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Phosphoinositide 3-kinase (PI3K) plays a vital role in plant response to abiotic stress.
However, the role of PI3K in plant immunity is largely unknown. This study showed that
PI3K enhanced Arabidopsis resistance to Pseudomonas syringae pv tomatoDC3000 (Pst
DC3000) and Pst DC3000 (avrRpt2). Overexpression of AtVPS34 promoted stomatal
closure while PI3K inhibitors blocked that after spray inoculation. Additionally, gene
expression of AtVPS34 was increased upon infection by Pst DC3000 (avrRpt2), and SA
upregulated AtVPS34 gene expression in this process. Furthermore, overexpression of
AtVPS34 enhanced PR gene expression after syringe infiltration with Pst DC3000
(avrRpt2), while PI3K inhibitors inhibited that. The production of hydrogen peroxide and
the expression of gene encoding antioxidant enzyme were both enhanced in AtVPS34
overexpressing lines after spray inoculation or syringe infiltration with Pst DC3000
(avrRpt2). Collectively, these results unraveled a novel and broad role of PI3K in plant
immunity which promoted stomatal closure and PR gene expression possibly via
regulating ROS production.

Keywords: phosphoinositide 3-kinase, stomatal immunity, reactive oxygen species, phytohormone, PR gene1
INTRODUCTION

Plant defense involves two overlapping tiers of responses, PAMP-triggered immunity (PTI) and
effector-triggered immunity (ETI) (Jones and Dangl, 2006). PTI involves distinct well-characterized
physiological mechanisms, such as stomata closure to limit pathogen entry, reactive oxygen species
(ROS) production, the biosynthesis of antimicrobial metabolites and proteins such as pathogenesis-
related (PR) proteins, defense hormones such as salicylic acid (SA), jasmonic acid (JA). In contrast
to PTI, ETI induces stronger and long-lasting responses, which is frequently accompanied by
programmed cell death, a process known as the hypersensitive response (HR), leading to pathogen
resistance. Autophagy operates negative feedback loop modulating SA signaling to suppress the
process of HR (Yoshimoto et al., 2009). Phosphoinositide 3-kinase (PI3K) as a key regulator of lipid
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signal has been reported to be involved in autophagy. PI3K is
associated with BECN1/ATG6 to construct the PI3K type III
complex, contributing to activation of autophagy (Abeliovich
and Klionsky, 2001). In mammalian cells, there are three types of
PI3K with distinct substrate specificities. In cells of the
mammalian immune system, PI3K is activated by receptors for
antigen, cytokines, costimulatory molecules, and so on. PI3K
signaling regulates immune cell proliferation, survival,
differentiation, chemotaxis, phagocytosis, degranulation, and
respiratory burst (Fruman and Cantley, 2002). However, type
III PI3K (VPS34), the only type of PI3K identified in plants,
phosphorylates the D-3 position of phosphoinositides to
generate phosphatidylinositol-3-phosphate (PI3P) (Bunney
et al., 2000). In Arabidopsis, PI3K is encoded by a single-copy
gene, AtVPS34 (Lee et al., 2008). Given its evolutionarily
conserved family of signal transducing enzymes, it is worth
revealing the role of PI3K/VPS34 in plant immunity.

Actually, phosphoinositide signaling plays a vital role in plant
immunity. The abundant types and metabolizing enzymes of
phosphoinositide allowing rapid and reversible interconversion
between them provide a highly dynamic and powerful system to
coordinate membrane reorganization, vesicle trafficking and
cytoskeleton rearrangements as well as signaling pathways
determining cell fate (Payrastre et al., 2012). Meanwhile,
pathogens have evolved many different strategies to subvert the
phosphoinositide metabolism and express phosphoinositide
binding effectors (Payrastre et al., 2012). In the process of
oomycetes infection, effector Avh5 could interacts with PI3P,
which promotes host cell entry (Kale et al., 2010). After
internalization, PI3P assists bacterial toxins to escape via
several mechanisms including retrograde translocation from
the ER and transit of partially unfolded proteins directly across
membranes (Bhattacharjee et al., 2012). However, PI3K also
seems to play a positive role in immune response. PI3K/VPS34
functions not only to limit the spread of TMV-induced HR PCD,
but also to inhibit virus replication and/or movement (Liu et al.,
2005). In addition, PI3P activates the p40phox subunit of NADPH
oxidase that forms part of the human innate immune response
(Ellson et al., 2006). Therefore, the role of PI3K in immune
response is complex. Despite many reports, the role of PI3K is
still not entirely clear besides its role in HR. For example, PI3K/
AtVPS34 functions in stomatal closure in plant stress
response (Jung et al., 2002; Park et al., 2003; Choi et al., 2008;
Liu et al., 2016), indicating a possible role of PI3K/AtVPS34 in
stomatal immunity.

