016; Jiang et al., 2018). One efficient
mechanism, effector-triggered immunity (ETI), is activated upon
recognition of a pathogen avirulence (Avr) gene by a resistance
(R) protein, leading to an array of defense responses, including
hypersensitive response (HR) (Cui et al., 2015), reactive oxygen
species (ROS) bursts, and induction of defense-related genes
(Kandoth and Mitchum, 2013; Liang et al., 2014; Gao et al., 2017).

To date, more than 100 R genes against 122 different
pathogens have been cloned from numerous plant species such
as Arabidopsis, tomato, potato, barely, rice, and wheat (Hinsch
and Staskawicz, 1996; Anderson et al., 1997; Ellis et al., 1999;
Feuillet et al., 2003; Tör et al., 2004; Fu et al., 2009; Zhou et al.,
2014; Li N. Y. et al., 2017; Qian et al., 2017; He et al., 2018;
Klymiuk et al., 2018). R proteins can be divided into several
super-families based on their specific conserved motifs, including
nucleotide-binding sites (NBS), leucine-rich repeats (LRR), toll-
interleukin-1 receptors (TIR), coiled-coils (CC), transmembrane
motifs (TM), and protein kinases (PK) (Li X. et al., 2017). The
NBS-LRR resistance genes represent the largest R-gene family,
and can be further subdivided into two major subclasses: those
having a putative CC domain (CC-NB-LRR) and those having a
TIR domain (TIR-NB-LRR) (Ellis and Jones, 1998; Dangl and
Jones, 2001). The CC-NB-LRR subclass includes genes such as
RPM1 and RPS2 of Arabidopsis, which could recognize
specifically avrB and avrRpt2 effectors, respectively (Gopalan
et al., 1996; Warren et al., 1998; Xu et al., 2018). TIR-NB-LRR
subclass includes rust R gene L6 in flax (Lawrence et al., 1995)
and downy mildew R-genes RPP5 (Parker et al., 1997) and RPP1
(Botella et al., 1998) in Arabidopsis. The Arabidopsis RPM1 gene
confers resistance against bacterium Pseudomonas syringae
expressing either of the Type III effectors AvrRpm1 or AvrB
(Mackey et al., 2002). RIN4 (RPM1-interacting protein 4) has
been identified as a membrane protein for resistance against
P. syringae via its interaction with RPM1. AvrB and AvrRpm1,
secreted into plant cells by the Type III protein secretion system,
induce phosphorylation of RIN4, which is perceived by RPM1
and then serves to activate host resistance responses (Gururani
et al., 2012). Therefore, RPM1 “guards” the plant against P.
syringae by perceiving the Avr-dependent modifications of RIN4
(Dangl and Jones, 2001). We showed that TaRPM1 gene in XY 6
is upregulated rapidly following infection by Pst under high
temperature, compared with normal temperature (Tao et al.,
2018). Thus, TaRPM1 is associated with HTSP; however, the
Frontiers in Plant Science | www.frontiersin.org 2
precise roles played by TaRPM1 in the HTSP resistance to Pst has
not been elucidated.

Temperature sensitivity of R genes has been widely reported
in numerous plants. For example, tobacco N-mediated HR
against tobacco mosaic virus is activated at 22°C but not at 30°C
(Wang et al., 2009). The tomato Mi-1 gene against root-knot
nematodes is inactive above 28°C (Hwang et al., 2000; Jablonska
et al., 2007). The Arabidopsis RPW8 gene, conferring resistance
to powdery mildew, is suppressed above 30°C (Xiao et al., 2003).
The defense responses conferred by Arabidopsis NB-LRR
receptor gene SNC1 is activated at 22°C, but not at 28°C (Yang
and Hua, 2004). Yr36, an R gene involved in HTAP, confers
resistance to Pst at relatively high temperatures (25°C to 35°C)
but not at low temperatures (e.g., 15°C) (Fu et al., 2009).
Previously, we showed transcriptional factors TaWRKY70
(Wang et al., 2017a), TaWRKY62 (Wang et al., 2017b), and
receptor like kinase TaXa21 (Wang et al., 2019) positively
regulate HTSP resistance to Pst.

