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Paeonia (Paeoniaceae), a culturally and economically important plant genus, has an isolated
taxonomywhile the evolution of this genus is unclear. A plant species endemic to southwest
China, Paeonia mairei is precious germplasm for evolution-related research and cultivar
improvement, and its conservation is urgent. However, little is known about its patterns of
habitat distribution and responses to climate change. Using 98 occurrence sites and data of
19bioclimatic variables,we conducted principal component analysis and hierarchical cluster
analysis todelineatedifferent climatic populations.Maximumentropy algorithm (MaxEnt)was
applied to each population to evaluate the importance of environmental variables in shaping
their distribution, and to identify distribution shifts under different climate change scenarios.
We also appliedMaxEnt to all of the P. mairei presence sites (P_Whole) to evaluate the need
to construct separate species distribution models for separate populations rather than a
commonapproachby treating themas awhole.Our results show that local adaptation exists
within the distribution range of P. mairei and that all presence sites were clustered into a
western population (P_West) and an eastern population (P_East). Two variables
(precipitation of the driest month and temperature seasonality) are important when
shaping the distribution of P_West, and another two variables (mean diurnal range and
mean temperature of the wettest quarter) are important for P_East. Both populations are
likely to shift upward under climate change, while P_East may lose most current suitable
areas while P_West may not. P_Whole produced a narrower area compared to the
combination of P_West and P_East but a suitable area (south Chongqing) may have been
missed in the prediction. Accordingly, a population-based approach in constructing a
species distribution model is needed to provide a detailed appreciation of the distribution
of P. mairei, allowing for a population-based conservation strategy. In this case, it could
include assisted migration to new and suitable distribution areas for P_West and in situ
conservation in high elevation regions for P_East. The results of our study could be a useful
reference for implementing the long-term conservation and further research of P. mairei.
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INTRODUCTION

Over the past 100 years, anthropogenic greenhouse gas emissions
have increased and resulted in unequivocal global warming,
increasing temperatures by approximately 1.0°C more than
pre-industrial levels, which are likely to increase 3.2°C by 2100
if emissions continue to increase at the current rate (Hoegh-
Guldberg et al., 2018). Besides raising mean temperature,
particular regional climate will be characterized by warming
due to extreme temperatures, frequent heavy precipitation, and/
or intense drought (Hoegh-Guldberg et al., 2018), which
significantly drive biodiversity loss, habitat fragmentation, and
changes in the spatial patterns of plant species (Li et al., 2013;
Costion et al., 2015; Warren et al., 2018). To face the challenge of
climate change, predictions will be useful to alert researchers and
policy-makers to potential future risks and can support the
development of proactive strategies to reduce the impact of
climate change on biodiversity and target species (Pereira
et al., 2010).

Paeonia, the only genus in the Paeoniaceae, has an isolated
taxonomy and ancient origin (Pan, 1995; Zhou et al., 2018).
Consisting of 33 species, Paeonia is mainly distributed in the
northern temperate zone, and China is reportedly its center of
origin and diversity (Pan, 1995; Hong, 2011). Peonies have been
used by humans for more than 3000 years, and they are now
widely cultivated for medicinal, horticultural, and edible
purposes (Wang, 2006). Paeonia mairei Lévl., assumed to
originate from two ancient populations (Zhou et al., 2018), is
an endemic species to southwestern China (Pan, 1995). This
germplasm is important for further studies on the evolution of
the genus Paeonia and for breeding research for medicinal and
horticultural industries. However, P. mairei is endangered with a
shrinking distribution range (Yang et al., 2017). As demonstrated
by our field survey from 2017-2019 in southwest China
(Supplementary File 1), most populations show a limited
number of individuals, while it is difficult to find individuals in
some documented distribution regions, such as Nanchuan and
Zhaojue counties.

Geographic distribution and response pattern to climate
change are unclear for peony species, so developing a
scientifically-sound conservation strategy under climate change
will be difficult. As a common tool to achieve this objective,
species distribution models (SDMs) typically correlate the
presence (or absence) of a species at multiple locations with
relevant environmental covariates to estimate habitat preferences
or to predict their distributions (Hijmans and Graham, 2006;
Kearney et al., 2010; Gomes et al., 2018). However, the effect of
local adaptation is largely ignored in most SDMs studies in which
all populations of a species were assumed to respond consistently
to the environmental conditions experienced by the entire
species. Considering that broad climate tolerance at the species
level is generally comprised of narrower, locally adapted
tolerance at the scale of populations (Atkins and Travis, 2010;
Peterson et al., 2019), failure to account for local adaptation, as
common SDM-based studies do, may introduce errors into
forecasts about geographic distributions and the future viability
of a species as a whole (Pearman et al., 2010), and precludes
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analysis of the fates of specific intraspecific lineages or the
maintenance of genetic variation in ecologically important
traits (D'Amen et al., 2013; Marcer et al., 2016). Several
attempts have recently been made to incorporate local
adaptation into ecological analyses under climate change
(Pearman et al., 2010; Hallfors et al., 2016; Peterson et al.,
2019), which indicates that there can be an effect of
discriminating populations in response to climate change. As
Hallfors et al. (2016) proposed, local adaptation probably exists
within species that inhabit separate climatic environments across
their range, and such cases include species with spatially distinct
populations, species with taxonomic confusion, as well as
subspecies or endangered species that are discontinuous across
their range. Until further experiments are able to elucidate the
existence of local adaptation, an approach to model uncertain
populations separately—in addition to whole-species modeling—
is needed to attain more comprehensive information for
conservation strategies.