In this study, two types of bacteria, Pseudomonas syringae pv
Tomato DC3000 (Pst DC3000) and avirulent Pst DC3000
(avrRpt2), were used. To examine the novel role of PI3K in
plant immunity, AtVPS34 overexpressing Arabidopsis and two
PI3K inhibitors, LY294002 (LY) and wortmannin (WM), were
used as previously described (Liu et al., 2016). LY, which is
derived from the flavonoid quercetin, competes with ATP and
binds to Lys residues in the ATP-binding pocket of PI3Ks
(Walker et al., 2000). WM, a fungal metabolite, dose-
dependently targets PI3K and PI4K (Takáč et al., 2012). Given
the key role of PI3K in stomatal movement, stomatal aperture
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was determined after spray inoculation. The effect of PI3K on
plant immunity after syringe infiltration was also examined by
phenotype analysis, PR gene expression and ROS signaling. In
conclusion, we revealed a new role of PI3K during bacterial
infection in Arabidopsis.
MATERIALS AND METHODS

Plant Material
Seedling of wild-type (ecotype Columbia) Arabidopsis
(Arabidopsis thaliana), transgenic PR1pro::GUS Arabidopsis
(Sun et al., 2012), 35Spro::YFP Arabidopsis and 35Spro::
AtVP34-YFP Arabidopsis were sterilized and grown in soil as
described previously (Liu et al., 2016). AtVPS34 was cloned into
the pHB-YFP vector containing CaMV35S promoter to generate
35Spro::AtVPS34-YFP plasmid (Liu et al., 2016). The
determination of transgenic Arabidopsis was shown in Figure S1.
Chemicals
Commercial chemicals were used at the following concentrations:
30mMLY (Beyotime), 10mMWM(Beyotime), 10mMabscisic acid
(ABA, Beyotime), 1 mM salicylic acid (SA, Sigma), 1 mM methyl
jasmonate (MeJA, Sigma), 20mMbrassinolide (BL, Sigma), 100mM
indol-yl-3-acetic acid (IAA, Sigma), and 10 mM gibberellin
(GA, Sigma). The treatment of phytohormone was performed
according to the previous study (Yi et al., 2014; Yuan et al., 2017).
Pathogen Growth and Inoculation
Bacterial infections were performed with three-week-old
Arabidopsis. Pst DC3000 (avrRpt2) and Pst DC3000 was
cultured at 30°C in LB medium supplemented with
appropriate antibiotics (Melotto et al., 2006; Hung et al., 2014).
Overnight log-phase cultures were cultured by centrifugation,
washed with 10 mM MgCl2, and then diluted to a final optical
density at 600 nm (OD600) of 0.01. The bacterial suspensions
were infiltrated from the abaxial side into a leaf using a 1 ml
syringe without needle.

For stomatal immunity assay, 3-week-old Arabidopsis were
uniformly spray-inoculated with Pst DC3000 suspension
(OD600 = 0.05) in 10 mM MgCl2 with 0.02% Silwet L-77 (Su
et al., 2017).
Bacterial Growth Assay
The harvested leaves were surface sterilized (30 s in 70% ethanol,
then 30 s in sterile distilled water) for spray inoculation (Zipfel
et al., 2004). Three leaf discs (5 mm diameter) containing the
sites syringe-infiltrated or spray-inoculated with bacteria were
excised from each leaf and collected in three groups, each of
which contained six discs each from a different leaf (Alvarez
et al., 1998). Leaf discs were ground in 10 mM MgCl2, then
thoroughly vortex-mixed and diluted 1:10 serially. Samples were
finally plated on King's B medium with appropriate antibiotics.
Colonies were counted after incubation at 30°C.
January 2020 | Volume 10 | Article 1740
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Assessment of Response of Stomata to
Treatments
To assure that most stomata were open before beginning
experiments, we kept plants under light (100 mE/m2/s) for at
least 3 h. Full expanded young leaves were immersed in water or
bacterial suspension (108 cfu/ml in water). 1 and 3 hours after
spray inoculation, epidermis of three leaves was peeled off and
immediately observed by a microscope. The width and length of
the stomatal aperture were measured using the software ImageJ.
All stomatal aperture results reported here were from blind
experiments in which genotypes and treatments were unknown
to the experimenters who measured stomatal responses until the
completion of experiments (Melotto et al., 2006).