In the present study, we identified and cloned a highly
upregulated NBS-LRR gene TaRPM1 from XY 6 infected with
Pst and subsequently exposed to high temperature for 24 h.
Silencing TaRPM1 in XY 6 impaired HTSP resistance to Pst with
reduced host defense responses, increased Pst growth, and
decreased the expression levels of TaPR1 and TaPR2. We thus
conclude that TaRPM1 positively regulates the HTSP resistance
to Pst through the salicylic acid (SA) signaling pathway.
MATERIALS AND METHODS

Identification and Characterization
of TaRPM1
To clone the TaRPM1 gene, full-length primers based on the XY
6 transcriptome sequences (Tao et al., 2018) were designed using
Primer 5.0 software (Table S1). The PCR products were purified,
and cloned into the PMD18-T vector (TaKaRa, Tokyo, Japan)
for sequencing. A phylogenetic tree of TaRPM1 and RPM1
members in other species were generated by the neighbor-
joining method (1,000 bootstrap replicates) using MEGA6.0
software. For confirming the copy number of TaRPM1 in the
wheat genome, nucleotide sequence of TaRPM1 was aligned with
the sequence from the wheat genome database (http://www.
wheatgenome.org/). Multiple sequence alignment was
performed using DNAMAN6.0 software.
Plant and Fungal Materials, Inoculations,
and Treatments
Wheat cultivar XY 6 and Pst race CYR32 were used in this study.
The methods of growing wheat seedlings, inoculation, and
temperature treatment regimes were the same as those
described by Wang et al. (2017a). To analyze the expression of
TaRPM1 under different treatments, leaves were sampled at 0,
48, 96, 192, 194, 198, 204, 216, 240, 264, and 312 hpi with Pst. At
192 hpi, some plants were exposed to the HT (20°C) treatment
for 24 h, whereas the others remained at the NT (15°C)
January 2020 | Volume 10 | Article 1679
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treatment. Control wheat seedlings were inoculated with sterile
distilled water. All samples were immediately flash-frozen in
liquid nitrogen and stored at −80°C. In all experiments, there
were three biological replicates for each treatment and sampling
time combination, and three technical replicates for each sample
were conduced to qRT-PCR analysis.

Hormone Treatments and Tissue-Specific
Expression Analysis
For hormone treatments, leaves of 2-week-old wheat seedlings
were sprayed with one of the following hormones: 100 μM SA,
100 μM MeJA, 100 μM ET, and 100 μM ABA. Each of the
hormones was dissolved in 0.1% (v/v) ethanol (Wang et al.,
2017a). The mock wheat seedlings were sprayed with 0.1% (v/v)
ethanol. Leaves were sampled at 0, 0.5, 2, 6, 12, and 24 h post-
treatment. For tissue-specific expression analysis of TaRPM1,
roots, stems, and leaves were sampled from 2-week-old wheat
seedlings under the NT conditions. Three independent biological
replicates were used for each treatment and sampling time
combination, and three technical replicates were performed for
each sample to qRT-PCR analysis.

