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Botrytis cinerea is an important necrotroph in vineyards. Primary infections are mostly
initiated by airborne conidia from overwintered sources around bloom, then the fungus
remains quiescent from bloom till maturity and egresses at ripeness. We previously
described in detail the process of flower infection and quiescence initiation. Here, we
complete the characterization studying the cross-talk between the plant and the fungus
during pathogen quiescence and egression by an integrated transcriptomic andmetabolic
analysis of the host and the pathogen. Flowers from fruiting cuttings of the cv. Pinot Noir
were inoculated with a GFP-labeled strain of B. cinerea at full cap-off stage, and molecular
analyses were carried out at 4 weeks post inoculation (wpi, fungal quiescent state) and at
12 wpi (fungal pre-egression and egression states). The expressed fungal transcriptome
highlighted that the fungus remodels its cell wall to evade plant chitinases besides
undergoing basal metabolic activities. Berries responded by differentially regulating
genes encoding for different PR proteins and genes involved in monolignol, flavonoid,
and stilbenoid biosynthesis pathways. At 12 wpi, the transcriptome of B. cinerea in the
pre-egressed samples showed that virulence-related genes were expressed, suggesting
infection process was initiated. The egressed B. cinerea expressed almost all virulence
and growth related genes that enabled the pathogen to colonize the berries. In response
to egression, ripe berries reprogrammed different defense responses, though futile.
Examples are activation of membrane localized kinases, stilbene synthases, and other
PR proteins related to SA and JA-mediated responses. Our results indicated that hard-
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green berries defense program was capable to hamper B. cinerea growth. However,
ripening associated fruit cell wall self-disassembly together with high humidity created the
opportunity for the fungus to egress and cause bunch rot.
Keywords: Botrytis cinerea, hard-green berry, ripening, egression, quiescence, Vitis vinifera
INTRODUCTION

Botrytis cinerea is a necrotrophic fungus responsible for
significant economic losses in vineyards by causing bunch rot.
The disease is mostly observed on ripe berries, following rainfalls
or a long period of high humidity close to harvest, and develops
into gray mold. Primary infections are usually initiated by
airborne conidia from overwintered sources (Nair et al., 1995;
Elmer and Michailides, 2004) and mostly occur at bloom leading
to quiescent infection (McClellan and Hewitt, 1973; Keller et al.,
2003; Pezet et al., 2003b). Quiescent infection is an interesting
phenomenon in B. cinerea–plant interaction where the pathogen
spends prolonged time in the host tissue asymptomatically,
without being aggressive (Williamson et al., 1987; McNicol and
Williamson, 1989; Coertze and Holz, 2002; Shaw et al., 2016).
Recently, it has been observed in grapevine that B. cinerea
inoculated at full bloom stays quiescent until full maturity and
egresses at ripening causing bunch rot (Haile et al., 2017; Haile
et al., 2019).

What drives and keeps B. cinerea into quiescence until berry
ripening is not fully known, but preformed and induced defense
mechanisms, including immature berries skin features such as
polyphenols in the berry skin cell wall and the thickness of the
epidermal cell layer complex, have been proposed as part of the
ontogenic resistance to B. cinerea (Goetz et al., 1999; Keller et al.,
2003; Deytieux-Belleau et al., 2009). Molecular analysis has
shown that upon contact with the grapevine flower, B. cinerea
induces genes, both encoding known virulence factors, such as
boctinic acid (BcBOA6), botrydial phytotoxin (BcBOT1 and
BcBOT2), polygalacturonase 2 (BcPG2), and superoxide
dismutase 1 (BcSOD1) encoding genes, and contributing to the
infection program, such as oxaloacetate acetyl hydrolase
(BcOAH), endo-b-1,4-xylanase (BcXYN11A), and glutathione
S-transferase (BcGST1) encoding genes, to cause disease (Haile
et al., 2017). However, no visible disease progress was observed
despite the confirmed presence of the pathogen on the immature
berries (Haile et al., 2017). As a response to the infection attempt,
grapevine flowers react by reprogramming the expression of
genes encoding antimicrobial proteins, monolignol biosynthesis
(VvPAL, VvCOMT, VvCCoAMT, and VvCAD), stilbenoids
(VvSTSs), and prompting oxidative burst (VvGLP3). These
induced defense responses of the grapevine flowers are
presumably involved in B. cinerea quiescence (Haile et al.,
2017). Another study highlighted the involvement of the
salicylic acid (SA) dependent defense pathway together with
the accumulation of ROS and the activation of stilbene and lignin
biosynthesis as main factors arresting B. cinerea progress on
véraison berries but not in the ripe ones, that were fully
susceptible to the pathogen (Kelloniemi et al., 2015).
.org 2
The transition from a quiescent to an active infection
mostly occurs during fruit ripening. Physiological and
biochemical changes that occur in the fruit during ripening,
together with favorable climatic conditions during ripening, are
suggested to trigger the transition (Prusky, 1996; Barnes and
Shaw, 2002; Prusky et al., 2013). Cell wall loosening and
appearance of disassembled cell wall substrates (Cantu et al.,
2008), decrease in preformed and inducible host defense
responses and change in hormonal balance and pH (Prusky,
1996; Prusky et al., 2013) are the major events during berry
ripening that could enhance the egression and outgrowth of a
quiescent necrotrophic pathogen. Egression impairs product
quantity, quality, and appearance.

Global expression profiling of both pathogen and host at
quiescent and egression stages of the infection enables to gain
insights into signaling, metabolic pathways, transcriptional
control, and defense responses involved in the cross-talk. Here
we report the simultaneous transcriptome and secondary
metabolite analyses of the B. cinerea–grapevine pathosystem, at
hard-green and ripe stages, after host inoculation with B. cinerea
conidia at full cap-off stage. Our results revealed that grapevine
berries were able to keep the fungus quiescent for 12 weeks upon
flower inoculation activating defense responses similar to the
ones activated at bloom (Haile et al., 2017). On the other side, the
pathogen was able to maintain its basal metabolic activities
during quiescence and cause disease when the fruit activates
some physiological responses which favor its egression, i.e. at
ripening. These new molecular evidences represent a valuable
resource in order to define the most appropriate infection stages
for treatments against B. cinerea.
MATERIALS AND METHODS

Fungal Isolate, Plant Material, and
Inoculation
A genetically transformed B. cinerea strain, B05.10, expressing a
green fluorescent protein (GFP) was used as in Haile et al., 2017.
Grapevine fruiting cuttings obtained from Pinot Noir winter
woody cuttings were grown and infected as described in Haile
et al., 2017.

Flowers at full cap–fall stage [EL25/26, according to Eichorn
and Lorenz (1977)] were inoculated by placing a 1.5 µl droplet of
either conidia solution of GFP-labeled B05.10 (2*105 ml–1) or
distilled water (mock inoculation) close to the receptacle area.
Conidia were obtained from B. cinerea grown on PDA at 25°C
for 10 days, and the concentration was determined using a
hemacytometer under light microscope. Inoculation was made
on three biological replicates, considering the inflorescence from
January 2020 | Volume 10 | Article 1704
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a fruiting cutting as one biological replicate. After inoculation,
the whole pot was immediately bagged in a clear plastic bag
sprayed with water, for 24 h, in order to ensure high humidity
around the inoculated inflorescence, which is an essential factor
for conidial germination. Inoculated inflorescences were
regularly inspected for gray mold growth until fruit ripening.
At full coloring (approximately 10 weeks post inoculation, wpi),
bunches were bagged for 2 weeks with plastic bags, to create
favorable humidity for B. cinerea to egress.