RNA Extraction and RT-PCR Analyses
Total RNA was extracted using RNAiso Plus kit (Takara, cat. no.
9108) according to the manufacturer's specifications. cDNA
synthesis was carried out using GoScript™ reverse
transcription system (Promega, cat. no. A5000).

The transcript levels of AtVPS34, AtPR1, AtPR5, AtCAT1,
AtCAT2, AtAPX1, AtCSD1, and AtMSD1 genes were analyzed by
quantitative RT-PCR. The gene-specific primers were shown in
Table 1. AtActin2 gene was amplified as a quantitative control.

Histochemical GUS Staining
Approximately 3-week-old transgenic PR1pro::GUS Arabidopsis
was syringe-infiltrated with Pst DC3000 (avrRpt2), 0, 12, and 24
h after infiltration, histochemical detection of GUS enzyme
activity was performed as described by b-Galactosidase
Reporter Gene Staining Kit (Solarbio, cat. no. G3060).

Measurements of H2O2 Content
1 and 3 h after infection, syringe-infiltrated and spray-inoculated
leaves were collected, then the content of H2O2 produced in leaf
Frontiers in Plant Science | www.frontiersin.org 3
tissues was measured by Hydrogen Peroxide Assay Kit
(Beyotime, cat. no. S0038).

YFP Fluorescence Analysis
All microscopic observations were performed using a confocal
laser-scanning microscope (Leica SP8). 35Spro::AtVP34-YFP-1
Arabidopsis was pretreated with 1 mM SA or not, then syringe-
infiltrated with Pst DC3000 (avrRpt2). YFP fluorescence was
examined one day after infiltration (YFP: excitation 514 nm,
emission 525–550 nm).

Western Blot and Coomassie Staining of
Proteins
35Spro::AtVP34-YFP-1 Arabidopsis was pretreated with 1 mM
SA or not, then syringe-infiltrated with Pst DC3000 (avrRpt2).
One day after infiltration with Pst DC3000 (avrRpt2), the
infected leaves were collected. The total protein were extracted
from leaf samples. Proteins extracts were separated on a 12% (w/
v) SDS-PAGE and transferred onto PVDF membranes, then
subjected to immunodetection with GFP polyclonal antibody
(Beyotime, AG279). The antigen-antibody complex was
visualized with anti-rabbit secondary antibody and enhanced
chemiluminescence. Coomassie staining of the large subunit of
Rubisco was used as a loading control. All the experiments took
three independent repetitions.

Statistical Analysis
All assays were performed independently for a minimum of three
biological replications. Data are represented as mean ± SD.
Statistical analysis was performed with the Student’s paired t test.
RESULTS

PI3K Functioned in Plant Immunity During
Pst DC3000 (AvrRpt2) and Pst DC3000
Infection
To assess the role of PI3K in plant immunity, a previous
constructed Arabidopsis overexpressing AtVPS34 was used (Liu
et al., 2016). 35Spro::AtVP34-YFP lines showed more resistant
compared with 35Spro::YFP Arabidopsis when syringe-
infiltrated or spray-inoculated with Pst DC3000 (avrRpt2)
(Figures 1A, C) and Pst DC3000 (Figures S2A, C). To further
examine the role of PI3K in Arabidopsis resistance against
bacteria invasion, two PI3K inhibitors LY and wortmannin
(WM) was used. The specificity of LY and WM in inhibiting
plant PI3K was shown in previous studies (Takáč et al., 2012;
Leprince et al., 2015). Arabidopsis was pretreated with 30 mM LY
or 10 mM WM for 24 h, then syringe-infiltrated or spray-
inoculated with Pst DC3000 (avrRpt2) and Pst DC3000. More
susceptible phenotype was observed on leaves after spraying with
PI3K inhibitors compared with that in control (Figures 1B, D
and Figures S2B, D). These results suggested that PI3K was
involved in plant immunity against Pst DC3000 and Pst DC3000
(avrRpt2) invasion.
TABLE 1 | List of primers used in this study.