RNA Extraction and qRT-PCR Analysis
Total RNA of sampled leaves was extracted using the SV Total
RNA Isolation System (Promega, Madison, WI, USA) according
to the manufacturer’s instructions. First-strand cDNA was
synthesized using the PrimeScript RT Reaction System
(TaKaRa, Tokyo, Japan) according to the manufacturer’s
instruction. qRT-PCR was performed using UltraSYBR
Mixture (Kangwei, Beijing, China) to quantify TaRPM1
expression. Based on our previous study (Wang et al., 2014),
the wheat Ta26s gene (ATP dependent 26s proteasome
regulatory subunit) expressed stably among different
treatments; therefore, Ta26s was used as a reference gene for
analyses. Relative expression of TaRPM1 was analyzed using the
comparative 2–ΔΔCt method. In all the experiments, three
independent biological replicates and three technical replicates
of each biological replicate for each sample were analyzed to
ensure reproducibility and reliability.
BSMV-Mediated TaRPM1 Gene Silencing
To generate the BSMV: TaRPM1-1as and BSMV: TaRPM1-2as
recombined plasmids, two specific cDNA fragments of TaRPM1
with the NotI and PacI restriction sites were inserted into the
BSMV:r vector, respectively. The wheat phytoene desaturase
(TaPDS) gene was inserted into the BSMV:r vector as a
positive control. Two-week-old wheat seedlings were
inoculated with each of the four viruses: BSMV:r, BSMV:
TaPDS, BSMV: TaRPM1-1as, and BSMV: TaRPM1-2as
following a previously published method (Wang et al., 2017a).
Wheat seedlings treated with 1x FES buffer were used as a
negative control. After incubation for 24 h in the dark, all
wheat plants were placed in a growth chamber at 25 ± 1°C.
Once photobleaching was observed in the BSMV: PDS infected
leaves, the fourth leaves were inoculated with Pst race CYR32 and
Frontiers in Plant Science | www.frontiersin.org 3
then maintained at 15 ± 1°C. For estimating the silencing
efficiency of TaRPM1, leaves infected with Pst were sampled at
0, 24, 48, and 120 hpi for qRT-PCR. To confirm the TaRPM1
silencing efficiency and expression level of PR genes, leaves were
harvested at 0, 12, 24, 48, 72, and 120 hptt for RNA extraction
and qRT-PCR (HT was applied at 0 hptt). Three independent
biological replicates were performed for each treatment and
sampling time combination, and three technical replicates for
each sample were conducted to qRT-PCR analysis.
Histological Observations
The sampled wheat leaves were decolorized and stained as
previously described (Wang et al., 2007). The stained leaf
segments were observed under a microscope for hyphal length,
colony linear length, number of haustoria, and uredinial length
using DP-BSW software (Olympus, Corp., Tokyo, Japan).
Autofluorescence of wheat necrotic cells was observed through
epifluorescence microscopy. About 30–50 infection sites were
examined from 8–10 randomly selected leaf segments for each
treatment at each sampling time point. Ten leaves were selected
randomly for each treatment to assess pustules number/leaves
area. There were three biological replicates for each treatment at
each sampling time point.
Subcellular Localization Analysis
The pCambia-TaRPM1-GFP fusion protein and pCambia1302-GFP
control vector were separately introduced into Agrobacterium
tumefaciens strain GV3101 through electroporation. Five-week-old
tobacco plants were transiently transformed with A. tumefaciens
GV3101 containing pCambia-TaRPM1-GFP or pCambia1302-GFP
constructs and then assessed under a fluorescent microscope. An
H2B-mcherry recombination plasmid was used as a nuclear
location marker.

ForWestern blotting, the total protein was extracted from 500
mg of N. benthamiana leaves carrying pCambia-TaRPM1-GFP
and was separated by SDS-PAGE gel. GFP protein was detected
with the anti-GFP antibody (Sigma-Aldrich, Shanghai, China).
Statistical Analysis
Analysis of variance (ANOVA) was conducted using SAS
software (SAS Institute Inc., Cary, NC, USA). Individual mean
comparisons were based on the least significant difference
(LSD) test.
RESULTS