Samples were collected at two time points, at 4 wpi (hard
green berries), and at 12 wpi (ripe berries) when Botrytis
egression was evident on a subset of berries. For the latter time
point, two kinds of samples were collected: berries with visible
egressed Botrytis and berries without visible Botrytis sign from a
cluster. Samples without visible Botrytis signs are hereafter called
berries with “pre-egressed” Botrytis, while the others are called
berries with “egressed” Botrytis. Samples were snap frozen in
liquid nitrogen and stored at -80 °C until use. For transcriptome
and polyphenol analyses, fleshy exocarp was excised from
individual fruits at the site of inoculation or where Botrytis
symptoms were visible.
RNA Extraction, RNA-Seq, and qPCR
Analyses
Extraction of RNA was performed as described in Haile et al.,
2017. Single-end reads of 100 bp long sequences were obtained
for each sample using a Next Generation Sequencing Platform
HiSeq 1500 (Illumina, San Diego, CA). Approximately 20
million strand-specific sequences were obtained, except for
pre-egressed samples (above 45 million), where the sequence
depth was doubled in order to obtain more reads of Botrytis
origin. The quality of the reads was checked using FastQC
(version 0.11.2) software and pre-processed by cutadapt
[version 1.8.1; Martin (2011)] for adapter. Genome assemblies
of grapevine (12Xv1, http://genomes.cribi.unipd.it/) and B.
cinerea (strain B05.10) (ASM83294v1, http://fungi.ensembl.org)
were used as reference sequences. The alignment was made by
Subread aligner (Liao et al., 2013) and raw read counts were
extracted using the featureCount read summarization program
(Liao et al., 2014). All raw RNA-Seq read data are deposited in the
NCBI Short Read Archive (http://www.ncbi.nlm.nih.gov/sra/)
under the BioProject accession code PRJNA414966.

The RNA sequences of B. cinerea (B05.10), from the
PDB cultured conidia (used in Haile et al., 2017), were also used
in this study as a control for determining the in planta
Botrytis transcripts.

Finally, cDNA synthesis and quantitative polymerase chain
reaction (qPCR) assay were carried out as described in Haile
et al., 2017. For qPCR assay, each amplification reaction was run
in triplicate, and VvACT and VvGAPDH, and BcRPL5 and
BcTUBA genes were selected using GeNORM (Vandesompele
et al., 2002) as reference genes for grapevine and B. cinerea gene
expression normalization, respectively. Amplification efficiencies
of each primer pair were calculated with LinReg software (Ruijter
et al., 2009). The obtained amplification efficiency was used to
calculate the relative quantity (RQ) and normalized relative
Frontiers in Plant Science | www.frontiersin.org 3
quantity (NRQ) according to Hellemans et al. (2007). All
primers and corresponding gene identifiers are listed in
Supplemental Table S1.
Polyphenol Extraction and Analysis
Extraction of polyphenol and ultra high performance liquid
chromatography–diode array detection–mass spectrometry
(UHPLC–DAD–MSMS) analysis were carried out as described
in Haile et al., 2017.
Statistical Analysis
qPCR Data
Statistical analyses of the qPCR results were made after log2
(NRQ) transformation (Rieu and Powers, 2009). Statistical
significance was calculated by Tukey’s honestly significant
difference test or an unpaired heteroscedastic Student’s t test,
considering each technical replicate as an individual sample.
RNA-Seq Data
For differential expression analysis, the voom method (Law et al.,
2014) was applied to estimate the mean–variance relationship of
the log-counts and produce a precision weight for each
observation that was fed into the limma empirical Bayes
analysis pipeline.(Smyth, 2004). Two-sample t-test was used
for transcripts of grapevine at 4 wpi (mock inoculated vs
Botrytis inoculated) and B. cinerea at egression (PDB-cultured
Botrytis vs egressed Botrytis), whereas one-way ANOVA for
grapevine transcripts at 12 wpi (mock inoculated vs pre-
egressed Botrytis vs egressed Botrytis). Genes were considered
differentially expressed (DE) if they fulfill a p-value of < 0.01 and
an absolute fold change of ≥ 2.0.

Principal component analysis (PCA) was performed using
prcomp function in R on scale-normalized counts. K-means
clustering of differentially expressed genes based on fold change
values (using cosine distance) was performed using the kmeans
function in R.
Functional Classification Based on Gene
Ontology, Vitisnet, and Mapman
Grapevine DE genes were subjected to enrichment analyses
using: (1) VitisNet annotation within the VESPUCCI grapevine
gene expression compendium (http://vespucci.colombos.fmach.it)
(Grimplet et al., 2012; Moretto et al., 2016), p-value < 0.01; (2)
customized GO annotation and annotated reference, taken from
CRIBI annotation (http://www.cribi.unipd.it/), using AgriGO
analysis tool (http://bioinfo.cau.edu.cn/agriGO/analysis.php; Du
et al., 2010). Enriched GO terms (FDR <0.01) were visualized
using the ‘Reduce + Visualize Gene Ontology’ (REViGO)
webserver (http://revigo.irb.hr; Supek et al., 2011). Additionally,
the differentially expressed genes were visualized in the context of
biotic stress pathway using theGrapeGen 12Xv1 annotations version
(Lijavetzky et al., 2012) with the help of MapMan tool (Thimm
et al., 2004).
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RESULTS

Botrytis cinerea Inoculation of Grapevine
Grapevine flowers were inoculated with a GFP-labeled B05.10
strain at full cap-off stage by placing 300 conidia around the
receptacle area, and the infection was monitored until ripening,
for 12 weeks (Figure 1). No visible symptoms or sign of the
fungus growth were observed until full coloring. The proportion
of berries carrying B. cinerea at hard-green berry stage (4 wpi;
Figure 1B) derived from flower inoculation was checked by
plating out on selective media (Figure 2). B. cinerea was present
quiescently on 80% of the asymptomatic berries in the samples
washed or not with water; however, the proportion dropped to
40% when the berries were surface sterilized, suggesting that the
fungus mostly resides in the first few outer epidermal cell layers,
those affected by the sterilization procedure. At 10 wpi, at full
color change, bunches were bagged with plastic bags to increase
humidity and favor B. cinerea growth (Barnes and Shaw, 2002;
Frontiers in Plant Science | www.frontiersin.org 4
Elmer and Michailides, 2004; Carisse, 2016). Two weeks later,
egression of B. cinerea was observed (Figure 1C), and cross
checking the strain using fluorescence microscopy confirmed
that the strain was the GFP-labeled B05.10 inoculated at cap-off
stage (Figure 1D).

Dual Transcriptomic Analysis of Grape
Berries and B. cinerea During Their
Interaction
Hard green (4 wpi) and ripe berries (12 wpi), which were mock-
and Botrytis-inoculated at cap-off stage, were harvested in three
biological replicates for dual (plant and fungus) transcriptome
analysis using the RNA-seq method. The fraction of reads
uniquely mapped to the Vitis vinifera reference genome ranged
from 13 to 88%, the smaller proportion being from samples with
egressed B. cinerea. The fraction of reads uniquely mapped to B.
cinerea reference genome was below 1% for the 4 wpi and pre-
egressed samples, up to 67% for the B. cinerea egressed samples,
FIGURE 1 | Botrytis cinerea infected grapevine flowers and their development until berry ripening. (A) Flowers 24 hours post inoculation with GFP-labelled B05.10
strain at full cap-fall stage (EL25/26). (B) Healthy looking, asymptomatic, hard-green berries at 4 weeks post inoculation (wpi). (C) Egression of B. cinerea at ripening
(12 wpi). (D) Fluorescence of mass of mycelia isolated from the outgrown B. cinerea; white bar represents 50 µm.
January 2020 | Volume 10 | Article 1704
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and up to 78% for PDB grown Botrytis samples (Supplemental
Table S2).

The biological variability of all the samples was assessed using
PCA on the gene expression data. Concerning grapevine data,
samples were largely separated by growth stage along the first
principal component, but within each growth stage most of the
variation in gene expression was explained by the infection
process (Figure 3A). With regard to B. cinerea, the PCA
highlighted remarkable difference in gene expression between
the egression stage on berries at ripening and the growth in liquid
PDB medium (Figure 3B).

