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The sustainability of ornamental crop production is of increasing concern to both
producers and consumers. As resources become more limited, it is important for
greenhouse growers to reduce production inputs such as water and chemical
fertilizers, without sacrificing crop quality. Plant growth promoting rhizobacteria (PGPR)
can stimulate plant growth under resource-limiting conditions by enhancing tolerance to
abiotic stress and increasing nutrient availability, uptake, and assimilation. PGPR are
beneficial bacteria that colonize the rhizosphere, the narrow zone of soil in the vicinity of
the roots that is influenced by root exudates. In this study, in vitro experiments were
utilized to screen a collection of 44 Pseudomonas strains for their ability to withstand
osmotic stress. A high-throughput greenhouse experiment was then utilized to evaluate
selected strains for their ability to stimulate plant growth under resource-limiting conditions
when applied to ornamental crop production systems. The development of a high-
throughput greenhouse trial identified two pseudomonads, P. poae 29G9 and P.
fluorescens 90F12-2, that increased petunia flower number and plant biomass under
drought and low-nutrient conditions. These two strains were validated in a production-
scale experiment to evaluate the effects on growth promotion of three economically
important crops: Petunia × hybrida, Impatiens walleriana, and Viola × wittrockiana. Plants
treated with the two bacteria strains had greater shoot biomass than untreated control
plants when grown under low-nutrient conditions and after recovery from drought stress.
Bacteria treatment resulted in increased flower numbers in drought-stressed P. hybrida
and I. walleriana. In addition, bacteria-treated plants grown under low-nutrient conditions
had higher leaf nutrient content compared to the untreated plants. Collectively, these
results show that the combination of in vitro and greenhouse experiments can efficiently
identify beneficial Pseudomonas strains that increase the quality of ornamental crops
grown under resource-limiting conditions.

Keywords: drought, floriculture, greenhouse production, high-throughput, horticulture, low nutrient, plant growth
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INTRODUCTION

Greenhouse-grown ornamentals are largely produced in
containers using soilless growing mixes (Ball, 1998). Until
recently, little attention has been given to the development of
beneficial microbial communities within these containerized
growing systems and to determining how these plant-bacteria
associations can be used to improve ornamental crop quality.
The rising costs of fertilizing and irrigating greenhouse crops
have increased the interest in beneficial bacteria that can improve
water and nutrient-use efficiency while reducing leaching and
potential environmental contamination (Adesemoye et al.,
2009). Plant growth promoting rhizobacteria (PGPR) can
positively impact plant growth and resilience, resulting in a
higher quality crop that is also more tolerant of drought and
nutrient deficient conditions that might be encountered during
shipping and retailing (i.e. postproduction abiotic stresses)
(Waterland et al., 2010; Ruzzi and Aroca, 2015).

Plant growth promoting rhizobacteria (PGPR) comprise
many taxonomic groups with diverse plant hosts (Kloepper
et al., 1989). These bacteria colonize the rhizosphere, a narrow
zone of soil that is associated with the roots and influenced by
root exudates. In these beneficial plant-microbe interactions, the
host plant secretes compounds into the rhizosphere that are used
as a food source by the bacteria, which in turn stimulate plant
growth and mediate stress responses through multiple
mechanisms (Lugtenberg and Kamilova, 2009). PGPR can
directly promote plant growth and abiotic stress tolerance by
facilitating the acquisition of essential nutrients or by modulating
the production of plant hormones (Goswami et al., 2016).

The application of bacteria that modify phytohormone
concentrations such as gibberellins, abscisic acid, and auxin
have been shown to increase osmotic stress tolerance and yield
of soybean (Kang et al., 2014), reduce water loss in grape
(Salomon et al., 2014), and increase rooting of kiwi (Erturk
et al., 2010), respectively. Bacterial production of the enzyme
ACC deaminase reduces production of the stress hormone
ethylene in plants under drought (Glick, 2005), resulting in
increased growth of tomato and pepper (Mayak et al., 2004),
pea (Zahir et al., 2008), and maize (Zafar-ul-Hye et al., 2014)
plants grown under water-limiting conditions. In addition, there
is evidence that bacteria that withstand osmotic stress in vitro
can confer this stress tolerance to plants (Asghar et al., 2015;
Habib et al., 2016). The ability for bacteria to withstand osmotic
stress is often attributed to their ability to form biofilms of
exopolysaccharides (EPS), preventing desiccation under
conditions of osmotic stress. Colonization of plant roots by
EPS-producing bacteria increases tolerance to drought stress
and increases shoot biomass of wheat (Hussain et al., 2014a)
and root and shoot length of maize (Hussain et al., 2014b).