Cloning and Characterization of TaRPM1
We used the 5’ and 3’ rapid amplification of cDNA ends (RACE)
method to clone a 3,325bp cDNA fragment from XY 6, which
was selected due to its high expression level of the
HTSPresistance after inoculation with Pst race CYR32 and
subsequently exposed to high temperature for 24 h. The cDNA
nucleotide sequence contains an open reading frame (ORF) of
January 2020 | Volume 10 | Article 1679
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2,754 bp encoding a predicted protein of 917 amino acids with an
estimated molecular weight of 103.31 kDa and an isoelectric
point value of 6.84. The predicted amino acid sequence of this
protein was identical to that of AetRPM1-like of Aegilops
tauschii; thus, this gene is named as TaRPM1 (GenBank
accession number MN647923). Phylogenetic analysis of
TaRPM1 and other RPM1 proteins showed that TaRPM1 is
most similar to rice OsRPM1 in addition to AetRPM1-like
(Figure 1). A BlastN search at the International Wheat
Genomic Sequence Consortium (IWGSC) revealed that
TaRPM1 shares 94.71% nucleotides with TaRPM1-1AL
(Figure S1).
TaRPM1 Transcript Levels in Different
Tissues and Its Response to Hormones
The relative expression levels of TaRPM1 in different wheat
tissues were determined using quantitative reverse transcription
PCR (qRT-PCR). The TaRPM1 gene was mainly expressed in
leaves and, to a less extent, in roots and stems (Figure 2A). To
study the expression level of TaRPM1 in response to plant
hormones, wheat seedlings were treated with SA, ethylene
(ET), methyl jasmonate (MeJA), and abscisic acid (ABA).
TaRPM1 transcription was significantly (P < 0.05) increased
only upon the SA treatment for 0.5 h. In contrast, when treated
with ABA, the expression level of TaRPM1 was significantly
reduced during 2–24 h (Figure 2B).
Frontiers in Plant Science | www.frontiersin.org 4
TaRPM1 Transcript Level in HTSP
Resistance to Pst
To investigate the expression profile of TaRPM1 in the HTSP
resistance to Pst, both inoculated and non-inoculated wheat
seedlings were subjected to two temperature regimes [high
temperature (HT): 20°C for 24 h to induce HTSP, or normal
temperature (NT): 15°C] at 192 h post–Pst inoculation (hpi), and
the leaves were sampled at several time points up to 312 hpi.
Compared with the mRNA levels in the mock leaves (non-
inoculated leaves), the TaRPM1 transcript level increased in
response to Pst inoculation. TaRPM1 expression from plants
exposed to 20°C for 24 h was higher (P < 0.05) than that under
15°C at 204, 216, and 264 hpi, and peaked at 204 hpi (Figure 3).
TaRPM1 Knockdown Compromised Wheat
HTSP Resistance to Pst
To determine the contribution of TaRPM1 to HTSP in XY 6, we
performed barley stripe mosaic virus (BSMV)–based virus-
induced gene silencing (VIGS). Two TaRPM1-specifc
fragments were integrated separately into the BSMV:g vector to
generate BSMV: TaRPM1-1as and BSMV: TaRPM1-2as
silencing plants. All of the BSMV-inoculated plants showed
stripe mosaic symptoms 10 days after virus inoculation, and
the plants inoculated with BSMV: PDS (phytoene desaturase)
displayed a photobleaching phenotype 15 days after BSMV
inoculation, suggesting the induction of BSMV-mediated
silencing (Figure 4A). qRT-PCR results indicated that
TaRPM1 silencing efficiency was in the range of 70%–80%
(Figure 4E). Next, the fourth leaves of XY 6 plants were
inoculated with Pst race CYR32. Fifteen days after Pst
inoculation, XY 6 showed a susceptible response under the NT
treatment with numerous uredinia on the mock and BSMV:00
leaves (Figures 4B, D). The non-silenced leaves with a higher
expression level of TaRPM1 showed a resistant response to Pst
under the HT treatment; and in contrast, the TaRPM1-silenced
leaves had greater fungal growth than with the non-silenced
leaves under HT (Figures 4C, D, F).