Name Target gene Sequences (5'!3')

AtVPS34-F AtVPS34 GGTGTTAGCAACTGGACATGACG
AtVPS34-R CAAGTGGCTGTTATCCCGAAAG
AtPR1-F AtPR1 GGAGCTACGCAGAACAACTAAGA
AtPR1-R CCCACGAGG ATCATAGTTGCAACTGA
AtPR5-F AtPR5 CGGTACAAGTGAAGGTGCTCGTT
AtPR5-R GCCTCGTAGATGGTTACAATGTCA
AtCAT1-F AtCAT1 AAGTGCTTCATCGGGAAGGA
AtCAT1-R CTTCAACAAAACGCTTCACGA
AtCAT2-F AtCAT2 TCCGCCTGCTGTCTGTTCTG
AtCAT2-R TGGGTCGGATAGGGCATCAA
AtAPX1-F AtAPX1 ACTCTGGGACGATGCCACAAG
AtAPX1-R TCTCGACCAAAGGACGGAAAA
AtCSD1-F AtCSD1 TCCATGCAGACCCTGATGAC
AtCSD1-R CCTGGAGACCAATGATGCC
AtMSD1-F AtMSD1 ATGTTTGGGAGCACGCCTAC
AtMSD1-R AACCTCGCTTGCATATTTCCA
AtActin2 -F AtActin2 TCTTCTCATCATCTATATCACGATC
AtActin2 -R TAAAAAAACGAGGTCAATGCG
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PI3K Functioned in Stomatal Immunity
During Pst DC3000 (AvrRpt2) and Pst
DC3000 Infection
Stomata are the first line of defense that prevents bacterial
infection (Melotto et al., 2017). In previous study, PI3K was
proved to participate in regulation of stomatal movement (Liu
et al., 2005; Kale et al., 2010; Bhattacharjee et al., 2012). For
clarify the possible role of PI3K in stomatal immunity,
35Spro : :YFP Arabidops i s and 35Spro : :AtVP34-YFP
Arabidopsis were exposed to light for at least 3 h to enlarge
the stomatal aperture, and then sprayed Arabidopsis leaves
with Pst DC3000 (avrRpt2) or Pst DC30000. Stomatal aperture
was determined 1 and 3 h after spray inoculation. It was
shown that Pst DC3000 (avrRpt2) and Pst DC3000 induced
stomatal closure at 1 hour and recovered at 3 h after spray
inoculation. Additionally, no significant difference of stomatal
aperture was found between 35Spro::AtVP34-YFP lines and
35Spro::YFP Arabidopsis with water treatment (Figure 2A).
However, stomatal closure was enhanced in 35Spro::YFP
Arabidopsis lines compared with that in 35Spro::YFP
Arabidopsis , when spray-inoculated with Pst DC3000
(avrRpt2) or Pst DC3000 (Figure 2A and Figure S3A). And
PI3K inhibitors blocked stomatal closure in stomatal
immunity (Figure 2B and Figure S3B). These results
Frontiers in Plant Science | www.frontiersin.org 4
indicated that PI3K was involved in stomatal immunity
against Pst DC3000 (avrRpt2) and Pst DC3000 infection.