PGPR can improve plant nutrition by increasing nutrient
availability, uptake, and assimilation. Rhizobium have been
documented extensively for their ability to fix atmospheric
nitrogen in symbiotic relationship with leguminous plants
(Sessitsch et al., 2002). However, free-living nitrogen-fixing
bacteria increase yield in corn (Garcia De Salamone et al.,
1996; Kuan et al., 2016), plant size and nitrogen content of
Frontiers in Plant Science | www.frontiersin.org 2
wheat (Sabry et al., 1997), and nitrogen uptake in tomato
(Adesemoye et al., 2010). Phosphate solubilizing bacteria
stimulate growth of many crops, resulting in increased yield
and nutrient content of lettuce (Lai et al., 2008), improved
germination and plant size of rice (Ashrafuzzaman et al.,
2009), and increased berry production of raspberry (Orhan
et al., 2006). PGPR that produce siderophores can chelate iron
and make it more bioavailable to plants. Inoculation with these
PGPR have been shown to increase iron content in plants (Zhou
et al., 2018). The application of PGPR with the ability to enhance
nutrient bioavailability have been used as a tool to reduce
chemical fertilizer inputs without sacrificing crop quality
(Adesemoye et al., 2009).

The genus Pseudomonas has been well studied for its ability to
stimulate plant growth under drought and low-nutrient
conditions (Jha and Saraf, 2015). Inoculation with Pseudomonas
spp. results in an increase of root and shoot length and total plant
biomass in sunflower, finger millet, and peas when subjected to
drought conditions (Zahir et al., 2008; Sandhya et al., 2009;
Chandra et al., 2018). Aspen seedlings grown under nutrient-
limiting conditions and treated with Pseudomonas fluorescens
strains Pf0-1, SBW25, and WH6 and P. protegens Pf-5 have
increased nutrient uptake and root length and biomass (Shinde
et al., 2017). The Pseudomonas putida strain UW4 has served as a
model system for studying the molecular and transcriptional
properties of the enzyme ACC deaminase (Hontzeas et al.,
2004; Cheng et al., 2008). The genus is also considered a model
root colonizer, making it an optimal system to use in studying
beneficial plant-microbe interactions (Lugtenberg et al., 2001).

Although there is growth in the area of PGPR research, much
of this work has been conducted in vitro or focused on
agronomic crops with little emphasis on ornamental crops
(Paulitz and Richard, 2001; Vejan et al., 2016). There is
evidence to suggest that PGPR tested in vitro often do not
have the same growth-promoting effects when applied in
planta (Ryu et al., 2005). In addition, many of these
microorganisms originate from the soils of agronomic fields,
and it is to be expected that changes in environment and abiotic
factors would influence the efficacy of these organisms (Naylor
and Coleman-Derr, 2018). Therefore, the inability to translate
results from in vitro or field soil studies to greenhouse
production of ornamental crops is of concern. The aim of this
study was to identify Pseudomonas strains that stimulated
growth and improved the quality of greenhouse-grown
ornamentals under both drought and low-nutrient conditions.
MATERIALS AND METHODS

Selection of Osmoadaptive Bacteria
An in vitro osmoadaptability bioassay was adapted from Asghar
et al. (2015) for the selection of osmotic stress tolerant bacteria
within a collection of 44 Pseudomonas strains originating from
a variety of natural sources including water, soil, and plants
(Mavrodi et al., 2012; Subedi et al., 2019). Briefly, single bacteria
colonies were inoculated into separate wells of a 96-well microtiter
January 2020 | Volume 10 | Article 1754
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plate pre-filled with 200 µL LB. Bacteria were incubated at 28°C
with shaking at 120 rpm for 18 h. The optical density at 595 nm
(OD595) was measured using a spectrophotometer (DTX880,
Beckman Coulter, Brea, CA) and adjusted to OD595 of 0.8 with
LB. Ten microliters of the bacteria cultures were transferred to a
microtiter plate prefilled with tryptic soy broth (TSB) or yeast
extract mannitol broth (YEM), each amended with 30% PEG8000

(w/v). Each bacteria strain was assayed on three separate
microtiter plates for each media type (n = 3). Plates were
incubated at 28°C with shaking at 120 rpm. After 96 h, the
OD595 was measured to quantify the growth in PEG.