To confirm the host response in TaRPM1-silenced plants
upon Pst infection and the HT treatment, we measured the
transcript levels of two pathogenesis-related (PR) protein genes
in the SA-mediated signaling pathway. TaPR1 (Figure 5A) and
TaPR2 (Figure 5B) were both significantly decreased (P < 0.05)
in the two HT-treated TaRPM1-silenced leaves compared with
the HT-treated but non-silenced leaves.
Histological Observation of Pst Growth
and Host Response
We examined leaves microscopically to determine histological
changes in TaRPM1-silenced leaves at the initial stage of Pst
development (Figures 6A–F). At 48 and 120 hpi, hyphal length
and number of haustorial mother cells did not differ significantly
between BSMV:00 control and TaRPM1-silenced plants (Figures
6G, H).
FIGURE 1 | A phylogenetic tree of RPM1 amino acid sequences based on
multiple alignments. The GenBank accession numbers of RPM1 protein
sequences are as follows: AetRPM1-like (XP_020156667.1), OsRPM1
(XP_015616849.1), SbRPM1 (XP_002449338.1), SiRPM1 (XP_004979032.1),
AtRPM1 (AGC12588.1), VvRPM1 (XP_002265617.2), GmRPM1
(XP_003551698.1), AtRPP8 (AAL32592.1), AtRPP13 (AAF42832.1). Aet,
Aegilops tauschii; Os, Oryza sativa; Sb, Sorghum bicolor; Si, Setaria italic; At,
Arabidopsis thaliana; Vv, Vitis vinifera; Gm, Glycine max.
January 2020 | Volume 10 | Article 1679
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At 192 hpi, plants inoculated with Pst were subjected to one of
the two temperature regimes (HT and NT). For the NT
treatment, fusion of urediniospores was observed (Figures 7A–
C), and there were no apparent differences in the uredinium
length, the linear length of colony per infection site, and the
number of necrotic cells between NT-treated BSMV:00 and NT-
treated TaRPM1-silenced plants. In contrast, uredinia were
sparsely distributed in the HT-treated leaves (Figures 7D–F),
the colony length in the HT-treated TaRPM1-silenced leaves was
grater (P < 0.05) than that the HT-treated but non-silenced
leaves at 24 h post-temperature treatment (hptt) (Figure 7G),
and similarly the uredinium length in the HT-treated TaRPM1-
silenced leaves was greater (P < 0.05) than that in the HT-treated
non-silenced leaves 312 hpi, i.e., 120 h hptt (Figure 7H). There
were fewer (P < 0.05) necrotic cells in the HT-treated TaRPM1-
Frontiers in Plant Science | www.frontiersin.org 5
silenced leaves than in the HT-treated non-silenced leaves from
24 to 120 hptt (Figure 7I).
TaRPM1 Localization
Prediction of subcellular localization using WoLF PSORT
indicated that TaRPM1 was most likely located in the
cytoplasm (kNN value, cyto: 4, plas: 4, chlo: 2, E.R.: 2, nucl: 1).
To verify this prediction, we produced the fusion construct 35S-
TaRPM1-GFP and the control vector 35S-GFP and transformed
them into tobacco (Nicotiana benthamiana) cells. Fluorescence
microscopy showed that the TaRPM1-GFP fusion protein was
expressed in both the cytoplasm and the nucleus, similarly to the
control vector 35S-GFP (Figure 8A). To confirm these results,
we further conducted Western blot to analyze the stability of the
FIGURE 2 | The relative transcript levels of TaRPM1 in different wheat tissues and in response to different hormones. (A) Tissue-specific expression level of
TaRPM1. (B) Responses to hormones: ABA, abscisic acid; ET, ethylene; SA, salicylic acid; MeJA, methyl jasmonate. The mock control was treated with 0.1% (v/v)
ethanol. Wheat leaves were sampled at 0, 0.5, 2, 6, 12, and 24 h post–hormone treatment. There were three biological replicates for each treatment and each
sampling time point. Three technical replicates for each sample were conducted. Relative transcript levels of TaRPM1 were calculated using the comparative
threshold (2−DDCT) method, relative to the mock control at every sampling point. The expression level was standardized as 1 at 0 h. Duncan’s multiple comparison
test was conducted to compare between time points for each hormone treatment. The TaRPM1 expression levels do not differ significantly if they contain at least
one common lowercase letter among time points for each hormone treatment.
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TaRPM1-GFP fusion protein and found both GFP and the
TaRPM1-GFP fusion protein expressed successfully (Figure 8B).
DISCUSSION