As an endangered species endemic to southwestern China, P.
mairei is mainly located in two mountain systems, i.e. Hengduan
mountain in middle Sichuan and Qinling Mountains in middle
Shaanxi. By considering the spatial distinction between these two
mountain systems, in this study, we assumed the existence of
local adaptation between populations of P. mairei in both
mountain systems. As a result, we divided all recorded
presence sites of P. mairei into two populations based on two
separate distribution ranges, including the western population
(P_West) with presence sites in Hengduan mountain and the
eastern population (P_East) with presence sites in Qinling
Mountains. With two separate populations, we applied
multivariate statistical analysis to verify whether each
population experienced different climatic conditions, and then
used the maximum entropy algorithm (MaxEnt) to simulate the
migration trend of the potential distribution of each population
under several climate change scenarios. The aims of the present
study were to: i) identify probable specific populations with
different local adaptations; ii) identify the key climate variables
that shape the distribution range of each population; and iii)
project the change of habitat distribution for each population
under global climate change. These results will contribute to a
better understanding of the environmental demands of P. mairei
and provide a theoretical basis and guidance for conservation
strategies for this rare Chinese endemic germplasm.
MATERIAL AND METHODS

Species Occurrence Data
P. mairei is a herbaceous perennial with thick roots that is often
found in deciduous broad-leaved forests, where it is moist and
shaded (Hong, 2011). Native records of the occurrence of P.
mairei were collected from three sources: (1) field surveys during
2016 and 2018 in southwest China, (2) published literature
(Hong, 2010; Jian et al., 2010; Zhang et al., 2016; Yang et al.,
2017), and (3) databases including the Global Biodiversity
Information Facility (GBIF, http://www.gbif.org), the National
January 2020 | Volume 10 | Article 1717
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Specimen Information Infrastructure (NSII, http://www.nsii.org.
cn/), and the Chinese Virtual Herbarium (CVH, http://www.cvh.
org.cn/) databases. Originally, 98 presence records with exact
coordinates were obtained. These were spatially filtered with the
help of ArcGIS Pro (version 2.4.2, Esri, Redlands, CA, USA), so
that only one record occurred within each grid cell (20 × 20 km)
to correct sampling bias.

Study Region
In this study, we established a study region using a 500-km buffer
around the occurrence points of P. mairei (Figure 1). The chosen
study region included all occurrences of the species, minus
extrapolation when projecting under other climate conditions
or larger dominants (Hallfors et al., 2016). When taking
anthropogenic-assisted migration into consideration for the
further conservation of P. mairei, an ideal study region should
cover areas not only where it can disperse biologically in the near
future, but also where it might migrate under longer periods of
climate change and possible candidate sites for assisted
migration. As a consequence, we used the buffer obtained from
the whole P. mairei species for distribution modeling of
each population.

Climate Data
Initially, 19 bioclimatic variables that reflected the P. mairei
distribution data collection (mean value from 1960 to 1990) with
a general spatial resolution of 30 seconds from the WorldClim
dataset (http://www.worldclim.org) (Hijmans et al., 2005), were
selected to model the current distribution of P. mairei. The
Frontiers in Plant Science | www.frontiersin.org 3
degree of confidence of future climate-change projections
depends on global climate model (GCM) performance, but no
single climate model is superior to forecast climatic features, so
we assumed an averaged multi-model ensemble climate forecast
for our projection in future scenarios. We downloaded future
climate data of three GCMs (Beijing Climate Center Climate
System Model version 1.1, BCC-CSM1.1; the Community
Climate System Model version 4 CCSM4; and an earth system
model based on the Model for Interdisciplinary Research on
Climate, MIROC-ESM) from the WorldClim dataset, which was
statistically downscaled from climate models for the fifth report
of the International Panel for Climate Change (IPCC, 2014).
Equally-weighted mean values of three GCMs were calculated to
obtain a suite of future climate data including 19 bioclimate
variables under three representative concentration pathways
(RCPs): RCP 2.6, RCP 6.0, and RCP 8.5. RCPs are used to
project future climate situations based on human economic
activity, land use patterns, climate policy, and other factors.
They include a stringent mitigation scenario (RCP 2.6), two
intermediate scenarios (RCP 4.5 and RCP 6.0), and one scenario
with very high greenhouse gas emissions (RCP 8.5) (IPCC,
2014). Under each RCP, we used climate data of two periods
(2050s and 2070s; averaged for 2041–2060 and 2061–2080) in
the 21st century to project habitat distribution changes.

Highly correlated variables will mislead the importance of
variables and response curves in further research, so we
performed a variance inflation factors (VIF) analysis to help
eliminate highly correlated variables (Merow et al., 2013). For the
analysis, we extracted all values of 19 climate variables from a
FIGURE 1 | Occurrence sites of Paeonia mairei. All occurrence sites were divided into two populations based on geographical locations: sites in Hengdaun
Mountains were referred to as western population (P_West) and sites in Qinling Mountains were referred to as eastern population (P_East).
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sample of 10,000 locations within the study region. As a
consequence, we retained six variables with VIF values less
than 10 for further research even though a threshold of five
(Suwal et al., 2018) or three (Di Febbraro et al., 2016) have been
suggested, considering that machine learning methods such as
MaxEnt can cope with some degree of collinearity (Elith et al.,
2011). With the help of ArcGIS Pro, all environmental variables
were preprocessed in American Standard Code for Information
Interchange (ASCII) format with a general spatial resolution of
30 seconds (also referred to as 1 km spatial resolution).