In Planta Evaluation of Bacteria
Experiment 1: High-Throughput Greenhouse
Evaluation of Plant Responses to Treatment With
Osmoadaptive Bacteria Strains
Petunia × hybrida ‘Picobella Blue’ seeds (Syngenta Flowers,
Gilroy, CA) were sown in Pro-Mix PGX media (Premier Tech
Horticulture, Quakertown, PA) and fertilized at each watering
with 50 mg L-1 N from 15N–2.2P–12.5K–2.9Ca–1.2Mg water
soluble fertilizer (JR Peters Inc., Allentown, PA) until transplant.
Plants were grown in a greenhouse with temperatures set at 24/
18°C (day/night) and a 16-h photoperiod. Supplemental lighting
was supplied by high pressure sodium and metal halide lights
(GLX/GLS e-systems GROW lights, PARSource, Petaluma, CA,
USA) to maintain light levels above 250 mmol m−2 s−1. Seedlings
were transplanted four weeks after sowing to 6.35 cm pots
containing a 1:1 mix by volume of sand and turface (Profile
Products LLC, Buffalo Grove, IL). Plants were arranged in a
randomized complete block design (RCBD) with four blocks,
and four single-plant replicates per block (n = 16).

To prepare bacteria inoculum, liquid LB media was
inoculated with individual bacteria cultures selected from the
in vitro osmoadaptability bioassay (Table 1) and incubated at 28°
C for 9 h with shaking at 250 rpm. After incubation, cultures
were adjusted to OD595 = 0.8 with LB. Final bacteria inoculum
for treating the plants was prepared by diluting each culture
1:100 in reverse osmosis (RO) water. Uninoculated LB media
diluted 1:100 with RO water was used as a negative control.
Frontiers in Plant Science | www.frontiersin.org 3
Experiment 1a: Drought Stress
A greenhouse trial was developed to determine if bacteria
application can enhance growth and recovery of petunia plants
following drought stress. Following transplant, plants were
fertilized at each irrigation with 50 mg L-1 N from 15N–2.2P–
12.5K–2.9Ca–1.2Mg water soluble fertilizer (JR Peters Inc.).
Plants were treated weekly with 40 mL bacteria inoculum or
negative control LB solution, beginning the day after transplant.
This volume saturated the growing media without resulting in
leaching. Drought treatment began three weeks post-transplant
by discontinuing weekly bacteria treatments and irrigation until
all plants showed visible loss of turgidity across the plant. Plants
were initially rewatered with RO water and regular irrigation
with fertilizer and weekly bacteria treatments were then resumed.
Plant performance was evaluated six weeks post-transplant.
Flower numbers (including both open flowers and flower buds
showing color) were counted and shoots (including stems, leaves,
and flowers) were harvested. Tissue was dried in a forced-air
oven at 49°C for at least 96 h and then weighed to measure shoot
dry weight.

Experiment 1b: Low-Nutrient Stress
A second greenhouse trial was developed to evaluate the effect of
bacteria application on petunia plant growth under low-nutrient
conditions. After transplanting, plants were maintained with 25
mg L-1 N from 15N–2.2P–12.5K–2.9Ca–1.2Mg water soluble
fertilizer (JR Peters Inc.) at every irrigation to induce low-
nutrient stress (Ball, 1998). Plants were also treated weekly
with 40 mL bacteria inoculum as described previously.
Uninoculated LB media was used as the negative control. Plant
performance was evaluated as described for Experiment 1a.
Experiment 2: Multi-Species Greenhouse Validation
of Two Pseudomonas Strains
Petunia × hybrida ‘Picobella Blue’ (Syngenta Flowers), Impatiens
walleriana ‘Super Elfin Ruby’ (PanAmerican Seed, West
Chicago, IL), and Viola × wittrockiana ‘Delta Pure Red’
(Syngenta Flowers) seeds were sown and grown similar to
Experiment 1. Seedlings were transplanted to 11.4 cm diameter
pots containing Pro-Mix PGX (Premier Tech Horticulture) three
weeks after sowing.Plants for each specieswerearranged inaRCBD
withone plant per block.Due to variation in seed germination rates,
there were 13, 14, and 18 blocks for P. hybrida,V.wittrockiana, and
I. walleriana, respectively. Each species was blocked and analyzed
independently. Bacteria inoculum was prepared according to the
protocol in Experiment 1.