For grapevine genes, differential expression was computed
between Botrytis- and mock-inoculated berries imposing a p-
value < 0.01 and an absolute fold change > 2 (Supplemental
Figure S1). At 4 wpi, 599 genes of grapevine were differentially
expressed (DE) due to B. cinerea infection, whereas the number
increased to 2,296 at 12 wpi (Figure 3C, Supplemental Tables S3
and S4). Only 157 genes were in common, suggesting that the host
response is quite different at molecular level at the two growth
stages. Concerning B. cinerea genes, for samples at 4 wpi and at 12
wpi (pre-egressed), it was not possible to compute DE genes due
to limited amount of fungal RNA in the samples (Supplemental
Tables S6 and S7). However, for the egression stage 3,548 DE
genes were obtained from the comparison with PDB cultured
Botrytis (Figure 3C and Supplemental Table S5). To gain more
Frontiers in Plant Science | www.frontiersin.org 5
information from the samples at 4wpi and 12 wpi (pre-egressed),
qPCR assay was used to study the expression profile of selected
fungal genes.

The gene expression values obtained from RNA-seq were
validated using qPCR assay. To this end, the expression of 18
grapevine genes having different expression profile from RNA-
seq (Supplemental Table S8) were analyzed and a strong
correlation (R2 = 0.96) was observed between the results
obtained with the two techniques (Figure 3D).

The total number of DE genes of the grapevine berries
(2,738), considering both hard-green and ripe stages, were
grouped into 12 distinct clusters according to their expression
pattern, which can be grouped in six major expression profiles
(Figure 4). Profile A comprised cluster 1 and 2, where almost all
of the genes were induced both in hard-green and ripe stages,
albeit with various extent. Genes in profile B, combining cluster 3
and 4, exhibited an induced expression trend due to quiescent B.
cinerea in the hard-green berry but down-regulated or unaffected
during pre-egression and egression stages of the pathogen at
ripening. Profile C (cluster 5) included genes whose expression
was not affected during B. cinerea quiescence in the hard green
berry and pre-egressing at ripe stage, however, they were induced
during egression. Genes in profile D (cluster 7, having only 13
genes) were down-regulated at hard-green and not affected at
ripe stages. Majority of the genes in profile E were up-regulated
during pre-egression and egression at ripening, while the
opposite was the case for genes in profile F, where in both
profiles the genes were not affected by quiescent B. cinerea in
hard-green berry.

The molecular network enrichment analysis of the gene set of
each profile, based on VitisNet annotation, showed an
abundance of transcripts in functional classes which are
usually affected by biotic stress (Figure 4). A considerable
number of genes annotated as belonging to phenylpropanoid
biosynthesis, phytohormone signaling, and encoding
transcriptional factors (TF) were mainly represented in profile
A and B; genes involved in protein processing in profile C; genes
of amino acid and glutathione metabolisms in profile E; and
genes of carbohydrate metabolism in profile F.

Transcriptional Alterations of B. cinerea
During Quiescent Infection, at 4 wpi
The number of reads mapping on the B. cinerea transcriptome
detected in the inoculated samples at 4 wpi was very low. The
reason could largely be linked to a reduced fungal biological
activity as well as to the little fungal mass present at the
quiescent stage. Only about 20% of the B. cinerea genes
(1,926) had at least one raw read in all of the three biological
replicates. Within this set, those represented by an average of at
least ten reads (only 289) were considered as in planta expressed
fungal transcript and they were functionally annotated using
Blast2GO (Conesa et al., 2005) and Amselem et al. (2011)
(Supplemental Table S6). Using the Combined Graph
Function of Blast2GO, the GO slim terms metabolic processes,
structural constituent of ribosome, and intracellular were mostly
represented in the 289 genes (Supplemental Table S9). Fifteen
FIGURE 2 | Proportion of berries showing B. cinerea at 4 wpi, following
flower inoculation with the fungus, as determined by plating out. Plating out
was made on selective media (PDA with Hygromycin B, 70 µg/ml) to check
the presence of quiescent B. cinerea before (NW) or after washing (W), or
after surface sterilization (SS). Mean proportion of berries (8–10 berries from
each of six biological replicates) showing GFP-labeled B05.10 growth on the
selective media. Error bars indicate standard error. Mean proportions labeled
with the same letter are significantly not different, according to Tukey’s
honestly significant difference test (P ≤ 0.05), using one-way ANOVA.
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genes from this group, selected on the basis of their function, are
presented in Table 1. The expression profile of nine of them,
involved in functions such as cell wall metabolism, redox-
reaction, and transcriptional regulation, was further examined
using qPCR assay (Figure 5). As depicted in Figure 5, all
with the exception of Bcin07g01540 and Bcin13g05810 had a
higher relative expression during quiescent infection at hard
green stage than during initial infection, pre-egression, and
egression stages.

These results suggested that the biological activities of the
fungus were not totally switched off during quiescent infection.
The expression of Bcin01g09570 and Bcin07g01540 genes, which
encode putative yt521-b-like splicing and elongation factor 2
proteins, respectively, and the numerous genes encoding for
ribosomal proteins (Table 1 and Supplemental Table S6)
indicated instead that protein synthesis activities were carried
out during quiescent infection stage. Moreover, the expression of
stress and defense related genes such as Bcin12g06170, encoding
Frontiers in Plant Science | www.frontiersin.org 6
a protein similar to an allergen, and Bcin11g04800, encoding a
putative chitin deacetylase protein, highlighted that the
interaction between the pathogen and the plant was not
passive. Chitin deacetylase activity has been speculated to be
involved in protecting the fungal cell wall from degradation by
plant chitinases (Deising and Siegrist, 1995; El Gueddari et al.,
2002). Moreover, Bcin08g05540, encoding putative CND1
protein, Bcin14g04260, annotated as a putative cell surface
protein and Gas2, and Bcin02g06140, encoding a putative CP2
transcription factor protein, appeared to be expressed more
during quiescent infection at 4 wpi as compared to initial and
egression stages of infection (Figure 5). These proteins should be
involved in maintaining cell wall integrity (Garrett-Engele et al.,
1995; Paré et al., 2012).

In addition to cell wall remodeling in which the fungus was
engaged, the involvement of genes detoxifying alcohols,
aldehydes, and ROS such as Bcin13g05810, Bcin13g05580, and
Bcin03g01920 (Table 1 and Supplemental Table S6) during
FIGURE 3 | Global evaluation of the RNA-seq data and of the differentially expressed (DE) genes. PCA displaying the biological variations among samples, for
grapevine genes (A) and B. cinerea genes (B). Ctrl, mock inoculated; Trt, B. cinerea inoculated; Bc, Botrytis cinerea; HG, hard-green berry; Eg, B. cinerea egression
state; Peg, B. cinerea pre-egression state. Raw count data were used after precision weight was calculated by the voom method (Law et al., 2014). (C) Number of
DE genes (P < 0.01, absolute fold change > 2.0) upon B. cinerea infection at 4 weeks post inoculation (wpi) and 12 wpi in grape berry and during egression in B.
cinerea; upregulated genes (red) and downregulated genes (black). The Venn diagram was generated using Venny v2.1.0 (Oliveros, 2015). Bc, Botrytis cinerea; Eg,
egression; HG, hard green; Peg, pre-egession. (D) Correlation of gene expression values obtained by RNA-seq and qPCR. Relative expression levels were
calculated for 18 Vitis genes and an R2 value of 0.96 was obtained comparing the results obtained with the two techniques.
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FIGURE 4 | Profiles of grapevine berry trancripts at hard-green and ripe
stages in response to B. cinerea inoculation. K-means clustering of grapevine
genes based on the cosine distance of their log2 (fold change) values. Genes
that showed at least twofold expression difference with P-value < 0.01 were
considered, and clustered into 12 clusters. The clusters were grouped into six
major profiles (A, B, C, D, E, and F). Molecular enrichment analysis based on
VitisNet is provided for each group.
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quiescent state indicated that the fungal cell was trying to
overcome stresses. In fungal cells, it is known that stress causes
ROS production that can lead to aldehydes and alcohols
accumulation (Asiimwe et al., 2012).
Frontiers in Plant Science | www.frontiersin.org January 2020 | Volume 10 | Article 17047
In summary, the extremely low number of B. cinerea genes
expressed in planta seconded by the absence of any
macroscopically noticeable disease progress at 4 wpi suggests
that the pathogen was at its basal metabolic activity, but some
specific stress related functions were in place.