Population Grouping
As geographic distinction often indicates climatic adaptation
(Hallfors et al., 2016), we divided all occurrence sites into western
(P_West) and eastern (P_East) populations (Figure 1), which are
located in two different mountain systems (Qinling Mountains
and Hengduan Mountains, respectively). Principal component
analysis (PCA) (Hallfors et al., 2016), hierarchical cluster analysis
(HCA), and linear discriminant analysis (LDA) were then used
to check whether different climate conditions exist between two
populations, and PCA was conducted with all 19 variables using
the “prcomp” function in the “stats” package of R software
(version 3.5.3). We used the first two principal components
and a 95% confidence interval during clustering to define the
populations with the help of the “ggplot2” package (Wickham,
2016) in R. LDA and HCA were conducted with six variables
chosen through the VIF approach, and with the help of the
“cluster” (Maechler et al., 2019) and “MASS” (Venables and
Ripley, 2002) package in R, we selected the method for HCA with
the highest agglomerative coefficient value. We built the linear
discriminant function by randomly selecting 50% of all presence
sites, and tested the function with this 50% of sites. This process
was repeated 1000 times and the mean misjudgment rate was
calculated to check differences in climatic adaptation between the
two populations. In addition to the divided populations, SDMs
were constructed using all present sites together (P_Whole),
which is a common practice when conducting SDM-based
research. In other words, we constructed SDMs for P. mairei
using two approaches, one that produced separate SDMs for
separate populations (P_West and P_East) and another that
produced a single SDM for the entire species and that
encompassed both populations (P_Whole).

Constructing SDMs
With the help of the “Biomod2” (Thuiller et al., 2019) package in
R, we selected MaxEnt for our species distribution modeling
through a pre-test, in which we constructed SDMs using eight
common algorithms (Generalized Linear Model, GLM;
Generalized Boosting Model or usually called Boosted
Regression Trees, GBM; Classification Tree Analysis, CTA;
Artificial Neural Network, ANN; Surface Range Envelope, SRE;
Multiple Adaptive Regression Splines, MARS; Random Forest,
RF and Maximum Entropy, MaxEnt) with P_Whole. All
algorithms were repeated 10 times with 50% of presence sites
randomly selected for testing and three common evaluating
statistics (Cohen's Kappa, KAPPA; True Skill Statistic, TSS and
Areas Under the Receiver Operating Characteristic Curve, AUC)
Frontiers in Plant Science | www.frontiersin.org 4
were selected to evaluate the performance of SDMs
(Supplementary File 2). MaxEnt (Phillips et al., 2006) is a
commonly used SDM algorithm for presence-only data, and it
has also been shown to perform well in comparison to different
algorithms (Reside et al., 2019) although explicit relationships
between suitability and environmental variables are difficult to
obtain from such a machine-learning algorithm (Phillips et al.,
2006). We used MaxEnt (version 3.4.1) to constructed SDMs for
three suites of presence data (P_West, P_East, and P_Whole) in
the current situation and in two future periods under four RCPs,
as explained in section Climate Data. With the help of the
ENMeval package in R, we evaluated the performance of
models with regulation multiplier values ranging from 0 to 4
(increments of 0.5) and with six different feature class
combinations (L, LQ, H, LQH, LQHP, LQHPT; where L =
linear, Q = quadratic, H = hinge, P = product, and T =
threshold). From those settings (regulation multiplier and
feature class combination) with the top 10% of average test
areas under the receiver operating characteristics curve (AUC)
values, the one with the lowest value of the Akaike information
criterion corrected for small samples sizes (AICc) was selected as
the best for constructing SDMs. Random 50% of the occurrence
data was used for modeling, the remaining 50% for testing, and
10 times bootstrap to obtain 10 SDMs for each data suite in each
scene. Within MaxEnt software (version 3.4.1), threshold-
independent receiver-operating characteristic (ROC) analyses
were conducted, and the areas under the receiver operating
characteristics curve (AUC) were calculated to check the
performance of SDMs (Phillips et al., 2006). AUC, ranging
from 0 to 1, is one of the most popular parameters to evaluate
the performance of an SDM, and any SDMwith a test AUC value
under 0.85 was removed to ensure the good performance of
SDMs for further analysis. For each remaining SDM, the
continuous probability of habitat suitability was converted to
binary outputs of suitable or unsuitable areas with the help of
maximum sensitivity plus specificity threshold, which can
minimize the mean of the error rate and has been widely used
in SDMs (Liu et al., 2013). Several binary maps, which were
obtained for each data suite in each scene, were assembled to
create a final suitable-unsuitable map using a majority vote
approach (Hallfors et al., 2016), i.e., a location was considered
to be suitable if more than 60% of models projected that cell to
be suitable.