Experiment 2a: Drought Stress
A greenhouse trial was developed to validate the effect of bacteria
application on plant growth and performance after recovery
from drought stress. The greenhouse trial was conducted
similarly to Experiment 1a with modifications due to pot size.
Each plant was treated weekly with 120 mL of bacteria inoculum
or negative control LB solution to saturate the growing media
without resulting in leaching. Drought treatment began five
weeks post-transplant and plant performance was evaluated as
described for Experiment 1 at nine weeks post-transplant. In
TABLE 1 | Pseudomonas strains selected for their ability to withstand PEG-
mediated osmotic stress in vitro.

Strain Species Source Evaluated in multi-
species greenhouse

trial

14B11 P. chlororaphis Missouri River
14D6 P. chlororaphis Mississippi River
29G9 P. poae Herbarium Sample x
36B3 P. fluorescens Wyoming Soil
37D10 P. brassicacearum Wyoming Soil
48B8 P. chlororaphis Wisconsin Soil
48G9 P. chlororaphis Wisconsin Soil
89F1 P. fluorescens Missouri Soil
90F12-2 P. fluorescens Missouri Soil x
94G2 P. frederiksbergensis Missouri Soil
Selected strains were also evaluated in planta in a high-throughput greenhouse trial.
Pseudomonas strains shown to increase plant growth in the high-throughput greenhouse
trial were then evaluated in a multi-species greenhouse trial.
January 2020 | Volume 10 | Article 1754
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addition, adhering media was washed from the roots, root tissue
was dried in a forced-air oven at 49°C for at least 96 h, and root
dry weight was used to calculate the root:shoot.

Experiment 2b: Low-Nutrient Stress
A second greenhouse trial was developed to validate the effect of
bacteria application on plant growth under low-nutrient
conditions. The greenhouse trial was conducted similarly to
Experiment 1b, and each plant was treated weekly with 120
mL of bacteria inoculum. Plant performance was determined by
flower number and shoot biomass as described for Experiment 1,
and root dry weight was determined as described in Experiment
2a to calculate the root:shoot. Plants were harvested at 8 weeks
post-transplant. In addition, dried leaf and stem tissue was
pooled for tissue nutrient analysis. At least three plants per
treatment of each species were pooled per sample. Dried tissue
was ground to pass through a 2-mm sieve. All nutrient analyses
were conducted at the Service Testing and Research Laboratory
(STAR Lab, The Ohio State University/OARDC, Wooster, OH).
Total nitrogen analysis was conducted on a 100 mg sample using
the Dumas combustion method (Vario Max combustion
analyzer, Elementar America, Inc., Germany) (Sweeney, 1989).
Following tissue digestion using a microwave system (Discover
SP-D, CEM Corporation) and nitric acid digestion, a 250 mg
sample was analyzed for P, K, Ca, Mg, and S using an inductively
coupled plasma spectrometer (ICP)(model PS3000, Leeman Labs
Inc., Hudson, NH) (Isaac and Johnson, 1985).

Statistical Analysis
Statistical analyses were conducted in R Studio version 3.5.2
using an analysis of variance (ANOVA) with the model: Y = µ +
treatment + block. Factors that had a significant p-value (p <
0.05) were analyzed using Tukey’s Honest Significant Difference.
Frontiers in Plant Science | www.frontiersin.org 4
RESULTS

In Vitro Selection of Osmoadaptive
Bacteria
A total of 44 Pseudomonas strains were screened for their ability
to withstand osmotic stress in vitro by growing independently in
Yeast Extract Mannitol (YEM) or Tryptic Soy Broth (TSB)
media, both containing 30% polyethylene glycol (PEG). When
grown in PEG-amended YEM, over 75% of the strains had an
OD less than 0.1, and ten strains had at least 4-fold higher OD
readings (Figure 1). These ten strains were selected for further
evaluation based on their high level of osmoadaptability in the
PEG-amended YEM (Table 1). No additional strains were
selected in the TSB media containing PEG (data not shown).