Response of Hard-Green Berries to
Quiescent B. cinerea, at 4 wpi
In contrast to the fungus, for which not many transcripts were
observed, 599 grapevine genes were regulated due to the
quiescent presence of B. cinerea, only 21 genes of them being
down-regulated (Figure 3C and Supplemental Table S3). In this
set of Botrytis-induced genes, functional classes related to
responses to stress, amino acid metabolism for redox activity
and phenylpropanoid pathways, signaling, and TFs were over-
represented (Table 2 and Supplemental Table S10). The
visualization of individual gene responses in biotic stress
pathway using MapMan tool also confirmed a remarkable
induction of genes related to signaling, TFs, proteolysis, PR
proteins, and secondary metabolism (Figure 6).

About one-sixth of the differentially expressed genes were
those involved in signaling, dominated by the receptor-like
protein kinases (RLKs) (Table 3 and Supplemental Table S3).
Of the membrane-localized RLKs which were switched on
during infection initiation at flowering, Clavata1 receptor
kinase (CLV1), Brassinosteroid insensitive 1-associated kinase 1
(BAK1), and Wall-associated kinase 1 (WAK1) (Haile et al.,
2017) were found induced in the hard-green berry as well
during quiescent infection. However, the involvement of
WAK1, a damage associated pattern receptor which recognizes
plant cell wall–derived oligogalacturonides due to cell wall
degradation (Brutus et al., 2010), during quiescent interaction
FIGURE 4 | Continued
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FIGURE 5 | Expression profile of selected B. cinerea genes having higher raw reads at hard-green berry stage relative to PDB-cultured B. cinerea expression. Bars
represent fold change of samples at 24 and 96 hours post inoculation (hpi; flower infection), 4 weeks post inoculation (wpi; quiescent infection at hard-green berry
stage), and 12 wpi (pre-egression, Peg, and egression, Eg, stages of B. cinerea at ripening) relative to the PDB-cultured B. cinerea (Ctrl) expression. Normalization
based on the expression levels of ribosomal protein L5, BcRPL5, and a tubulin, BcTUBA, was carried out before calculating fold changes. Error bar represents
standard error of the mean of three biological replicates. Expression values followed by a common letter are significantly not different between samples, according to
Tukey’s honestly significant difference test (P ≤ 0.05), using one-way ANOVA of log2(NRQ).
TABLE 1 | Selected B. cinerea genes expressed in planta in the hard-green berry (4 wpi), with different functions, with their raw RNA-seq reads.

Gene ID Function (Blast2GO) RNA-seq reads (average) PDB culture

24 hpi 96 hpi 4 wpi 12 wpi

Ripe_Peg* Ripe_ Eg

Bcin01g09570 yt521-b-like splicing 9 8 15 119 2.69 2.18
Bcin02g06140 CP2 transcription factor protein 2 6 12 2 1.77 3.19
Bcin02g06930 1,3-beta-glucan synthase 49 27 20 24 15.89 12.32
Bcin03g01920 Catalase 19 6 32 12 7.58 1.31
Bcin03g07670 NAD-specific glutamate dehydrogenase 30 20 31 10 2.94 11.14
Bcin07g01540 Elongation factor 2 114 68 42 25 21.91 35.27
Bcin07g03980 Chitin- domain 3 22 12 67 7 3.78 2943
Bcin08g05540 ASG1; CND1, similar to Gas1-like protein 129 54 410 35 24.76 35.78
Bcin09g00200 Glucan endo-1,3-beta-glucosidase 15 15 31 8 5.58 8.51
Bcin11g04800 Chitin deacetylase 10 3 67 4 2.39 210
Bcin11g04930 Stress response ish1 7 6 21 19 15.61 348
Bcin12g06170 Allergen; Peptide transport PTR2 8 2 20 1 682 86
Bcin13g05580 Alcohol dehydrogenase 1 100 47 21 4 4.20 37
Bcin13g05810 Aldehyde dehydrogenase 238 46 48 25 10.69 4.57
Bcin14g04260 Cell surface, Gas2 18 4 112 23 21.02 41
Frontiers in Plant Scien
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*The sequence depth of the samples was double than the rest.
The values at 4 wpi are highlighted with a gray box.
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was not obvious. From the transcriptional alteration of RLKs,
lectin protein kinase and protein kinase 1 seem to be quiescent-
stage-specific. The putative orthologues in other species are
associated to plant immunity (Guidarelli et al., 2014), in
particular the latter is known to mediate signaling in response
to B. cinerea (Abuqamar et al., 2008). In addition, transcripts
related to Ca2+ mediated signaling (such as calcium- and
calmodulin-binding proteins) and oxidative stresses (mainly
GST and cytochrome P450 monooxygenases) were also found
to be possibly involved in the ongoing berry immunity.
Frontiers in Plant Science | www.frontiersin.org 9
The quiescent B. cinerea prompted the expression of key TFs
playing an important role in plant–microbe interaction (Table 3
and Supplemental Table S3). Most prominent was the MYB TF
family: 21 genes encoding 14 different MYB proteins, including
VvMYB14 and VvMYBPA1 which respectively regulate stilbene
and proanthocyanidin biosynthesis. VvWRKY33, known to
regulate defense response against pathogens (Birkenbihl et al.,
2012; Merz et al., 2015), was also among the TFs involved
in the hard-green berry response. From the NAC and
WRKY TF families, it is worth mentioning the ortholog to
TABLE 2 | Functional classes enriched in the differentially expressed genes at hard-green berry stage due to quiescent B. cinerea, using VitisNet.

VitisNet term Description
[# in DEG of # total]

Up-regulated genes (#) Enrichment P-value

10360 Phenylalanine metabolism [11 of 186] 11 2.90 2.08E-03
10480 Glutathione metabolism [12 of 127] 12 4.63 1.62E-05
10530 Aminosugars metabolism [7 of 76] 6 4.52 1.13E-03
10680 Methane metabolism [9 of 108] 9 4.09 4.80E-04
10940 Phenylpropanoid biosynthesis [22 of 187] 22 5.77 7.44E-11
10941 Flavonoid biosynthesis [9 of 153] 9 2.88 5.36E-03
30008 Ethylene signaling [19 of 232] 19 4.02 5.16E-07
30011 Jasmonate signaling [11 of 84] 11 6.40 1.52E-06
34626 Plant–pathogen interaction [14 of 311] 14 2.21 6.69E-03
50121 Porters cat 1 to 6 [9 of 160] 8 2.76 7.13E-03
60003 AP2 EREBP [12 of 131] 12 4.49 2.21E-05
60044 MYB [19 of 161] 19 5.79 1.39E-09
60046 NAC [9 of 75] 9 5.88 2.83E-05
60066 WRKY [17 of 62] 16 13.44 1.25E-11
Jan
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FIGURE 6 | Biotic stress overview of hard-green and ripe berries (red circles) due to quiescent and egressed B. cinerea infection, respectively, as visualized by
MapMan. Up-regulated and down-regulated genes are shown in red and blue, respectively. The scale bar displays fold change values. ABA, abscisic acid; ET,
ethylene; JA, jasmonic acid; MAPK, mitogen-activated protein kinase; SA, salicylic acid.
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NAC042, regulates phytoalexin biosynthesis (Saga et al.,
2012); the ortholog to WRKY51, mediates the repression of
JA signaling in a SA- and low-oleic-acid-dependent manner
(Gao et al., 2011); and the orthologs to NAC036, WRKY18
and WRKY70, which regulate SA biosynthesis and SA
signal transduction (Wang et al., 2006) in Arabidopsis. The
up-regulation of SA signaling marker genes, such as PR1
and EDS1, is a further indication of SA involvement in
enhancing the defense ability of the hard-green berry. In
addition, the induction of 3 ACC oxidase and 12 AP2/ERF
genes underlines that ET signaling was also in place during the
interaction at quiescent state. AP2/ERF factors indeed play a key
role in plant–pathogen interactions (Gutterson and Reuber,
2004; Licausi et al., 2013). Genes related to auxin metabolism
were also modulated.