NBS-LRR genes, the largest class of R genes, have been reported
to play important roles in initiating plant pathogen-triggered
immunity (Tameling and Takken, 2008; Gao et al., 2010). As
intracellular receptors, NBS-LRR proteins could bind pathogen
effectors directly or indirectly through perceiving effector-induced
modifications to other proteins, inducing host defense responses
(Eitas and Dangl, 2010; Li et al., 2015). To date, numerous NBS-
LRR genes have been reported to be involved in resistance to
pathogens (Axtell and Staskawicz, 2003; Mackey et al., 2003; Shao
et al., 2003; Cherkis et al., 2012; Jun et al., 2016; Macqueen et al.,
2016; Zhu et al., 2017). However, functions of NBS-LRR genes in
the wheat HTSP to Pst remain unknown. In the present study, we
demonstrated that TaRPM1 is a candidate gene required for
HTSP resistance to Pst. Furthermore, silencing TaRPM1 also
affected Pst colony development as well as uredinium length. It
may be, therefore, concluded that TaRPM1 positively contributes
to the HTSP resistance to Pst in wheat cultivar XY 6.

There are differences in effects of temperature on various R
gene–mediated resistance. Many defense responses activated by
R genes can be suppressed at higher temperature. For instance,
SNC1 (Yang and Hua, 2004), N (Wang et al., 2009), and RPS4-
mediated resistance are inhibited at 28°C (Gassmann et al., 1999),
whereas Rx gene against Potato virus X is inactive at 30°C
(Bendahmane and Baulcombe, 1999). In contrast, Yr36 could
induce HTAP resistance to Pst when wheat were grown above
Frontiers in Plant Science | www.frontiersin.org 6
25°C (Fu et al., 2009). Different from these R genes, a short period
of exposure 20°C in the early stage of Pst development can activate
TaRPM1-meditated resistance to Pst, but not at 15°C. These results
showed differences in the temperature sensitivity of R protein
activation. Plants with temperature-sensitive R genes may have
evolved to balance the energies required for growth and defense
when perception of a temperature change (Alcázar and Parker,
2011). For example, the temperature change could result in (i)
reorganization of energy resources, which may be followed by
reducing available nutrient to rust (Viola and Davies, 1994; Grof
et al., 2010), or (ii) production of metabolites that may inhibit the
fungal growth (Berger et al., 2007). Thus, we speculate that
resistance changes induced by temperature may be through
dynamic interactions between plants and the fungal pathogen.

P. syringae effectors AvrRpm1 and AvrB induce RIN4
phosphorylation, which is required for activation of RPM1-
mediated plant defense responses (Mackey et al., 2002). In
contrast to AtRPM1, the interaction between TaRPM1 and
TaRIN4 was not detected using the yeast two-hybrid system in
the present study (data not shown), indicating that the molecular
mechanism of TaRPM1 involved in the HTSP resistance to Pst
differs from AtRPM1-mediated resistance against P. syringae.
Further investigation will shed light on whether TaRPM1
recognizes the effector(s) directly or indirectly with help from
other proteins.