Effect of Exogenous Phytohormone Supply
on AtVPS34 Expression When Syringe-
Infiltrated With Pst DC3000 (AvrRpt2)
Phytohormones play a vital role in plant resistance against
bacterial invasion. Previous studies revealed that PI3K
functioned as a common platform for multi-hormone signaling
to trigger intracellular response (Hirsch et al., 2007). To
investigate the link PI3K and phytohormone in plant
immunity, Arabidopsis leaves were pretreated either with
water, 10 mM ABA, 1 mM SA, 1 mM MeJA, 20 mM BL, 100
mM IAA or 10 mM GA for 24 h, then syringe-infiltrated with Pst
DC3000 (avrRpt2). Gene expression of AtVPS34 was strongly
induced after syringe inoculation with avirulent Pst DC3000
(avrRpt2) for 12 h compared with that in water treatment.
Although the supply of exogenous phytohormone such as SA,
MeJA, ABA, and GA promoted AtVPS34 gene expression when
syringe-infiltrated with water, only SA significantly increased
AtVPS34 gene expression while other phytohormones
suppressed it after syringe inoculation with avirulent Pst
DC3000 (avrRpt2) compared with that in no phytohormone
treatment (Figure 3A).
FIGURE 1 | PI3K functioned in plant immunity against Pst DC3000 (avrRpt2). (A) 35Spro::AtVP34-YFP Arabidopsis and 35Spro::YFP Arabidopsis were spray-
inoculated or syringe-infiltrated with Pst DC3000 (avrRpt2) for 3 days, Lesion phenotypes in Arabidopsis leaves was taken. Pictures represent typical examples. And
the corresponding bacterial growth quantification of spray-inoculated or syringe-infiltrated leaves was shown in (C). (B) WT Arabidopsis was pretreated either with 30
mM LY or 10 mM WM or not for 1 day, then syringe-infiltrated with Pst DC3000 (avrRpt2) for 1 day or spray-inoculated with Pst DC3000 (avrRpt2) for 2 days. Lesion
phenotypes in Arabidopsis leaves was taken. The red arrow indicated the leaves infiltrated. Pictures represent typical examples. The corresponding bacterial growth
quantification of spray-inoculated or syringe-infiltrated leaves was shown in (D). Each bar is the mean ± SD of three biological replications. Asterisks (*) indicates
significant difference by t test from 35Spro::YFP Arabidopsis or no PI3K inhibitors treatment (P < 0.05; Student's t test). PI3K, phosphoinositide 3-kinase; LY,
LY294002; WM, wortmannin.
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To further investigate the role of SA on PI3K signaling
activation in response to bacterial infection, 35Spro::AtVP34-
YFP-1 Arabidopsis was pretreated with 1 mM SA or not, then
syringe-infiltrated with Pst DC3000 (avrRpt2). The expression of
PI3K was examined by western blot (Figure 3B) and fluorescent
analysis (Figure 3C) 1 day after infiltration. The expression of
PI3K was enhanced after Pst DC3000 (avrRpt2) infiltration, and
exogenous SA further increased PI3K expression in bacterial
invasion. These results indicated that SA induce PI3K signaling
in plant resistance against Pst DC3000 (avrRpt2) invasion.
Frontiers in Plant Science | www.frontiersin.org 5
PI3K Enhanced Pathogenesis Related
Genes Expression in Plant Resistance
Against Pst DC3000 (AvrRpt2) Invasion
Pathogenesis related (PR) PR1 and PR5 genes are late marker
genes for Arabidopsis defense response (van Loon et al., 2006).
Transgenic PR1pro::GUS Arabidopsis plants were used to
examine PR1 gene expression. In the group without PI3K
inhibitors pretreatment, syringe infiltration with Pst DC3000
(avrRpt2) induced GUS signal at 12 h after infiltration and GUS
signal was enhanced at 24 h after infiltration. In contrast, PI3K
inhibitors inhibited PR1 gene expression after syringe infiltration
with Pst DC3000 (avrRpt2) in the first 24 h (Figure 4A).
Moreover, similar results were found for PR1 gene expression
by RT-qPCR analysis (Figure 4B).

PR genes expression was also examined in AtVPS34
overexpressing Arabidopsis under bacterial infection. As shown
in Figure 4C, overexpression of AtVPS34 enhanced PR1 and PR5
gene expression compared with that in 35Spro::YFP Arabidopsis
after syringe infiltration with Pst DC3000 (avrRpt2). These
results indicated that PI3K had a positive role in transcription
response of PR genes in plant resistance against Pst DC3000
(avrRpt2) invasion.

PI3K Induced ROS Signaling in Plant
Resistance Against Pst DC3000 (AvrRpt2)
Invasion
Previous studies have revealed that ROS plays a vital role in plant
immunity (Lambeth, 2004) and PI3K regulates ROS production
in various physiological events and stress responses (Lee et al.,
2010). Therefore, 1 and 3 h after bacteria invasion, syringe-
infiltrated and spray-inoculated leaves were collected. As shown
in Figure 5, the content of hydrogen peroxide was significantly
increased at 1 h after spray-inoculation and declined at 3 h after
spray-inoculation in 35Spro::YFP Arabidopsis, while syringe
infiltration with Pst DC3000 (avrRpt2) induced a progressive
increase of hydrogen peroxide. However, overexpression of
AtVPS34 further upregulated the content of hydrogen peroxide
compared with that in 35Spro::YFP Arabidopsis after
bacterial invasion.