Development of a High-Throughput
Greenhouse Trial to Evaluate the Efficacy
of In Vitro-Selected Bacteria to Increase
Plant Growth
The ten Pseudomonas strains selected from the in vitro
osmoadaptability bioassay were evaluated independently in
drought and low-nutrient greenhouse trials for their ability to
improve plant growth under abiotic stress as compared to the
negative control. Although results were not statistically
significant, there was a general increase in both shoot biomass
and flower number in plants treated with bacteria. For petunia
plants subjected to drought conditions, application of strains
90F12-2, 89F1, 29G9, 14D6, 48B8, and 37D10 increased the
average flower number (Figure 2A) and strains 90F12-2, 89F1,
14D6, 29G9, 14B11, and 48B8 increased the average shoot
biomass (Figure 2B), compared to untreated control plants. Of
those strains, five bacteria increased both the average flower
FIGURE 1 | Bacteria strains were grown in YEM media containing 30% polyethylene glycol to induce osmotic stress. Bars represent the mean (± SE) optical density
(595nm) of the strains after 96 h incubation at 28°C (n = 3). Strains with an absorbance greater than 0.3 (black) were selected for further evaluation.
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number and shoot biomass: 90F12-2, 29G9, 89F1, 14D6, and
48B8. Under low-nutrient conditions, application of strains
29G9, 36B3, 90F12-2, 37D10, and 94G2 increased the average
flower number (Figure 3A) and strains 36B3, 90F12-2, 94G2,
37D10, 14D6, 29G9, and 89F1 increased the average shoot
Frontiers in Plant Science | www.frontiersin.org 5
biomass (Figure 3B) of petunia plants. Of those strains, five
strains increased the average of both flower number and shoot
biomass: 29G9, 36B3, 90F12-2, 37D10, and 94G2. Due to the
high-throughput nature of these trials, the trends in plant growth
improvement were used to select for strains suitable for further
FIGURE 2 | Plant growth performance parameters for Petunia ‘Picobella Blue’ plants subjected to drought stress three weeks after transplant (n = 16). Plants were
treated with bacteria inoculum weekly after transplant (black) and compared to the uninoculated control (white with lines). Total number of flowers (A) and total shoot
biomass (dry weight) (B) was measured two weeks after rewatering following drought stress. Due to the high-throughput nature of the trial, results were not
statistically significant. Trends in plant growth promotion were used for selection. Bars represent mean (± SE).
FIGURE 3 | Plant growth performance parameters for Petunia ‘Picobella Blue’ plants grown with 25 mg L-1 N from 15N–2.2P–12.5K–2.9Ca–1.2Mg water soluble
fertilizer at every irrigation to induce low-nutrient stress (n = 16). Plants were treated with bacteria inoculum weekly after transplant (black) and compared to the
uninoculated control (white with lines). Total number of flowers (A) and total shoot biomass (dry weight) (B) was measured six weeks after transplant. Due to the
high-throughput nature of the trial, results were not statistically significant. Trends in plant growth promotion were used for selection. Bars represent mean (± SE).
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evaluation. Pseudomonas strains 29G9 and 90F12-2 increased
both average flower number and shoot biomass in petunias
grown under both drought and low-nutrient conditions
(Figures 2 and 3).

Evaluation of Two Pseudomonas Strains
to Increase Plant Growth and Stress
Tolerance in Ornamental Crops
The two Pseudomonas strains identified in the high-throughput
trial were evaluated for their ability to increase plant size and
flower number in P. hybrida, I. walleriana, and V. wittrockiana
subjected to drought and low-nutrient conditions. Overall, plants
subjected to low-nutrient conditions and treated with each of the
strains were visibly healthier, larger, and of higher quality
compared to the uninoculated control plants. Control plants
showed visible leaf yellowing, which was not observed in plants
treated with bacteria (Figure 4). Application of the two bacteria
strains significantly increased flower number and shoot biomass
of P. hybrida subjected to drought stress by an average of 27%
and 51%, respectively (Figures 5A, B). Under low nutrient
conditions, application of each of the strains also increased P.
hybrida shoot biomass by an average of 38% (Figure 6B). The
root:shoot ratio of P. hybrida subjected to drought and low-
nutrient stress was significantly lower for plants treated with each
of the strains compared to the uninoculated control (Figures 5C
and 6C). For I. walleriana subjected to drought stress, the
application of both strains increased flower number by an
average of 55%, a 1.5-fold increase (Figure 5A). In addition,
both strains increased shoot biomass of I. walleriana subjected to
Frontiers in Plant Science | www.frontiersin.org 6
drought conditions by an average of 31% (Figure 5B). Strain
29G9 increased flower number by an average of 47% (Figure
6A), and both strains increased shoot biomass by an average of
39% (Figure 6B) for I. walleriana grown under low-nutrient
conditions. There was no significant difference in root:shoot ratio
of I. walleriana plants subjected to drought or low-nutrient
conditions (Figures 5C and 6C). In addition, there was no
significant difference in flower number of V. wittrockiana
plants treated with Pseudomonas and subjected to drought
(Figure 5A) or low-nutrient conditions (Figure 6A) as
compared to the uninoculated control. However, application of
both strains increased shoot biomass of V. wittrockiana subjected
to drought conditions by an average of 33% (Figure 5B) and
increased the average shoot biomass of V. wittrockiana grown
under low-nutrient conditions by 48%, a 1.5-fold increase
(Figure 6B). Finally, there was a significant decrease in root:
shoot ratio in V. wittrockiana plants subjected to drought and
low-nutrient conditions and treated with both of the strains
compared to the uninoculated control (Figures 5C and 6C).