To understand which climate variables may be important and
differ among populations (or species), we used the permutation
importance and jackknife measures (Shcheglovitova and
Anderson, 2013) in MaxEnt to assess the relative contribution
of each environmental variable, to identify the most important
variables and determine the predicted distribution of the
modeled entity. Response curves of all variables in the models
were identified and examined to check the response of each
population (or species) to different variable values.

Geospatial Analysis
We obtained three suite results for three suites of presence data
(P_West, P_East, and P_Whole), which allowed us to determine
the current distribution and changes in the future separately. To
January 2020 | Volume 10 | Article 1717
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create a summary description of the predicted distribution change
under different climate scenarios for each population, we
calculated the area and centroid of suitable distribution, and
comparisons were made using different scenarios and periods.
To further display suitability changes, projections under the same
RCP were compared with the current distribution and ensembled
to a discrete map to illustrate changes of suitability in each cell,
resulting in eight kinds of situations that could occur in different
cells. Simultaneously, we combined the binary results of P_West
and P_East to obtain a new suite of binary results named
P_Combination, in which a cell was considered suitable for P.
mairei if it was suitable for both P_West and P_East.We compared
the distribution of P_West with that of P_East, and
P_Combination with P_Whole, to assess niche overlap between
them and check the need to conduct separate SDMs rather than
entire SDMs. Schoener's D values (Sch_D) (Schoener, 1968) and
corrected modified Hellinger distance (Cor_I) (Warren et al.,
2008) were calculated to measure niche overlap between SDMs.
Both statistics ranged from 0 (species with completely discordant
niches) to 1 (species with identical niches). All calculations were
performed in Rwith the help of packages including: “sp” (Pebesma
and Bivand, 2005), “raster” (Hijmans, 2019), “rgeos” (Bivand and
Rundel, 2019), and “dismo” (Hijmans et al., 2017), while ArcGis
Pro was used for plotting all geographic distribution maps.

RESULTS

Population Grouping
A total of 67 presence records (Figure 1) with geo-coordinates
were obtained for further analysis through spatial filtering. Three
principal components, which were obtained through PCA based
on 19 variables, explained 93.39% of cumulative variance
(Table 1). The distribution of 67 presence sites was drawn based
on the first two principal components, which explained 68.15% of
all variance. Despite some overlap between the two populations,
P_West and P_East were located separately in PCA maps: P_East
occupied a niche featured by high Bio04 (temperature seasonality)
and Bio07 (annual temperature range), while P_West featured high
Bio09 (mean temperature of the driest quarter) and Bio11 (mean
temperature of the coldest quarter) (Figure 2). The HCA result
(Figure 3) shows that all sites of occurrence can be grouped into
three groups: two groups for P_West and one group for P_East.We
obtained a mean misjudgment rate of 1.67% with a standard
deviation of 2.1% from LDA, which justified the difference
between P_West and P_East. The combined results from HCA
and PCA indicate that divergence in climate adaptation exists
between the two populations, despite little overlap and divergence
existing within P_West. Considering that a limited number of
presence sites in further clustering may not support a good
performance of model training and testing, we finally selected
P_West and P_East for our further research.

Current Distribution of Suitable Habitat
Based on three evaluated metrics from ENMeval (Supplementary
File 3), a regulation multiplier of 0.5 and a feature class
combination of linear and quadratic (LQ) was selected for all
Frontiers in Plant Science | www.frontiersin.org 5
SDMs of three suites of data. After removing SDMs with a test
AUC under 0.85, mean testing AUCs of SDMs using three suites of
presence data ranged from 0.937 to 0.980 (Supplementary File 4),
suggesting that most models performed well and generated
excellent evaluations (Phillips et al., 2006). Current suitable areas
for P_West were predicted to exist in middle Sichuan, south
Gansu, north Yunnan, and part of south Shaanxi, while regions
along the eastern side of Hengduan Mountains were suitable for
P_West. Current suitable areas for P_East were predicted tomainly
occur inmiddle Shaanxi, as well as regions inwest Hubei and south
Chongqing, which are located in the Qinling, Daba, and Dalou
Mountains (Figure 4A). The western region of Daba Mountains
was predicted to be suitable for P_West, while most of this area was
predicted to be unsuitable for P_East. It seems inconsistent with
our assumption that P_West is suitable in Hengduan Mountains
and P_East is suitable in Qinling and Daba Mountains. Current
suitable areas for P_Whole were predicted tomainly occur in south
Gansu, middle Shaanxi, middle Sichuan, and north Yunnan.
After combining the three result maps, compared with the results
of P_West and P_East, P_Whole lost a suitable region in south
Chongqing, where the presence of P. mairei has been documented
(Figure 4).