Additionally, to further reveal the key role of PI3K in ROS
signaling, the expression of genes encoding antioxidant enzymes
was also examined. Most of genes encoding antioxidant enzymes
were upregulated after spray inoculation with Pst DC3000
(avrRpt2) (Figure 5C), and gene expression of APX1 was
increased after syringe infiltration with Pst DC3000 (avrRpt2)
(Figure 5D). It seems that PI3K was involved in plant immunity
via promoting ROS production.
DISCUSSION

In this study, we investigated the role of PI3K in plant immunity
against Pst DC3000 (avrRpt2). Overexpression of AtVPS34
enhanced plant resistance against Pst DC3000 and Pst DC3000
(avrRpt2) invasion. Further analysis showed that stomatal
immunity was enhanced by the overexpression of AtVPS34. In
FIGURE 2 | PI3K functioned in stomatal immunity against Pst DC3000
(avrRpt2). (A) 35Spro::AtVP34-YFP Arabidopsis and 35Spro::YFP
Arabidopsis were taken in light for at least 3 h, (B) WT Arabidopsis was
pretreated either with 30 mM LY or 10 mM WM or not for 24 h, then transport
the plant under light for at least 3 h. The full expanded young leaves were
immersed in water or Pst DC3000 (avrRpt2) suspension (108 cfu/ml in water).
1 and 3 h after spray inoculation, epidermis of three leaves was peeled off
and immediately observed under a microscope. The stomatal aperture was
represented as the ratio of width to length. Each bar is the mean ± SD of
three biological replications (n > 30). Asterisks (*) indicate statistically
significant differences from control in the indicated times (P < 0.05; Student's
t test). Hash marks (#) indicate statistically significant differences between
indicated samples (P < 0.05; Student's t test). PI3K, phosphoinositide 3-
kinase; LY, LY294002; WM, wortmannin.
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addition, exogenous SA treatment enhanced AtVPS34 expression
and PR gene expression was significantly induced by the
overexpression of AtVPS34 after syringe infiltration with Pst
DC3000 (avrRpt2). Moreover, the content of hydrogen peroxide
and the expression of genes encoding antioxidant enzyme were
increased when inoculated with Pst DC3000 (avrRpt2) regardless
of syringe or spray. These results indicated a novel role of PI3K in
plant immunity.

Plant effective immune responses are activated through various
phytohormones signaling such as jasmonic acid, ethylene, Abscisic
acid, auxin, gibberellins, cytokinin brassinolide (An and Mou,
2011). Most phytohormones have been reported to trigger PI3K
signaling. In seed germination, PI3K is a positive regulator of GA
signaling (Liu et al., 2012). And ABA and Auxin-induced ROS
productionalso requires theactivationofPI3K(Park et al., 2003; Joo
et al., 2005). Moreover, PI3K is involved in MeJA-induced leaf
senescence (Hung et al., 2006;Hung andKao, 2007; Liu et al., 2016).
Increasing evidences indicated that PI3K functioned as a common
platform for multi-hormone signaling to trigger intracellular
response (Hirsch et al., 2007). For network regulation of
phytohormone in plant immunity, PI3K seems to play a complex
role in plant-pathogen interactions. We speculated that the timing
of infectionmight be a crucial element in the regulatory role ofPI3K
on pathogen defense.

The role of ABA in plant immunity is complex. In Arabidopsis,
ABA-regulated stomatal closure is a key element of pre-invasion
Frontiers in Plant Science | www.frontiersin.org 6
SA-regulated innate immunity to Pseudomonas syringae (Melotto
et al., 2006). COR counteracts PAMP-induced stomatal closure
downstream of ABA (Xie et al., 1998). And our previous study
showed that one unknown upstream signaling of PI3K initiated the
antagonistic effect on JA signaling (Liu et al., 2016). Although gene
expression of AtPI3K was inhibited by ABA upon syringe-
infiltrated with Pst DC3000 (avrRpt2) (Figure 1), we cannot rule
out the possibility that ABA regulated the PI3K signaling in
stomatal immunity. Moreover, guard cell ABA could activate
ROS-generating NADPH oxidases (Kwak et al., 2006), which are
alsonecessary forROSproductionduringpathogendefense (Torres
andDangl, 2005).However, the exact role ofABAonPI3Ksignaling
should be determined by future.