Nutrient Content of Plant Leaf
Tissue When Treated With Plant
Growth-Promoting Rhizobacteria
All plants were grown under low-nutrient regimes, which
resulted in lower than optimum tissue nutrient content (Dole
and Wilkins, 1999). On average, the application of bacteria
resulted in higher shoot macronutrient content than plants
that were not treated with bacteria (negative control). The
application of each bacteria strain increased the nitrogen
FIGURE 4 | Visual crop quality of Petunia × hybrida, Impatiens walleriana, and Viola × wittrockiana plants eight weeks after transplant. Plants were grown with 25
mg L-1 N from 15N–2.2P–12.5K–2.9Ca–1.2Mg water soluble fertilizer at every irrigation to induce low-nutrient stress and treated weekly with Pseudomonas strains
90F12-2, 29G9, or uninoculated LB (control).
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content of P. hybrida by at least 41% in plant leaf tissue
compared to the uninoculated control (Figure 7A). There was
no difference in the content of other nutrients in petunia leaf
tissue. Similar to P. hybrida, both pseudomonads increased the
nitrogen content of I. walleriana leaves by at least 78%. In
addition, both strains increased the phosphorus, potassium,
calcium, magnesium, and sulfur content of I. walleriana in
Frontiers in Plant Science | www.frontiersin.org 7
plant leaf tissue by at least 9, 19, 21, 30, and 17%, respectively,
compared to the negative control (Figure 7). The application of
both strains increased the nitrogen content of V. wittrockiana
leaf tissue by at least 78%. Both strains also increased
phosphorus, potassium, calcium, and sulfur content of
V. wittrockiana in plant leaf tissue by at least 23, 31, 30, and
62%, respectively, compared to the uninoculated control
FIGURE 5 | Plant growth performance parameters for Petunia × hybrida,
Impatiens walleriana, and Viola × wittrockiana plants subjected to drought stress
five weeks after transplant (n = 13, 18, 14). Plants were treated with bacteria
inoculum weekly after transplant. Plants treated with strains 90F12-2 (black) and
29G9 (light gray) were compared to the uninoculated control (white with lines).
Total number of flowers (A) and total shoot biomass (dry weight) (B) was
measured two weeks after rewatering following drought stress. Root:shoot (C)
was calculated with root and shoot dry weights. Bars represent the mean (± SE)
with different letters representing significant difference (p < 0.05).
FIGURE 6 | Plant growth performance parameters for Petunia × hybrida,
Impatiens walleriana, and Viola × wittrockiana plants grown with 25 mg L-1 N
from 15N–2.2P–12.5K–2.9Ca–1.2Mg water soluble fertilizer at every irrigation
to induce low-nutrient stress (n = 13, 18, 14). Plants were treated with
bacteria inoculum weekly after transplant. Plants treated with strains 90F12-2
(black) and 29G9 (light gray) were compared to the uninoculated control
(white with lines). Total number of flowers (A) and total shoot biomass (dry
weight) (B) was measured eight weeks after transplant. Root:shoot (C) was
calculated with root and shoot dry weights. Bars represent the mean (± SE)
with different letters representing significant difference (p < 0.05).
January 2020 | Volume 10 | Article 1754

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Nordstedt et al. Pseudomonas Increase Ornamental Crop Quality
FIGURE 7 | Leaf tissue nutrient content of Petunia × hybrida, Impatiens walleriana, and Viola × wittrockiana plants grown under low-nutrient conditions: nitrogen (A),
phosphorus (B), potassium (C), calcium (D), magnesium (E), and sulfur (F). Plants were treated with bacteria inoculum weekly after transplant and tissue was
harvested eight weeks after transplant. Plants treated with strains 90F12-2 (black) and 29G9 (light gray) were compared to the uninoculated control (white with lines).
Bars represent the mean (± SE) with different letters representing significant difference (p < 0.05).
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(Figures 7A–D, F). There was no difference in magnesium foliar
nutrient content in V. wittrockiana leaf tissue between bacteria
treatments and the negative control (Figure 7E).
DISCUSSION