Core Distribution and Area of Suitable
Habitats
To grasp an overall understanding of distribution shifts, the
centroid of each SDM was calculated, and vectors were drawn to
illustrate the direction and distance of centroid shifts of both
populations under different climatic scenarios (Figure 5). The
centroid of the current habitat of P_West was predicted to be
located in the middle of Sichuan province (102.90 E and 29.47 N),
and might shift west in the 2050s in RCP 2.6 (101.96 E and
29.24 N) and RCP 8.5 (101.95 E and 29.21 N). The centroid of
suitable areamight shift north in the 2070s inRCP2.6 (102.06E and
29.7N), butmight shift south in the 2070s inRCP 8.5 (101.88 E and
28.51 N). Overall, the core distribution of P_West showed a
westward-shifting trend under the three pathways since western
regions have a higher altitude. The centroid of the current habitat of
P_East was predicted to be located in south Shaanxi province
(107.65 E and 32.37 N). It might shift north in the 2050s in RCP
2.6 (107.2 E and 32.69 N) and RCP 8.5 (107.39 E and 32.92 N) and
might shift further north in the 2070s inRCP 2.6 (107.1 E and 33.05
N) and RCP 8.5 (106.96 E and 33.59 N). Overall, the core
distribution of P_East in different pathways all showed a north-
bound shift since northern areas are also characterized by higher
altitudes.Thecentroidof the currenthabitat ofP_Whole,whichwas
predicted to be located in middle Sichuan province (104.18 E and
30.34 N), and which is near the core distribution of P_West,
presented similar shifting trends. It might shift west in the 2050s
in RCP 2.6 (103.01 E and 30.13 N) and RCP 8.5 (102.65 E and
30.05 N), and in the 2070s in RCP 2.6 (103.06 E and 30.42 N) and
RCP8.5 (102.37 E and 29.96N).Overall, the core distribution of the
three suites of SDMs showed an upward-shifting trend under the
three RCPs.

The current suitable area of P_West was predicted to be
2.08 × 105 km2, and it might increase in the 2050s in RCP 2.6
January 2020 | Volume 10 | Article 1717
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TABLE 1 | Correlation between components and variables and variance explained.

Bioclimatic variables PC 1 PC 2 PC 3

Loadings Bio01 Annual mean air temperature −0.128 0.951 0.279
Bio02 Mean diurnal temperature range 0.433 0.344 −0.646
Bio03 Isothermality 0.792 0.353 −0.409
Bio04 Temperature seasonality −0.908 −0.31 0.151
Bio05 Max temperature of the warmest month −0.72 0.627 0.239
Bio06 Min temperature of the coldest month 0.11 0.873 0.428
Bio07 Annual temperature range −0.88 −0.217 −0.18
Bio08 Mean temperature of the wettest quarter −0.547 0.777 0.265
Bio09 Mean temperature of the driest quarter 0.341 0.922 0.165
Bio10 Mean temperature of the warmest quarter −0.661 0.64 0.346
Bio11 Mean temperature of the coldest quarter 0.341 0.922 0.165
Bio12 Annual precipitation 0.667 −0.215 0.677
Bio13 Precipitation of the wettest month 0.913 −0.09 0.24
Bio14 Precipitation of the driest month 0.043 −0.259 0.93
Bio15 Precipitation seasonality 0.717 0.3 −0.555
Bio16 Precipitation of wettest quarter 0.881 −0.136 0.329
Bio17 Precipitation of driest quarter 0.081 −0.28 0.929
Bio18 Precipitation of the warmest quarter 0.945 −0.019 0.265
Bio19 Precipitation of the coldest quarter 0.081 −0.28 0.929

Eigenvalues 7.406 5.543 4.795
Percent of variance 38.977 29.174 25.239
Cumulative percent of variance 38.977 68.151 93.39
Frontiers in Plant Science
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FIGURE 2 | Result of principal component analysis. P_East occupies a niche featured by high Bio04 (temperature seasonality) and Bio07 (annual temperature
range), while P_West features high Bio09 (mean temperature of the driest quarter) and Bio11 (mean temperature of the coldest quarter).
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FIGURE 3 | Result of hierarchical cluster analysis. All sites of occurrence could be grouped into three groups: two groups for P_West and one group for P_East.
FIGURE 4 | Currently suitable areas which were projected by maximum entropy algorithm (MaxEnt) for western population (P_West), eastern population (P_East),
whole population (P_Whole), and an combined result (P_Combination) from suitable areas of P_West and P_East, in which a cell was considered suitable for
P. mairei if it was suitable for P_West or P_East. (A) P_West was predicted to occur in middle Sichuan, south Gansu, north Yunnan, and a part of south Shaanxi.
P_East was predicted to mainly occur in middle Shaanxi. (B) Compared with the results of P_West and P_East, P_Whole lost a suitable region in south Chongqing,
which was reported to be suitable for P. mairei.
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(2.31 × 105 km2) but decrease in RCP 8.5 (1.55 × 105 km2), and
might also increase in the 2070s in RCP 2.6 (2.11×105 km2) and
RCP 8.5 (2.7 × 105 km2) (Figure 6). The current suitable area of
P_East was predicted to be 6.90 × 104 km2, and it might decrease
in the 2050s in RCP 2.6 (4.28×104 km2) and RCP 8.5 (5.58×104