Intriguingly, differential regulation was also observed for
genes encoding various PR proteins and enzymes of the
Frontiers in Plant Science | www.frontiersin.org 10
phenylpropanoid pathway and of the flavonoid and stilbenoid
biosynthesis during quiescent infection (Table 3 and
Supplemental Table S3). For some of these genes, the
induction was nearly 50 fold. PR proteins and its regulator
encoding genes included: VvPR10s and VvWRKY33, previously
reported as involved in the defense against B. cinerea and
Plasmopara viticola in grapevine (Merz et al., 2015; Haile et al.,
2017); VvPRs encoding b -1,3-glucanase, different classes of
chitinases, osmotin, thaumatin, and cystatin, known to
interfere with B. cinerea growth (Pernas et al, 1999; Monteiro
et al., 2003), .

Considering polyphenol biosynthesis, genes involved in
monolignol, flavonoid, and stilbenoid biosynthesis pathways,
such as phenylalanine ammonia-lyase, stilbene synthase,
anthocyanidin 3-O-glucosyltransferase, chalcone synthase, and
cinnamoyl-CoA reductase were found differentially regulated in
the hard-green berry with quiescent Botrytis (Figure 7 and
TABLE 3 | Selected differentially expressed grapevine genes due to B. cinerea infection (at 4 and 12 wpi).

ID Fold change
(log2)

Functional annotation ID Fold change
(log2)

Functional annotation

HG PEG EG HG PEG EG

Recognition and signaling Cell wall

VIT_12s0055g01280 2.0 Brassinosteroid insensitive 1-associated receptor
kinase 1

VIT_06s0004g01990 3.1 Proline-rich extensin-like family
protein

VIT_12s0121g00300 1.2 Brassinosteroid insensitive 1-associated receptor
kinase 1

VIT_11s0052g01220 1.9 2.5 6.1 Xyloglucan endotransglycosylase
6

VIT_03s0038g01380 1.0 1.23 1.9 Calcium-binding EF hand VIT_06s0009g02560 8.2 15.6 Pectinesterase family
VIT_14s0030g02150 4.2 Calmodulin VIT_09s0002g00330 -1.6 -1.6 Pectinesterase PME1
VIT_14s0006g01400 1.13 1.4 Calmodulin VIT_08s0007g07760 5.0 8.3 Polygalacturonase PG1
VIT_11s0016g03080 2.5 1.99 1.6 Clavata1 receptor kinase (CLV1) VIT_12s0055g00020 1.2 1.2 1.1 UDP-glucose glucosyltransferase

VIT_17s0000g07560 1.1 EDS1 (Enhanced disease susceptibility 1) Response to stress and secondary metabolism

VIT_19s0093g00110 3.1 1.23 5.1 Glutathione S-transferase 22 GSTU22 VIT_11s0052g01110 2.7 5.0 6.1 4-coumarate-CoA ligase 1
VIT_00s0253g00150 1.9 2.69 3.3 Methyl jasmonate esterase VIT_01s0010g01960 5.8 10.8 Anionic peroxidase
VIT_04s0023g02420 1.74 2.4 Mitogen-activated protein kinase 4 VIT_03s0017g02110 3.2 1.5 4.0 Anthocyanidin 3-O-

glucosyltransferase
VIT_00s0262g00090 2.6 1.18 1.3 Receptor kinase RK20-1 VIT_08s0007g06040 1.6 1.4 Beta-1,3-glucanase
VIT_17s0000g04400 3.1 Wall-associated kinase 1 (WAK1) VIT_16s0100g00860 4.8 Chalcone synthase
VIT_17s0000g03340 1.1 1.1 Wall-associated kinase 4 VIT_03s0038g01460 1.3 3.0 Chalcone synthase
VIT_18s0001g01300 1.2 Wall-associated receptor kinase 5 VIT_05s0094g00340 2.2 Chitinase class IV

Trascription factors VIT_05s0094g00360 3.4 5.1 Chitinase class IV

VIT_07s0005g03340 2.2 2.4 4.5 Myb domain protein 14 VIT_14s0066g01150 1.1 2.9 5.02 Cinnamoyl-CoA reductase
VIT_12s0028g00860 3.0 NAC domain containing protein 42 VIT_07s0031g01380 3.7 ferulate 5-hydroxylase
VIT_19s0027g00860 4.2 3.8 NAC domain-containing protein 42 VIT_14s0128g00600 5.6 5.3 Germin-like protein 3
VIT_04s0008g05760 1.8 WRKY DNA-binding protein 18 VIT_17s0000g06290 4.8 Lipase GDSL
VIT_08s0058g00690 1.6 2.2 3.7 WRKY DNA-binding protein 33 VIT_09s0002g00510 1.1 3.6 Lipase GDSL 1
VIT_08s0058g01390 1.7 WRKY DNA-binding protein 70 VIT_02s0025g04340 3.2 2.0 1.9 Osmotin

Cell wall VIT_05s0077g01690 2.0 5.2 7.6 Pathogenesis protein 10

VIT_06s0004g01270 -1.7 Callose synthase catalytic subunit VIT_03s0088g00700 3.6 2.79 Pathogenesis related protein 1
VIT_19s0014g05190 1.6 Cellulase precursor VIT_03s0088g00710 3.5 Pathogenesis-related protein 1
VIT_00s0580g00010 -1.2 Cellulose synthase CSLC06 VIT_14s0068g01920 2.3 3.9 5.02 Peroxidase
VIT_05s0049g00010 1.2 Cellulose synthase CSLG2 VIT_16s0039g01100 4.9 2.4 3.48 Phenylalanin ammonia-lyase
VIT_14s0128g00690 4.2 Germin protein 3 VIT_00s0480g00030 2.8 2.4 2.00 Polyphenol oxidase
VIT_01s0010g02040 -1.9 -2.6 Hydroxyproline-rich glycoprotein VIT_08s0058g00790 3.2 2.8 2.55 Secoisolariciresinol

dehydrogenase
VIT_05s0020g03470 1.2 Hydroxyproline-rich glycoprotein VIT_16s0100g01160 4.5 4.0 5.30 Stilbene synthase
VIT_11s0016g00590 -3.1 -3.7 Invertase/pectin methylesterase inhibitor VIT_02s0025g04300 3.8 1.0 Thaumatin
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Supplemental Table S3). A number of compounds of the
phenylpropanoid pathway were also quantified by UHPLC-
DAD-MS (Figure 7 and Supplemental Table S11). The
strongest effect was recorded on flavonoids and stilbenoids, in
particular on compounds known to mediate defense against
pathogens: resveratrol, viniferins, ampelopsin, miyabenols,
isohopeaphenol, catechin, and proanthocyanidins (Jersch et al.,
1989; Goetz et al., 1999; Pezet et al., 2003a; Favaron et al., 2007;
Hammerbacher et al., 2011). For the stilbenoid class, most of the
compounds were below the detection limit in control samples.

Taken together, even though we did not observe any known
virulence related genes of the pathogen which can provoke
response in the hard-green berries, it seemed, that the berries
were alerted with enhanced immunity as it recognizes non-self
organism, which in turn helped the berry to contain the
pathogen. This gives an interesting insight that there is a
molecular communication going on between the quiescent B.
cinerea and the hard-green berry.
Frontiers in Plant Science | www.frontiersin.org 11
Transcriptional Alterations of B. cinerea
During Pre-Egression and Egression
Stages, at Ripening
At ripening (12 wpi), two kinds of berries were collected from
Botryits-treated samples: berries without visible B. cinerea
outgrowth (pre-egressed B. cinerea) and berries with visible
signs of B. cinerea outgrowth (egressed B. cinerea). Both
samples were subjected to RNA-seq analysis. In the samples
with pre-egressed B. cinerea, as in hard-green berry samples,
the number of fungal transcripts was unfortunately very low, even
though the sequencing depth was doubled. Moreover, in one of
the biological replicates (replicate 2) the growth of the fungus was
more advanced than in the rest two, as inferred from the number
of fungal transcripts obtained (Supplemental Table S2). Taking
the same threshold used in the hard-green berry samples (an
average of at least ten reads) in the two biological replicates,
excluding the replicate two, 431 genes were selected for functional
annotation and further analysis (Supplemental Table S7). The
FIGURE 7 | Secondary metabolism-associated genes and metabolites modulation in grapevine berries in response to B. cinerea. Heatmap of gene expression (from
RNA-Seq result) and secondary metabolite concentration (µg/g fw, from HPLC-DAAD-MS) expressed as fold change. Fold change for secondary metabolites was
computed based on the ratio of average values in B. cinerea- and mock-inoculated berries. HG, hard-green berry; PEG, ripe berry with pre-egressed B. cinerea; EG,
ripe berry with egressed B. cinerea. Central phenylpropanoid biosynthetic pathway: PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-
coumarate-CoA ligase. Flavonoid biosynthetic pathway: CHS, chalcone synthase; F3H, flavonone-3-hydroxylase; F3'H, flavonoid-3'-hydroxylase; LAR,
leucoanthocyanidin reductase; UAGT, UDP-glucose:anthocyanidin 5,3-O-glucosyltransferase; UFGT, UDP-glucose:flavonoid 3-O-glucosyltransferase. Stilbenoid
biodynthesis pathway: STS, stilbene synthase.
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most represented functional classes in this gene set are provided
in Supplemental Table S12.