NBS-LRR proteins that are involved in the host defense
responses may differ in their subcellular locations. RRS1-R
(Bernoux et al., 2008), RPS4 (Wirthmueller et al., 2007),
MLA10 (Shen et al., 2007), N (Caplan et al., 2008), and Rx1
(Slootweg et al., 2010) are located in the nucleus; host defense
responses are critically dependent on the nuclear localization of
FIGURE 3 | The expression profiles of TaRPM1 in high-temperature seedling-plant (HTSP) resistance to Puccinia striiformis f. sp. tritici (Pst). NT, wheat leaves were
maintained under normal temperature (15°C) after inoculated with Pst. HT, wheat leaves were inoculated with Pst and transferred to high temperature (20°C) for 24 h
at 192 h post-inoculation (hpi). NT mock, non-inoculated wheat leaves were exposed to 15°C. HT mock, non-inoculated wheat leaves were exposed to 20°C for 24
h at 192 hpi. Three independent biological replicates were performed for each treatment and sampling time combination, and three technical replicates for each
sample were conducted. The TaRPM1 expression level in the NT mock leaves at 0 hpi was standardized as 1. Duncan’s multiple comparison test was conducted at
the same time point within four different treatments. There are no significant differences at the same time point among the treatments if they share at least one
lowercase letter.
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these NBS-LRR proteins. In addition, plasma-membrane
localization of Arabidopsis thaliana RPS5 and RPM1 (Boyes
et al., 1998; Gao et al., 2011; Qi et al., 2012) is required for their
functions. The present study showed that TaRPM1 is located in
both nucleus and cytoplasm, differing from A. thaliana RPM1.
Further research is needed to assess whether TaRPM1 nuclear
and/or cytoplasm distribution is of critical importance for its
function in the HTSP resistance to Pst.

Various host defense responses, including ROS production
and programmed cell death, are activated upon perception of
pathogens through NBS-LRR proteins (Andersson et al., 2006;
Frontiers in Plant Science | www.frontiersin.org 7
Gao et al., 2013; Qi and Innes, 2013). Arabidopsis plants with the
GhDSC1-overexpressing heterologously display strong resistance
toVerticillium, with ROS accumulation abundantly and cell death
(Li et al., 2019). In our study, silencing TaRPM1 has no effects on
the number of necrotic cells for the NT treatment. In contrast, the
number of necrotic cells in the HT-treated TaRPM1-silenced
leaves significantly decreased compared with the HT-treated non-
silenced leaves, indicating cell death induced by TaRPM1 was
only promoted for the HT treatment. Moreover, number of
necrotic cells in the HT-treated TaRPM1-silenced leaves was
still more than that in the NT-treated TaRPM1-silenced leaves
FIGURE 4 | Functional analysis of TaRPM1 in HTSP resistance to Pst using virus-induced gene silencing assay. (A) Phenotypic observation on the second leaves
inoculated with FES buffer (mock), BSMV: TaPDS, BSMV:00, BSMV: TaRPM1-1as, and BSMV: TaRPM1-2as. The mock leaves and leaves pre-inoculated with
BSMV virus were all challenged with Pst race CYR32, followed by NT (B) and HT (C) treatment at 192 hpi. (D) Quantification of pustules number in a certain area on
different treatment leaves. (E) The relative expression levels of TaRPM1 in silenced and non-silenced leaves infected with CYR32. Leaves were collected at 0, 24, 48,
and 120 hpi with CYR32 for RNA extraction and quantitative reverse transcription PCR (qRT-PCR analysis). The TaRPM1 transcript level in non-silenced leaves at
every sampled time point was standardized as 1. (F) The relative expression levels of TaRPM1 in the silenced and non-silenced leaves inoculated with CYR32 under
NT and HT treatment. RNA samples were isolated from the leaves first infected with barley stripe mosaic virus (BSMV), and then inoculated with CYR32 at 0, 12, 24,
48, 72, and 120 h post-temperature treatment (hptt) (0 hptt: HT was applied, namely 192 hpi). Three independent biological replicates were performed for each
treatment and sampling time combination, and three technical replicates for each sample were conducted. The TaRPM1 transcript level in NT-treated non-silenced
leaves at 0 hptt was standardized as 1. If the treatments share at least one common lowercase letter at the same time point, the TaRPM1 expression levels do not
differ significantly among the these treatments.
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at 48, 72, and 120 hptt, suggesting that genes other than TaRPM1
might also be involved in regulating the HTSP to Pst.