km2) and might keep decreasing in the 2070s in RCP 2.6
(2.31×104 km2) and RCP 8.5 (1.32×104 km2). The current
suitable area of P_Whole was predicted to be 2.40×105 km2,
and it might decrease in the 2050s in RCP 2.6 (2.37×105 km2)
and RCP 8.5 (1.89×105 km2), and might keep decreasing in the
2070s in RCP 2.6 (1.64×105 km2), and might increase slightly in
RCP 8.5 (2.15×105 km2). Overall, the suitable area of P_East
might decrease sharply under climate change, P_Whole might
decrease slightly while P_West might remain unchanged.
Frontiers in Plant Science | www.frontiersin.org 8
Changes of Suitable Habitat
Most current suitable areas of P_West were predicted to remain
suitable under the three RCPs, including south Gansu, middle
Sichuan, and northwest Yunnan, but a large part of south
Sichuan and north Yunnan might face a loss of suitability in
the 2050s and recovery in the 2070s in RCP 8.5 (Figure 7). The
predicted increase in suitable areas of P_West in RCP 2.6 are
mainly located on the western side of current suitable areas in
Sichuan, and on the northern side of current suitable areas
in Yunnan. Besides the two former regions, eastern Yunnan
was also predicted to become suitable for P_West in RCP 8.5.
The loss of suitable areas of P_West might occur primarily in
south Shaanxi, on the eastern side of middle Sichuan, and in a
part of western Guangxi. Most current suitable areas of P_East
FIGURE 5 | Core distributions of different species distribution models (constructed with eastern population (P_East), western population (P_West), and whole
population (P_Whole) of P. mairei) and their changes under climate change, including two periods (from now until the 2050s and from the 2050s–2070s) under three
climate scenarios (RCP2.6, RCP6.0, and RCP8.5). P_East shows a north shift trend while P_West and P_Whole may shift west, although the overall trend of all
populations was northwards.
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might become unsuitable in the three RCPs but maintain
suitable areas in middle Shaanxi, so the overall area might
decrease with a rise in RCP. Loss of suitable areas of P_East
were predicted to include lowland in middle Shaanxi, and
regions in south Gansu and south Chongqing. Middle Gansu
might become suitable for P_East in the 2050s but unsuitable in
the 2070s in the three RCPs. The situation experienced by
P_Whole is predicted to be similar to that in P_West, where
most current suitable areas might maintain their suitability
under climate change, including middle Shaanxi, south Gansu,
middle Sichuan, and northeast Yunnan. There might be an
increase in suitable areas of P_Whole located to the west of
current suitable areas in Sichuan and to the north of current
suitable areas in Yunnan. In contrast, suitable areas predicted to
be lost were mainly located in north Shaanxi and east of the
current suitable area in middle Sichuan.

Important Variables
For P_West, among the six climate variables adopted in the model,
precipitation of the driest month (Bio14, 52.61%) (Table 2) and
temperature seasonality (Bio4, 24.89%) made substantial
contributions to the distribution model relative to other variables,
indicating that these factors play important roles in its distribution.
Mean diurnal range (Bio2, 11.89%) also made a substantive
contribution to the distribution model, and the cumulative
contribution of these three variables was 89.39%. Thresholds
(presence probability > 0.2) for each variable were obtained
through separate response curves: temperature seasonality (Bio4)
ranged from 3.33 to 7.64°C, precipitation of the driest month
(Bio14) ranged from 2.32 to 10.77 mm, and mean diurnal range
(Bio2) ranged from 6.57 to 13.72°C (Figure 8).
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For P_East, mean diurnal range (Bio2, 55.79%) made the
greatest contribution to the distribution model, while mean
temperature of the wettest quarter (Bio8, 16.17%) and
precipitation of the driest month (Bio14, 12.43%) also made
substantive contributions. These three important variables had a
cumulative contribution of 84.39%. The threshold (presence
probability > 0.2) of mean diurnal range (Bio2) ranged from
5.08 to 10.38°C, while mean temperature of the wettest quarter
(Bio8) ranged from 3.01 to 25.30°C and precipitation of the
driest month (Bio14) ranged from 0 to 48.19 mm (Figure 8).

For P_Whole, precipitation of driest month (Bio14, 39.25%)
and mean diurnal range (Bio2, 20.99%) made the greatest
contributions to the distribution model, and they had a
cumulative contribution of 60.24%. The threshold (presence
probability > 0.2) of precipitation of the driest month (Bio14)
ranged from 0 to 17.61 mm and mean diurnal range (Bio2)
ranged from 5.08 to 13.22°C (Figure 8).

Niche Overlap Between Two Populations
The current Sch_D and Cor_I between P_West and P_East were
0.09 and 0.16, respectively (Figure 9), and 0.77 and 0.80 between
P_Combination and P_Whole. Under the three predicted
pathways of climate change, they all showed a steadily
declining trend over time except for a slight increase that
occurred in the 2050s in RCP 2.6. Between P_West and P_East
in the last period (2070s), and among the three pathways, Sch_D
and Cor_I in RCP 8.5 had the lowest values of 0.004 and 0.018,
but the highest values (0.034 and 0.099) in RCP 6.0 (Figure 9).
Between P_Whole and P_Combination, Sch_D and Cor_I in
RCP 2.6 had the highest values of 0.647 and 0.763 in the last
period (2070s) among the three pathways.
FIGURE 6 | Suitable areas and their changes under climate change. Both areas (P_East and P_Whole) may decrease under climate change in the 2070s under
three RCPs, while P_West may increase slightly in the 2070s under three RCPs although it may face a decrease in the 2050s under RCP6.0 and RCP8.5.
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FIGURE 7 | Changes to suitable areas under climate change. Eight colors refer to eight situations that occurred in specific locations. Green or grass green refer to a
relatively stable region that is suitable for P. mairei; blue or sky blue refer to a threatened region where it will no longer become suitable from the 2050s or 2070s; red
or pink refer to a promising region where conditions will become suitable from an unsuitable state from the 2050s or 2070s.
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DISCUSSION

Differences Between Populations
Considering that P. mairei is an endangered species with spatially
distinct populations, we assumed that different populations would
possess varying degrees of adaptation to their local environments,
and divided all occurrences of P. mairei into two populations
Frontiers in Plant Science | www.frontiersin.org 11
(P_West and P_East). The results of PCA and HCA partly
justified our assumption. The results of PCA suggest that P.
mairei could be diverging as a result of changes to climate
variables such as precipitation and range of annual temperature,
while P. mairei is thought to be unsuitable under abundant rainfall
and adaptive to distinct annual temperature changes (Hong, 2011).
Further analysis about climate variables included contributions and
TABLE 2 | The permutation importance of the variables included in the MaxEnt models for Paeonia mairei.