Within the 431 genes, there were several genes encoding
proteins functionally associated to the infection process, among
which dyp-type peroxidase and galactose oxidase, involved in
generation and detoxification of ROS (Schumacher et al., 2015);
polygalacturonase, deployed in pectin degradation; glyoxal
oxidase and oxalate decarboxylase, both catalyzing oxalate;
different types of oxidoreductases; and cerato-platanin BcSPL1,
a small protein required for full virulence (Frías et al., 2011; Frías
et al., 2014). Interestingly, these genes showed a low number of
raw reads or were not expressed at all at 4 wpi (Table 4),
indicating that the fungus was in a different physiological state
in the ripe berries before egression as compared to that in the
hard-green berries, though there was no any apparent disease
symptom in both cases.

Unlike, in the egressed samples, 86% of total B. cinerea
transcriptome was expressed, about 10,000 of the total 11,701
predicted genes (van Kan et al., 2016). Such a massive
transcriptional activity was not seen in the other infection
stages, possibly due to the low amount of the fungus, but likely
also to a reduced transcriptional activity at those stages. In other
words, at ripening, the time, the status of the host tissue, and the
environmental conditions, components of the disease pyramid,
were conducive for B. cinerea to egress and grow vigorously, as
observed in Figure 1C.
Frontiers in Plant Science | www.frontiersin.org 12
Compared to the transcriptional changes of B. cinerea
cultured in PDB, 3,548 genes were differentially regulated
during egression at ripening (Figure 3C and Supplemental
Table S5). These DE genes are over-represented in metabolic
processes, ion binding, catalytic and oxidoreductase activities,
cytoplasm, intracellular part functional classes (Supplemental
Table S13). Genes encoding carbohydrate-active enzymes and
others involved in plant cell wall degradation (Espino et al., 2010;
Blanco-Ulate et al., 2014), such as Bcin10g06130 and
Bcin14g01630, encoding pectinases, Bcin03g01680, encoding a
polygalacturonase, and Bcin07g06480 and Bcin15g03080,
encoding cutinases, were expressed more during egression than
in PDB medium. Other virulence and/or growth related genes
having similar expression trend as those mentioned above were:
ROS producers and scavengers like Bcin03g03390, Bcin13g05710,
and Bcin13g05720 (Rolke et al., 2004; Schumacher et al., 2015);
characterized aspartic proteases Bcin12g02040 and Bcin12g00180
(ten Have et al., 2010); membrane transporters, mostly the ATP-
binding cassette; and the botcinic acid and botrydial phytotoxins
Bcin12g06390 and Bcin12g06380 (Siewers et al., 2005; Dalmais
et al., 2011). On the other hand, known virulence genes like
BcPG1 (Bcin14g00850), BcGST1 (Bcin10g00740), BcBOA6
(Bcin01g00060), and BcSPL1 (Bcin03g00500) had similar or
lower expression level during egression as compared to PDB
cultured Botrytis. This, however, does not mean that they have
not played any role in the necrotrophic stage of infection during
TABLE 4 | Selected B. cinerea genes having more RNA-seq reads at pre-egression (12 wpi, on ripe berry) than at quiescence (4 wpi, on hard-green berry).

Gene ID Function (Blast2GO) Further description RNA-seq reads (average)

4 wpi 12 wpi (Peg)*

Bcin13g05720 Dyp-type peroxidase BcPRD1, Dyp-type peroxidase 2 42
Bcin13g05710 Galactose oxidase beta-propeller BcGOX1, Galactose oxidase 4 30
Bcin12g02040 Acid protease BcAP8, aspartic proteinase 1 12
Bcin14g00850 Polygalacturonase Pectin degradation 0 30
Bcin06g01930 Glyoxal oxidase Glyoxal oxidase 3 31
Bcin15g02380 Acid protease partial Glutamic protease 0 42
Bcin03g00500 Probable rot1 PRECURSOR Cerato-platanin family protein BcSpl1 5 29
Bcin01g11220 Glycoside hydrolase family 17 b-1,3-Glucosidase 4 16
Bcin07g00160 Glycoside hydrolase family 18 CAZyme 5 42
Bcin04g05650 Oxalate decarboxylase family Bicupin 1 41
Bcin11g02720 Aldo keto reductase Oxidoreductase 9 35
Bcin11g02630 Phytanoyl- dioxygenase Oxidoreductase 0 23
Bcin15g03620 Glycosyltransferase family 35 CAZyme 8 20
Bcin11g06080 ATP synthase H mitochondrial precursor 3 40
Jan
uary 2020 | Volume
*The sequence depth of the samples was double than 4 wpi.
TABLE 5 | RNA-seq reads of key B. cinerea virulence genes which were not considered as differentially expressed in comparison to PDB culture of B. cinerea.

Gene ID Gene name RNA-seq reads (average)

Eg PDB culture

Bcin14g00850 Polygalacturonase1 (BcPG1) 24,289 147,821
Bcin10g00740 Glutathione S-transferase (BcGST1) 1,496 2,655
Bcin01g00060 Botcinic acid6 (BcBOA6) 740 1,048
Bcin03g00500 Cerato-platanin family protein (BcSPL1) 29,201 64,662
1
0 | Article 1704

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Haile et al. Grapevine Berry–Botrytis cinerea Interaction
egression at ripening, as the number of reads of these genes was
reasonably high at this stage (Table 5).

Response of Ripe Berries to B. cinerea, at
Pre-Egression and Egression States
Grapevine berries responded to the necrotrophic colonization of
the fungus, during egression, by reprogramming the transcription
of 2,213 genes (Figure 3C and Supplemental Table S4). Of these
genes, 1,564 were already differentially regulated in pre-egressed
samples. The GO enrichment analysis performed on the DE genes
of pre-egressed and egressed samples showed a high overlap in
the enriched biological processes: secondary metabolic process,
response to stimulus, catabolic process, and transport were
among the shared enriched functional classes by both samples
(Supplemental Table S14).

Besides the very high overlap of DE genes of the pre-egressed
and egressed samples, there existed also a general similarity in
the expression trend (up- or down-regulation) of these common
genes shared by both samples (Figure 3C and Supplemental
Table S4). As a result, we used the DE genes of the egressed stage
to visualize the biotic stress pathway (Figure 6), viaMapMan, as
it can give enough insight of the pre-egressed stage as well.
Figure 6 showed that the transcriptional changes involved in
biotic stress were huge. Although it might seem surprising, it is
not uncommon to see such an extensive modulation of defense
related genes in infected plant tissues also when the pathogen
invades the plant host tissues (for example in: Alkan et al., 2014;
Agudelo-Romero et al., 2015; Kelloniemi et al., 2015). This could
be due to the futile attempts of the infected tissue reacting against
the pathogen and/or to the transcriptome attributes of other cell
layers, not yet colonized, as it is very difficult to spatially resolute
the tissues where the pathogen is growing from those which are
not yet colonized. The comparison of the two samples highlights
the presence of several genes associated to auxin, JA and ET
signaling and cell wall modification uniquely modulated in the
ripe berry in response to B. cinerea (Figure 6).