Several studies have shown that hormones are involved in the
NBS-LRR protein-mediated defense responses (Qi and Innes,
Frontiers in Plant Science | www.frontiersin.org 8
2013; Roberts et al., 2013). SA, an important plant defense
signaling molecule against biotrophic pathogens, increases
transcription of many PR proteins and systemic acquired
resistance (SAR) (Liu et al., 2018). Numerous R gene–mediated
FIGURE 5 | The relative transcript levels of TaPR1 (A) and TaPR2 (B) in TaRPM1-silenced plants infected with race CYR32 of P. striiformis f. sp. tritici exposed to
different temperature treatments. Three independent biological replicates were performed for each treatment and sampling time combination, and three technical
replicates for each sample were conducted. The expression levels of TaPR1 and TaPR2 in the NT-treated leaves pre-inoculated with BSMV:00 at 0 hptt was
standardized as 1. There are no significant differences at the same time point among treatments if they share at least one common lowercase letter.
FIGURE 6 | Histological observations of Pst development and host responses in TaRPM1-silenced leaves under normal temperature. The images of the fourth
leaves inoculated with BSMV:00 (A, D), BSMV: TaRPM1-1as (B, E), and BSMV: TaRPM1-2as (C, F) were taken under a fluorescence microscope at 48 hpi (A, B,
C, bar, 50 mm) and 120 hpi (D, E, F, bar, 100 mm). SV, substomatal vesicle; HMC, haustorial mother cell; IH, infection hypha; SH, secondary hypha. Hyphal length
(G) and the number of haustorial mother cells (H) were assessed at 48 and 120 hpi using the DP-BSW software after Pst were stained. There are no significant
differences at the same time point among treatments if they share at least one common lowercase letter. Three independent biological replicates were performed for
each treatment and sampling time combination.
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FIGURE 7 | Silencing TaRPM1 in wheat leaves induces growth of the Pst under high temperature. The urediniospores in non-silenced leaves (A, D, bar 100 mm) and
TaRPM1-silenced (B, C, E, F, bar, 100 mm) under NT (A, B, C) and HT (D, E, F) were observed and photographed at 24 hptt. The colony length (G) uredinium lengths (H)
and numbers of necrotic cells (I) from 30–50 randomly selected infection sites were calculated. Three independent biological replicates were performed for each treatment
and sampling time combination. There are no significant differences at the same time point among treatments if they share at least one common lowercase letter.
FIGURE 8 | Subcellular localization of protein TaRPM1. (A) The TaRPM1-GFP fusion protein and green fluorescent protein (GFP) were separately expressed in Nicotiana
benthamiana. The histone protein, AtH2B, was used as a nuclear location marker gene. Bar, 20 mm. (B) Western blot analysis of GFP and TaRPM1-GFP fusion protein.
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resistance responses are related to the SA signaling pathway
(Shirano et al., 2002). Treatment with SA in Arabidopsis leads
to increased expression of R genes RPW8.1 and RPW8.2, and
resistance to powdery mildew (Xiao et al., 2003). NBS-LRR R
gene TaRGA is induced significantly by exogenous applications of
SA, and silencing TaRGA leads to compromised resistance to
wheat powdery mildew cause by Blumeria graminis f. sp. tritici
and reduced expression of PR1 (Wang et al., 2016). In the present
study, the highest induction of TaRPM1 occurred after the SA
treatment for 0.5 h, and TaPR1 and TaPR2 (two marker genes of
the SA pathway) had significantly lower expressions in the HT-
treated TaRPM1-silenced plants than in non-silenced HT-treated
plants, indicating that TaRPM1 plays a positive role in the HTSP
resistance to Pst through the SA signaling pathway.

In summary, we demonstrated that NBS-LRR gene TaRPM1
positively contributes to the HTSP resistance to Pst in wheat
cultivar XY 6. In addition, the present results suggested that
TaRPM1 confers HTSP resistance to Pst though the SA signaling
pathway. However, further research is needed to investigate
whether TaRPM1 could recognize effector(s) and to ascertain
the exact molecular mechanisms in the TaRPM1-mediated
HTSP resistance to Pst.
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