Here, we established high-throughput in vitro and in planta
assays to selected Pseudomonas strains that stimulate ornamental
plant growth under water and nutrient deficient conditions. The
use of PEG to select osmotic stress tolerant bacteria and the effect
of these bacteria on plant tolerance to drought stress is well
documented (Forchetti et al., 2007; Vardharajula et al., 2011;
Hussain et al., 2014a; Asghar et al., 2015). Our study utilized a
similar approach, validating the utility of this bioassay to screen
larger collections of bacteria for their osmoadaptive properties.
Similar to these previous studies, we found YEM growing media
to be the most effective for selecting osmoadaptive bacteria.
We utilized the PEG selection to narrow the collection of 44
Pseudomonads to ten osmotic stress tolerant strains (Figure 1).
Our high-throughput greenhouse trial successfully confirmed
that the bacteria could enhance plant stress tolerance and
identified two strains that increased shoot biomass and flower
number under both abiotic stress conditions (Figures 2 and 3).
Studies have shown that application of osmotic stress tolerant
bacteria originating from the rhizosphere and endosphere can
stimulate plant growth under varied levels of drought stress.
Bacteria able to grow in vitro in media supplemented with
varying levels of PEG and subsequently evaluated in planta
increase maize biomass and relative water content
(Vardharajula et al., 2011), root length, and shoot biomass of
wheat (Chakraborty et al., 2013; Asghar et al., 2015).

In addition to osmoadaptive properties, many PGPR exhibit
other growth-promoting characteristics such as siderophore
production, phosphate solubilization, and hormone regulation
(Vardharajula et al., 2011; Chakraborty et al., 2013; Asghar et al.,
2015). To further investigate the application of the Pseudomonas
strains, we developed a multi-species greenhouse trial. Host
specificity in plant-microbe interactions has been well-studied
in both agronomic and horticulture crops, showing varied effects
on plant growth depending on bacteria and plant genotype
(Moutia et al., 2010; Pedraza et al., 2010). Due to species
diversity in ornamental crop production systems, it is
necessary to identify beneficial bacteria that can stimulate plant
growth across a broad host range. Both Pseudomonas strains did
not exhibit host specificity as they stimulated shoot growth of P.
hybrida, I. walleriana, and V. wittrockiana under both drought
and low-nutrient conditions. These results further demonstrate
the broad utility of these bacteria in greenhouse production
systems with a wide range of plant species that could encounter
both drought and low-nutrient conditions. In addition, we found
that the two Pseudomonas strains were able to colonize the
rhizosphere of P. hybrida plants at least 8 weeks post-
treatment (data not shown), supporting their ability to form a
mutualistic relationship with the plants to stimulate plant
growth. Our results support previous work that has shown
general plant growth promotion of Pelargonium peltatum,
Frontiers in Plant Science | www.frontiersin.org 9
Chrysanthemum sp., and Dahlia variabilis plants inoculated
with Pseudomonas sp. (Göre and Altin, 2006).

Facilitating the uptake of nutrients by plants is one of the
most common mechanisms that bacteria employ to stimulate
plant growth. Some PGPR can fix atmospheric nitrogen, produce
siderophores to provide iron to plant roots, solubilize mineral
phosphate into a bioavailable form to plants, and synthesize
different phytohormones and enzymes that can modulate plant
development and lead to an increase in nutrient uptake (Glick,
1995). While positive growth responses were seen across all three
plant species in our study, leaf nutrient content was more
consistently increased in I. walleriana and V. wittrockiana
plants treated with bacteria. Similarly, the visual symptoms of
leaf yellowing in control plants compared to bacteria treated
plants were more severe in I. walleriana and V. wittrockiana than
P. hybrida (Figure 4). Previous studies evaluating the influence
of bacteria inoculation on plants grown under low-nutrient
conditions demonstrate a similar increase in foliar N and P
content (Eid et al., 2009; Hoda and Mona, 2014), whereas
strawberry plants treated with PGPR strains had an increase in
N, P, K, Ca, Fe, Cu, and Mn foliar nutrient content (Ipek et al.,
2014), and wheat plants grown under reduced fertility had an
increase in N, P, K, Fe, Cu, Mn, and Zn when treated with
different PGPR strains (Rana et al., 2012). Our study expands on
this literature by documenting a similar plant response in a peat-
based greenhouse media. Although our results varied depending
on the bacteria treatment and plant species, increases in foliar N,
P, K, Ca, Mg, and S content were observed (Figure 7). In
addition, the significant decrease in the root:shoot ratio of
inoculated P. hybrida and V. wittrockiana plants shows that
plants treated with bacteria are able to sustain more shoot
biomass with fewer roots compared to inoculated plants. This
provides evidence that the bacteria are increasing bioavailability
of nutrients or increasing nutrient use efficiency in plants,
reducing the energy that plants have to expend to produce
roots in search of adequate nutrients and likely contributing to
the increase in overall crop quality (Figure 4).