Hormones interactions during plant defense are extremely
complex. At transcriptional level, it appeared that auxin, ET, JA,
and SA were involved (Supplemental Table S4). However, the
co-activation of SA and JA pathways is uncommon and very
interesting (Oirdi et al., 2011; Kelloniemi et al., 2015) and
therefore should be further investigated. Genes encoding PR1,
a SA marker, and ZIM-domain1, a JA marker, were all induced
(Table 3 and Supplemental Table S4).

Polyphenol biosynthesis pathway was also affected by the
egression of B. cinerea at ripening (Table 3 and Supplemental
Table S4), though the transcription of genes encoding
dihydroflavonol-4-reductase and flavanone 3-hydroxylase, both
involved in flavonoid biosynthesis, was not affected. In line with
this evidence, almost all of the quantified flavonoids were
significantly lower or not significantly different in the berries
with egressed B. cinerea as compared to the control (Figure 7
and Supplemental Table S15). On the other hand, genes encoding
other key enzymes such as cinnamate 4-hydroxylase, 4-coumarate-
CoA ligase 1, and stilbene synthase which are involved in the
biosynthesis pathway were induced. With regard to stilbenoid
content, the concentration of piceide, miyabenol, viniferins, and
Frontiers in Plant Science | www.frontiersin.org 13
isohopeaphenol was high in berries with pre-egressed Botrytis,
intermediate in berries with egressed Botrytis, and very low in
healthy berries (Figure 7 and Supplemental Table S15).

Most of the genes involved in monolignol biosynthesis
(such as cinnamoyl-CoA reductase and cinnamyl alcohol
dehydrogenase) were differentially regulated (Supplemental
Table S4), unlike a few but important genes like caffeoyl-CoA
O-methyltransferase (CCoAMT) and ferulate 5-hydroxylase
(F5H) encoding ones, which were not differentially regulated.
CCoAMT is involved in ferulic esterification and lignification
process in response to pathogen attack in grapevine (Busam
et al., 1997). From the polyphenol analysis, caffeate and ferulate,
substrate for CCoAMTwere not detected in any of the samples at
ripening (Supplemental Table S15). This perhaps might suggest
that lignification is not part of plant defense component during
ripening. Rather, a number of genes encoding proteins involved
in ripening-associated cell wall extensibility and disassembly like
xyloglucan endotransglucosylase and polygalacturonase and
pectinesterases (Nunan et al., 2001; Deytieux-Belleau et al.,
2008) were highly upregulated in ripe berries with pre-egressed
and egressed Botrytis (Supplemental Table S4). Pectin
methylesterases (PMEs) are suggested to be involved both in cell
wall loosening and strengthening (Micheli, 2001), in particular
PMEs are involved in the de-esterification in muro of pectin which
becomes more susceptible to the degradation by pectic enzymes
secreted by B. cinerea during the initial stages of infection (Lionetti
et al., 2012). However it seemed here that cell wall loosening
prevailed over cell strengthening as there were a lot of induced
polygalacturonases which degrade polygalacturonans, made
accessible by the pectinesterases.
DISCUSSION

In a previous study, grapevine flowers were challenged by placing
suspension of B. cinerea conidia to induce infection (Haile et al.,
2017). The results showed that fungal genes encoding virulence
factors and proteins known to contribute to the infection program
were highly induced. Consequently, the flower reprogrammed its
transcriptome which resulted in increased expression levels of
genes involved in reduction–oxidation processes, genes encoding
antimicrobial proteins, and genes of the polyphenol biosynthesis
pathway, for the production of phytoalexins and precursors for
cell wall toughening (Haile et al., 2017). These defense reactions of
the flower appeared to be able to put B. cinerea into quiescence.
To know more of the later stages of the infection process, this
study was conducted with an in-depth look at the molecular
communication between the fungus and the berry at hard-green
(4 wpi) and at ripe (12 wpi) stages. Figure 8 summarizes the most
important events occurring from infection initiation (24 hpi) till
fungal egression (12 wpi) passing through entering in quiescence
(96 hpi) and quiescence (4 wpi) phases occurring both in the
grapevine and in the fungal cells, respectively.

In the very early stage of quiescence in the flowers, ribosomal
genes were prevalent in the in planta expressed B. cinerea genes
(Haile et al., 2017). A similar high proportion of ribosomal
genes were also observed within the in planta expressed genes of
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FIGURE 8 | Depiction of the most important events from infection initiation (24 hpi) till fungal egression (12 wpi) passing through entering quiescence (96 hpi) and
quiescence (4 wpi) phases occurring both in the grapevine and in the fungal cells, respectively. The events at the initial stages (24 and 96 hpi) are taken from Haile
et al. (2017), while the other came out from the present work.
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B. cinerea in the hard-green berry at 4 wpi (Supplemental
Table S6). Nevertheless, there was no known virulence-related
gene in the Botrytis genes expressed in planta at 4 wpi. Yet, other
biological activities helping the fungus to stay “alive” were likely on-
going since elongation factors, ATP synthesis, and ATP-dependent
molecular functions related genes were transcriptionally active. For
example, Bcin15g02120 (glyceraldehyde-3-phosphate
dehydrogenase) and Bcin16g04800 (malate dehydrogenase) genes
involved in glycolysis and tricarboxylic acid cycle for energy
metabolism were expressed. Also among the expressed genes
were an ATP-dependent cell division cycle protein 48 (p97/
valosin-containing protein, Bcin08g03700) gene, involved in cell
cycle and transcriptional regulation (Wang et al., 2004), and a
number of ATP-dependent membrane transporter genes. As to the
source of energy, the quiescent B. cinerea expressed 34 CAZyme
genes suggesting that also in this phase it is still capable of
extracting energy from the host.

The absence of detectable pathogenic progression of the
quiescent B. cinerea is possibly due to the continued induction
at 4 wpi of those transcripts that were found involved in plant
defense at bloom at initial infection stage (Haile et al., 2017). Such
continued activation of defense pathways between appressoria
formation and quiescent stages of infection was also reported in
unripe green tomato infection by Colletotrichum gloeosporioides
(Alkan et al., 2014). The expressions of VvWRKY33 gene, also
correlates with the expression of VvPR10 genes in response to
defense in grapevine (Merz et al., 2015; Haile et al., 2017), and
genes of different families of PR proteins, including PR10, were
highly induced in the hard-green berry due to the quiescently
present B. cinerea (Supplemental Table S3). The grapevine
WRKY33 functional homologue, AtWRKY33, has been shown to
be involved in response to biotic and abiotic stresses (Zheng et al.,
2006; Jiang and Deyholos, 2009; Li et al., 2011; Birkenbihl et al.,
2012). On the other hand, five GDSL lipase encoding genes, whose
expression was not affected during flower infection, were strongly
upregulated (up to 25-fold) during quiescent infection. No
previous report associated these lipases with a defense response
against pathogens; however, other lipases, such as GDSL Lipase 1
(Oh et al., 2005), are involved in defense against Alternaria
brassicicola and B. cinerea in Arabidopsis in an ET dependent
manner regulated byWRKY33 (Oh et al., 2005; Kwon et al., 2009;
Birkenbihl et al., 2012).

The induction of PR proteins in the hard-green berry might
compel cell wall remodeling in the quiescent B. cinerea. The qPCR
assay confirmed that Bcin11g04800, a gene encoding chitin
deacetylase, was highly induced during the quiescent phase
(Figure 5). Chitin deacetylation is a mechanism used by plant
pathogens as well as endophytic fungi to protect their cell wall from
being attacked by plant chitinases (Deising and Siegrist, 1995; El
Gueddari et al., 2002). Chitin depolymerization into deacetylated
chitosan oligomers avoid the binding by plant receptors and the
consequential plant immune responses (Petutschnig et al., 2010;
Liu et al., 2012). Recently, Cord-Landwehr and colleagues (Cord-
Landwehr et al., 2016) demonstrated that chitosan oligomers,
deacetylated chitin extracted from an endophytic fungus
Pestalotiopsis sp., were not able to elicit plant immunity in rice
Frontiers in Plant Science | www.frontiersin.org 15
cell suspension culture. Thus, the enzyme might play an important
role, particularly during quiescent phase, to impair the recognition
of the quiescent B. cinerea by the plant immunity system. In
addition to chitin deacetylase, other genes encoding glycolipid-
anchored surface protein and GPI-anchored cell wall organization
ECM33, which in yeast are linked to cell wall integrity to ensure
viability (Pardo et al., 2004), were also expressed during the
quiescent phase, suggesting that the fungus is also actively
defending itself besides the basal metabolic activity.