The permutation importance (%) Western populations
(P_West)

Eastern populations
(P_East)

All populations
(P_Whole)

Average SD Average SD Average SD

Mean diurnal range (Bio02) 11.89 5.81 55.79 18.11 20.99 7.52
Temperature seasonality (Bio04) 24.89 4.9 2.87 2.95 10.33 5.56
Mean temperature of wettest quarter (Bio08) 3.79 2.26 16.17 6.32 13.78 6.69
Precipitation of wettest month (Bio13) 1.81 1.76 3.82 6.45 6.08 3.69
Precipitation of driest month (Bio14) 52.61 5.76 12.43 12.2 39.25 9.31
Precipitation seasonality (Bio15) 5.02 2.76 8.91 11.97 9.57 4.31
January 2020 |
 Volume 10 | Article
Bold fonts refers to the contribution of the first and second important variables for each population.
FIGURE 8 | Response curves of all climate variables. The Y-axis shows the relative probability of the presence of P. mairei under a given value of each climate variable
applied in our research. (A)Western population might adapt to a higher mean diurnal temperature range; (B) Eastern population might adapt to a higher temperature
seasonality; (C) Two populations performs an stability in Mean temperature of wettest quarter; (D)Western population might adapt to a higher precipitation of wettest month;
(E) Eastern population might adapt to a higher precipitation of driest of month; (F)Western population might adapt a higher precipitation seasonality.
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response curves of variables in SDMs. Within six chosen climate
variables, four variables (Bio02, Bio04, Bio08, and Bio14) had a
considerable influence on the distribution of P. mairei. Bio2
(mean diurnal temperature range) and Bio4 (temperature
seasonality) are both related to temperature changes, while Bio8
(mean temperature of the wettest quarter) and Bio14 (precipitation
of the driest month) are related to precipitation and its interaction
with temperature.

P. mairei is a herbaceous perennial with thick carrot-shaped
roots that stores carbohydrates in roots that are crucial for bud
development and germination (Walton et al., 2007). In
P. mairei, a suitable diurnal temperature range might be
important for root thickening and further plant development.
According to the response curve (Figure 8), P_East can survive a
much lower diurnal range than P_West, indicating that there is
some special local adaption of mean diurnal range for P_East.
Mean temperature of the wettest quarter (Bio8) indicates a
suitable temperature range for plant growth when there is
adequate rainfall, which corresponds to subtropical or
temperate monsoon climates in the distribution range of
P. mairei. Compared to cold, peonies are more sensitive to
heat (Hong, 2011), so that the upper limit would contribute
more to distribution models. According to the response curve,
P_East had a broader temperature range (3.01–25.30°C) than
P_West (8.58–22.27°C). P. mairei plants respond weakly to
flooding stress but are quite strong in response to drought
(Hong, 2010), and thus low precipitation in the driest month
(Bio14) is needed. On the other hand, excessively insufficient
Frontiers in Plant Science | www.frontiersin.org 12
water will affect the normal physiology of seeds, and lead to
dormancy, which will made germination difficult (Baskin and
Baskin, 2014). According to the response curve, P_West and
P_East had the same peak of precipitation (about 10 mm) in the
driest month, but P_East already adapted to a higher level of
precipitation, the upper threshold (presence probability > 0.2) of
P_East being 48.19 mm, compared to 10.17 mm for P_West.
While dormancy of peony seeds may result in insufficient water,
germination requires a complicated set of temperature
conditions: warm stratification for embryo growth and radicle
protrusion followed by cold stratification for epicotyl growth
(Zhang et al., 2019a). Suitable temperature seasonality (Bio04) is
required for the normal germination of P. mairei. According to
the response curve, the threshold value (presence probability > 0.2)
of Bio04 for P_West was 3.33–7.64°C, and 4.7–12.22°C for
P_East, indicating that P_East might be more sensitive to
temperature and require a higher climate seasonality for
seed germination.