Stomata functions as innate immunity gates to actively
prevent bacterial entry in plant immunity (Melotto et al.,
2006). If Pst DC3000 fails to enter leaf tissues after spray-
inoculation, it dies quickly (Xin and He, 2013). In eukaryocyte,
the activation of PI3K signaling is tightly associated with primary
metabolism. Upon glucose stimulation, PI3K regulated V-
ATPase activation (Sautin et al., 2005). PI(3)P production by
VPS34 is stimulated by amino acid (Byfield et al., 2005; Yoon
et al., 2016). And previous study also revealed a significant
change of primary metabolites in bacterial invasion. Fructose
showed more than a threefold increase at 30 min, and most
amino acids showed a decrease at 180 min after pathogen
infection (Pang et al., 2018). Therefore, we speculated that
FIGURE 3 | The effect of exogenous phytohormone supply on AtVPS34 gene expression against Pst DC3000 (avrRpt2). (A) three-week-old Arabidopsis leaves
were pretreated either with water (H2O) or 10 mM abscisic acid (ABA) or 1 mM salicylic acid (SA) or 1 mM methyl jasmonate (MeJA) or 20 mM brassinolide (BL) or
100 mM indol-yl-3-acetic acid (IAA) or 10 mM gibberellin (GA) for 1 day, then syringe-infiltrated with Pst DC3000 (avrRpt2). 12 h after infiltration, RNA was extracted
from leaves, AtVPS34 gene expression was examined by qPCR. AtActin2 was used as an internal control. Each bar is the mean ± SD of three biological replications.
Asterisks (*) indicate a significant difference from the treatment with water at *P < 0.05 or **P < 0.01 by t-test. (B) and (C) 35Spro::AtVP34-YFP-1 Arabidopsis was
pretreated with 1 mM SA or not, then syringe-infiltrated with Pst DC3000 (avrRpt2). Western blots showing PI3K levels 1 day after infiltration (B). Coomassie staining
of the large subunit of Rubisco was used as a loading control. CBB, Coomassie brilliant blue staining. (C) YFP fluorescence was also examined one day after
infiltration. Results shown are representative. PI3K, phosphoinositide 3-kinase.
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PI3K signaling might be activated by sugar and amino acid
signaling in the early stage of bacterial invasion. Once the
accumulation of sugar and amino acid was decreased, PI3K
signaling was diminished. Thus, we found the overexpression
of PI3K recovered to almost the same level as control plants in
stomatal reopening. However, the enhanced closure of stomata
induced by PI3K in the early stage of bacterial invasion is still
very important for plant defense. For one thing, PI3K signaling
senses the danger of potential bacterial invasion more effectively
and take a more effective restriction of bacterial entry through
the epidermis. For another, this stomatal regulation might be
necessary for the priming induction (Ramirez-Prado et al., 2018).
Primed plants are in a heightened state of defense and produce a
stronger defensive response when challenged (Singh et al., 2012).