The activation of stilbenoid and flavonoid biosynthetic
pathways by grapevine in response to active pathogenic infection
is well documented (Langcake, 1981; Jeandet et al., 1995; Keller
et al., 2003; Malacarne et al., 2011; Agudelo-Romero et al., 2015;
Kelloniemi et al., 2015; Haile et al., 2017). Here we observed that
genes encoding essential enzymes of the pathways, such as stilbene
synthase, chalcone synthase, flavanone 3-hydroxylase, and
anthocyanidin 3-O-glucosyltransferase, were actively engaged
during quiescent infection. A key transcription factor regulating
stilbene biosynthesis VvMYB14 (Höll et al., 2013) was also
modulated. As expected, from the transcriptional analysis results,
several polyphenols were also at higher concentration in the
inoculated samples. The content of resveratrol and its monomeric
(for example astringin, isorhapontin, and piceide) and oligomeric
(for example miyabenol, isohopeaphenol, and viniferin) derivatives,
known defense compounds Pezet et al., 2003a; Favaron et al., 2007;
Hammerbacher et al., 2011), was higher in hard-green berry with
quiescent Botrytis than in the control samples.

Relevant transcripts for the synthesis of monolignol
precursors (VvPAL, VvCOMT, VvCCoAMT), which increase
penetration resistance in the plant cells (Bhuiyan et al., 2009),
and other lignin forming enzymes like GLP3 and EXT, were also
induced in the hard-green berry. Lignification at the penetration
site is one of the major defense mechanisms that plants adopt to
stop B. cinerea progress (Cantu et al., 2009; Kelloniemi et al.,
2015; Haile et al., 2017). It is interesting to observe the pathway
being active at 4 wpi in the hard-green berry.

However, egression of B. cinerea was observed after bunches
were bagged for 2 weeks, starting at full coloring (approximately
10 wpi), to create high humidity around the bunch (Figure 1C).
At the very start of the egression process, an outgrowth of B.
cinerea (or egression) was observed on about 40% of the berries.

During egression about 86% of the B. cinerea transcriptome
was expressed, and it encompassed genes functionally annotated
as ROS producers and scavengers, CWDE, proteases, and
enzymes involved in the synthesis of phytotoxic secondary
metabolites, which are sustaining B. cinerea pathogenicity (as
reviewed in Nakajima and Akutsu, 2014). Botrytis transcripts
belonging to these functional classes were also shown to be
involved in the successful infection of ripe grapevine berries and
other hosts (De Cremer et al., 2013; Smith et al., 2014; Kelloniemi
et al., 2015). However, the expression level of BcPG6 and BcPEL-
like1, pectinases which were extremely induced during initial
infection at bloom (Haile et al., 2017), was much less both at ripe
and in PDB culture. In general, as expected, the transcriptional
activity of the pathogen was high during egression. An important
question is what signals and/or environmental changes made the
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quiescent B. cinerea egressing. Although still speculative, it is
likely that ripening associated signals and physical and chemical
changes play an important role in triggering the transition from
the prolonged quiescent to the egression phase.

We have noticed that a lot of grapevine genes involved in cell
wall disassembly were induced. Cell wall loosening, cuticular
changes, conversion of acids into sugars, and a steadily
diminishing of antifungal compounds are reported to favor
pathogen egression (Prusky, 1996; Prusky et al., 2013). It has
also been shown that the protective role of berry cuticle on B.
cinerea infection decreased with ripening (Commenil et al., 1997;
Mlikota-Gabler et al., 2003). The structural changes in the cell
wall polysaccharides that lead to fruit softening could cause
susceptibility to necrotrophic pathogens at fruit ripening
(Cantu et al., 2008). These authors showed that suppression of
the ripening-associated cell wall loosening genes reduced the
susceptibility of ripe tomato to B. cinerea (Cantu et al., 2008).
Besides cell wall loosening, sugars and organic acids exudates
appearing on ripe berry surface have also the potential to
stimulate and promote B. cinerea outgrowth (Padgett and
Morrison, 1990; Pezet et al., 2003b; Kretschmer et al., 2007).
Furthermore, a shift in plant-hormone synthesis and signaling
balance happening during ripening also trigger fungal
pathogenicity factors (Prusky, 1996; Prusky et al., 2013).

Considering the transcriptional alterations underwent in the
ripe berry, as a response to Botrytis egression, a wide array of
defense responses were noticed, suggesting that the tissue under
colonization “never gives up” rearranging its defense
mechanisms. With regard to stilbenic compounds, surprisingly
oligomerization was apparently driven by the presence of the
fungus. Oligomerization, according to Pezet et al. (2003a) and
Malacarne et al. (2011), increases toxicity. The amount of
oligomeric stilbenoids was very little in the control berries and
higher in the treated berries especially in the pre-egressed ones.
One possible explanation is the fact that the B. cinerea LACCASE
2 enzyme (encoded by Bcin14g02510) which oxidizes resveratrol
(Schouten et al., 2002) was extremely induced (128 fold) in the
egressed Botrytis.

Last, the evolution of the berry skin tissue is an important
component of the berry-Botrytis interaction. It has been noticed
that the extent of the expression of cell wall modifying genes
increases toward maturity. It is actually a phenological cue that
once the seeds are matured, cell wall loosening occurs. The
differential accumulation of xyloglucan endotransglucosylases,
involved in cell wall extensibility (Miedes et al., 2011) and
polygalacturonases and pectinases, involved in berry softening
(Deytieux-Belleau et al., 2008), are high during berry ripening
(Nunan et al., 2001; Lijavetzky et al., 2012). These cell wall
modifying genes were remarkably induced in ripe berries with
both pre-egressed and egressed B. cinerea, suggesting that the
fungus took advantage of the onset of the fruit cell wall self-
disassembly, exploiting endogenous developmental programs to
activate its own virulence CWDE. In tomato, the expression of
the ripening associated genes polygalacturonase and expansin
have been shown to facilitate susceptibility to B. cinerea
Frontiers in Plant Science | www.frontiersin.org 16
(Cantu et al., 2008; Cantu et al., 2009). It has also been
suggested that the fungus can induce unripe fruit cell wall-
modifying proteins in order to increase fruit susceptibility
(Cantu et al., 2009). We, however, haven’t observed any
hastening of ripening process in Botrytis-inoculated samples.
Both mock- and Botrytis-inoculated bunches ripen on similar
time after inoculation.

Unlike in the flower response to Botrytis infection, in ripe
berries with egressed Botrytis we did not observe a regulation of
monolignol related genes such as CCoAMT and F5H, involved in
cell wall apposition in response to pathogen attack (Busam et al.,
1997; Bhuiyan et al., 2009), strongly suggesting there was no cell
wall fortification.

In conclusion, B. cinerea inoculated at bloom was quiescent
for 12 weeks and egressed at ripening, suggesting that the defense
responses of the berries were efficient to halt the fungal growth
only until maturity. Our study revealed that the defense
responses of immature berries (at 4 wpi) that kept B. cinerea
quiescent were similar to the response of the plant to the
pathogen at bloom (Haile et al., 2017). During this period, the
fungus had cryptic interaction with the berry keeping its basal
metabolic activities and deacetylating its cell wall. However, at
ripe (at 12 wpi) the pathogen managed to egress and cause bunch
rot, using the advantage of the fruit cell wall self-disassembly and
fulfillment of other conditions (including humidity).
Consequently, there were several defense responses except cell
wall strengthening by the ripe berries, but not effective in halting
the pathogen from berry colonization.
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