The two populations had clearly distinguished geographies,
with P_West mostly located in middle Sichuan and P_East
mostly located in south Shaanxi. Under the influence of global
warming, niche similarity between both populations might
decline consistently (Figure 9), indicating the strengthened
distribution divergence of these populations. Furthermore, as
their distributions were predicted to shift in opposite directions,
both populations might achieve local adaptation to the
new distribution centers, which would strengthen their
niche divergence.
FIGURE 9 | Niche overlap and changes under climate change. Niche overlap was measured by Schoener's D values and corrected modified Hellinger distance,
both ranging from 0 (refers to populations with completely discordant niches) to 1 (refers to populations with identical niches).
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Difference Between Two Approaches
We developed two approaches to construct SDMs for P. mairei.
The first followed common practice and treated all presence sites
within the distribution range as a whole. In the second approach,
which assumed that geographically distinct populations would
adapt locally to their local environments, separate SDMs were
constructed for separate populations. The current distributions
of P. mairei predicted by these two approaches were basically
consistent with each other, and both covered regions where
presence sites were located, except that P_Whole lost south
Chongqing. When two presence sites existed, south Chongqing
was suitable for P. mairei. Besides south Chongqing, a larger
region was predicted to be suitable for P_Combination than
P_Whole, 2.6×105 and 2.4×105 km2, respectively. The overlap
between P_Combination and P_Whole decreased from the
current 0.77–0.64 in the 2070s in RCP 8.5, as measured by
Schoener's D value. This finding indicates that the difference
between the results from these two approaches arose from
climate change, which assigns special consideration to the
choice of suitable approaches when preparing to predict the
suitable distribution of geographically disjoint populations.
Considering that south Chongqing was lost from P_Whole, we
suggest that a separate-SDM approach that can correctly evaluate
the suitability of a species in regions where presence sites are
disproportional, and provide more detail about species
distribution, is a more reasonable strategy.

Conservation Strategies for P. mairei
Under the influence of global warming, different changes
occurred to the ranges of the two populations. From an overall
perspective, most of the current habitats of P_West would be
maintained, while those of P_East would become unsuitable in
future scenarios.

As we showed, the core distribution of P_West might shift west
toward the Tibet Plateau under all RCP scenarios, indicating an
upward shift trend for P_West. The elevation gradient of species
composition is generally considered to be driven by the
corresponding temperature gradient, so species ranges are
expected and projected to shift to higher altitudes as climate
warms (Lenoir et al., 2008). Indeed, numerous plant species
have been reported to move toward higher elevations due to
elevated temperatures (Klanderud and Birks, 2003; Lenoir et al.,
2008; Wolf et al., 2016; Zhang et al., 2018; He et al., 2019). The
areas of suitable distribution of P_West were all predicted to reach
a value slightly above the current level by the 2070s under most
RCP scenarios (Figure 6), which indicates that global warming
might benefit P_West. This trend is consistent with other studied
peony species, P. delavayi, P. rockii, and P. veitchii, which were
modeled to separately expand their highly suitable habitats by
82.35%, 3.00%, and 19.59%, respectively in the 2070s under RCP
8.5 (Zhang et al., 2018; Zhang et al., 2019b). The core distribution
of P_East might shift north under different scenarios and tends to
include the top of different mountains under different RCP
scenarios. The areas of suitable distribution of P_East were all
predicted to decline over time under all RCP scenarios, and the
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decreased values might rise as RCP values rise (Figure 6). This
suggests that global warming is not likely to be a benefit for the
survival of P_East. Both populations showed different responses
under different RCP scenarios, indicating the complex
mechanism of distribution under different temperatures and/or
levels of precipitation. This suggests that more SDMs need to be
constructed under different RCPs if there is to be a comprehensive
understanding about future trends of distribution changes, which
is essential for conservation policy makers.

As our study demonstrates, climatic demand varies within the
distribution range of P. mairei andmight influence its responses to
ongoing climate change. If the populations have adapted to these
differing conditions, intraspecific variation could be relevant when
planning conservation of the species. Experimental studies are
needed to disentangle this, but absent such information, readily
applicable SDMsmay offer one of the best tools to gain insight into
the potential importance of niche divergence under climate
change. For P_West, implementation of a conservation strategy
based on population models could include in situ conservation,
considering that most current suitable areas were predicted to still
be suitable for P. mairei under climate change. Thus, efforts should
be made to protect these regions from threats produced by
anthropogenic activities. Assistance in migration southward is
also suggested, considering the long distance from its current
distribution to a future climatically suitable distribution in the
2070s, namely in east Yunnan. For P_East, a population-based
strategy could entail in situ conservation and set core protection
areas at highly elevated regions of Qinling and Daba Mountains.
In addition, ex situ conservation off-site, such as in a botanical
garden, is urgent for sustainable research and development of P.
mairei, as current suitable areas for both populations might shrink
or disappear under future climate scenarios. Although SDM is a
powerful tool for species conservation, morphological and genetic
research is needed to understand intraspecies biodiversity and
evolution within P. mairei, as these are aspects essential for its
effective conservation.
CONCLUSION

It is of vital importance to estimate how climate change will affect
the distribution of rare species for specific conservation
purposes. The results of our study indicate that local climate
adaption exists within the distribution range of P. mairei and that
different populations respond to climate change quite differently
through separate SDMs for separate populations: P_West might
shift north, and P_East might shrink from the north, but both are
likely to shift upwards driven by rising temperature. By treating
all presence sites as a whole would produce a narrower niche, and
could miss predicting some suitable areas (south Chongqing in
this case). Local adaptation is worth considering in SDM
research, and a new approach of constructing separate SDMs
for separate populations is suggested. The predicted spatial and
temporal pattern of range shifts for P. mairei will be a useful
reference for conservation strategies, and the result of population
January 2020 | Volume 10 | Article 1717
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clustering based on PCA and SDMs can be used to help design
further genetic research about biodiversity and evolution.
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