Our results revealed ROS content was enhanced by
overexpression of AtVPS34 after syringe infiltration or spray
inoculation with Pst DC3000 (avrRpt2). ROS production is
thought to be directly toxic to pathogens in animal immunity
(Lambeth, 2004), and restricts pathogen entry by triggering
stomatal closure (Su et al., 2017). It seems that PI3K regulates
Frontiers in Plant Science | www.frontiersin.org 7
stomatal immunity by promoting ROS accumulation. There is
multiple pathways for ROS production in guard cells (Song et al.,
2014). Our former study revealed that PI3K could regulate the
activity of NADPH oxidase in seed germination (Liu et al., 2012).
And upon perception of PAMPs, NADPH oxidase RbohD could
be activated by plasma-associated kinase BIK1 to induce ROS
production (Su et al., 2017). We speculated that NADPH oxidase
was one of the important sources of ROS regulated by PI3K. ROS
burst triggers an activation of MAPKs signaling and an increase
in the concentration of cytosolic calcium, leading to activation of
ion channels and modification of cellular turgor, thus closure of
the stomatal pores (Balmant et al., 2016). Moreover, cytoskeleton
plays a vital role in Arabidopsis guard cell architecture, thus
pathogen manipulation of actin within the stomata might be
implicated in having a role in immune subversion (Porter and
Day, 2015). Growing evidence showed that PI3K and its
production PI3P modulate actin filament reorganization (Choi
et al., 2008; Li et al., 2008). Thus, PI3K might regulate stomatal
immunity by modulating the dynamic of cytoskeleton. Of course,
all these speculations should be investigated in future studies.
FIGURE 4 | PI3K enhanced pathogen-related genes expression in resistance against Pst DC3000 (avrRpt2) invasion. (A) Approximately 3-week-old transgenic
PR1pro::GUS Arabidopsis was syringe-infiltrated with Pst DC3000 (avrRpt2), 12 and 24 h after inoculation, histochemical detection of GUS enzyme activity was
performed. The red arrow indicated the leaves infiltrated. Results shown are representative. (B) WT Arabidopsis was pretreated either with 30 mM LY or 10 mM WM
or not for 24 h, then syringe-infiltrated with Pst DC3000 (avrRpt2) for 12 h or 24 h, AtPR1 gene expression was examined by qPCR. Each bar is the mean ± SD of
three biological replications. Asterisks (*) indicate statistically significant differences from the treatment with water (P < 0.05; Student's t test). (C) 35Spro::AtVP34-
YFP Arabidopsis and 35Spro::YFP Arabidopsis were syringe-infiltrated with Pst DC3000 (avrRpt2) for 24 h, gene expression of AtPR1 and AtPR5 was determined by
qPCR. Each bar is the mean ± SD of three biological replications. Asterisks (*) indicate statistically significant differences from 35Spro::YFP Arabidopsis (P < 0.05;
Student's t test). PI3K, phosphoinositide 3-kinase; LY, LY294002; WM, wortmannin.
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Once bacteria enter leaf tissues, SA possibly enhances PI3K
signaling. Our experiment showed that AtVPS34 was expressed
in leaf epidermal and guard cells, especially in guard cell. And
exogenous SA further enhanced PI3K expression in stomata
after syringe infiltration. It seems that PI3K-mediated guard
cell signaling regulates not only stomatal immunity, but also
other type of plant defense. Previous study showed ETI is an
accelerated and amplified PTI response, resulting in disease
resistance and usually an HR PCD at the infection site (Jones
and Dangl, 2006). Plant autophagy operated negative feedback
loop modulating SA signaling to negatively regulate immunity-
related PCD (Yoshimoto et al., 2009). Therefore, SA is
hyperaccumulated in L-methionine sulfoximine-induced cell
death in NbPI3K-RNAi plant (Sumida et al., 2017). However,
AvrRpt2-triggered HR PCD may be independent of autophagy
and may require other cell death processes (Hofius et al., 2009).
Thus, the negative feedback of PI3K on the SA production
might not be existed in avirulent Pst DC3000 (AvrRpt2)
infected Arabidopsis. Nevertheless, the effect of PI3K on the
ROS production is important. Therefore, enhancement the
ROS content and expression of genes encoding antioxidant
Frontiers in Plant Science | www.frontiersin.org 8
enzyme by overexpression of AtVPS34 in the process of Pst
DC3000 (avrRpt2) infection (avrRpt2) (Figure 4) might result
in initiation of PR1 and PR5 gene expression. Plant immunity
to avirulent pathogen is usually associated with subcellular
membrane dynamics, such as fusion between the vacuolar
and plasma membranes (Hatsugai et al., 2018). And previous
study has been revealed that YFP-2xFYVE, a fluorescent PI3P-
specific biosensor, strongly labelled the vacuolar membrane in
leaf epidermal and guard cells (Vermeer et al., 2006). Therefore,
it is interesting to investigate the role of PI3K on membrane
traffic in plant resistance to avirulent bacteria invasion in
the future.

In this study, previously unknown role of PI3K in bacterial
resistance was unraveled. Our results showed that PI3K
promotes the process of stomatal immunity and play a
positive role in SA-induced immunity possibly via the
regulation of ROS production. We found that PI3K could
play a positive role in Arabidopsis against avirulent Pst
DC3000 (avrRpt2) and Pst DC3000 infection. Given a key
role of PI3K in plant immunity, we propose that analysis of
the effect of PI3K on cytoskeleton dynamic and ROS
FIGURE 5 | PI3K induced ROS signaling in Arabidopsis resistance against Pst DC3000 (avrRpt2) invasion. 1 and 3 h after invasion, the spray-inoculated (A) and
syringe-infiltrated (B) leaves of 35Spro::AtVP34-YFP Arabidopsis and 35Spro::YFP Arabidopsis were collected, the H2O2 content was assayed using a colorimetric
hydrogen peroxide assay kit from Beyotime. (C, D) 35Spro::AtVP34-YFP Arabidopsis and 35Spro::YFP Arabidopsis were spray-inoculated or syringe-infiltrated with
Pst DC3000 (avrRpt2) for 24 h, then CAT1, CAT2, APX1, CSD1, and MSD1 genes expression were determined by qPCR. Each bar is the mean ± SD of three biological
replications. Hash marks (#) indicate statistically significant differences between indicated samples (P < 0.05; Student's t test). PI3K, phosphoinositide 3-kinase.
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production may provide novel important information for the
control of bacterial disease.
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