Although many plant-PGPR studies are conducted in
controlled environment greenhouses, these results can be
difficult to translate to ornamental crop production due to the
use of agronomic crop species and non-traditional soil-based
growing media in these studies. PGPR strains have been
evaluated as a tool to increase the quality of different
ornamentals, demonstrating the ability of these bacteria to
increase crop quality under varying conditions. As flower
number is a major contributor to ornamental crop value,
PGPR that increase flower number are of interest to the
horticulture industry. Bacillus subtilis and Glomus sp. increase
total flower number of Tagetes erecta plants when cultivated in a
sandy loam soil (Flores et al., 2007), and inoculation with
Pseudomonas putida and P. fluorescens strains increases plant
s ize and flower number of Pelargonium pel tatum,
Chrysanthemum sp., and Dahlia variabilis plants cultivated
under greenhouse conditions (Göre and Altin, 2006). In
addition, application of the nitrogen-fixing Azospirillum
lipoferum and the phosphate-solubilizing Bacillus polymxa
increases the flower number of Petunia × hybrida plants grown
January 2020 | Volume 10 | Article 1754
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under field conditions with different levels of fertility (Hoda and
Mona, 2014). Azotobacter chroococcum and Bacillus megaterium
have also been shown to increase plant growth and nutrient
content ofMatthiola incana plants when cultivated in soil under
reduced and optimal fertility levels (Eid et al., 2009). Although
our results varied across treatment, plant species, and stress,
flower number was significantly increased in some scenarios.
Application of both strains significantly increased flower number
of P. hybrida subjected to drought stress, whereas application of
strain 29G9 showed the most consistent positive effect across
experiments, increasing flower number of P. hybrida and I.
walleriana plants subjected to drought stress, and I. walleriana
plants grown under low-nutrient conditions. No significant
difference in flower number was observed between experiments
with V. wittrockiana, which might be explained by the species’
habit of producing fewer flowers than other species. Our study
expands on the current literature by evaluating the effect of
bacterial application on economically-important ornamental
species, grown in a peat-based growing media, and subjected
to multiple abiotic stress conditions. Utilizing cultural inputs
similar to those that would be used in commercial greenhouse
facilities further validates the potential for these bacteria to be
used across a wide range of growing conditions and abiotic
stresses that can negatively impact crop quality.

P. poae strains increase plant growth of millet under drought
conditions (Ranveer et al., 2016) and are capable of producing
siderophores (Tian et al., 2009) and solubilizing phosphate (Woo
et al., 2010; Ahmed et al., 2014), mechanisms typically associated
with plant growth promotion. P. fluorescens strains also produce
siderophores and solubilize phosphate (Goswami et al., 2016), in
addition to stimulating growth of rice seedlings (Goswami et al.,
2016) and acting as a biocontrol agent (Bhattacharyya and
Jha, 2012).

This data will directly impact the scientific community
studying beneficial plant-microbe interactions by providing
efficient methods to translate in vitro selection to in planta
observations. In addition, this information will benefit the
horticulture industry by providing evidence that PGPR can be
used as an effective tool to reduce fertilizer inputs without
reducing crop quality. In conclusion, in vitro bioassays are
effective at selecting candidate PGPR; however, their ability to
Frontiers in Plant Science | www.frontiersin.org 10
stimulate plant growth should also be validated in planta. Our
research has developed two greenhouse trials that can be used for
the in planta validation of PGPR-mediated plant growth
promotion under drought and nutrient-limiting conditions and
in multiple plant species. Future research should focus on
optimizing the application parameters such as application
timing, concentration of bacteria inoculum, and incubation
time of the bacteria culture.
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