
Frontiers in Plant Science | www.frontiersin

Edited by:
László Szabados,

Hungarian Academy of Sciences,
Hungary

Reviewed by:
Christine Helen Foyer,

University of Leeds, United Kingdom
Nobuhiro Suzuki,

Sophia University, Japan

*Correspondence:
Feifei Qi

feifeiqi@zju.edu.cn

Specialty section:
This article was submitted to

Plant Abiotic Stress,
a section of the journal

Frontiers in Plant Science

Received: 16 September 2019
Accepted: 17 December 2019
Published: 30 January 2020

Citation:
Qi F and Zhang F (2020)

Cell Cycle Regulation in the Plant
Response to Stress.

Front. Plant Sci. 10:1765.
doi: 10.3389/fpls.2019.01765

MINI REVIEW
published: 30 January 2020

doi: 10.3389/fpls.2019.01765
Cell Cycle Regulation in the Plant
Response to Stress
Feifei Qi* and Fuxin Zhang

Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life
Sciences, Shandong Normal University, Jinan, China

As sessile organisms, plants face a variety of environmental challenges. Their reproduction
and survival depend on their ability to adapt to these stressors, which include water, heat
stress, high salinity, and pathogen infection. Failure to adapt to these stressors results in
programmed cell death and decreased viability, as well as reduced productivity in the case
of crop plants. The growth and development of plants are maintained by meiosis and
mitosis as well as endoreduplication, during which DNA replicates without cytokinesis,
leading to polyploidy. As in other eukaryotes, the cell cycle in plants consists of four stages
(G1, S, G2, and M) with two major check points, namely, the G1/S check point and G2/M
check point, that ensure normal cell division. Progression through these checkpoints
involves the activity of cyclin-dependent kinases and their regulatory subunits known as
cyclins. In order for plants to survive, cell cycle control must be balanced with adaption to
dynamic environmental conditions. In this review, we summarize recent advances in our
understanding of cell cycle regulation in plants, with a focus on the molecular interactions
of cell cycle machinery in the context of stress tolerance.
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INTRODUCTION

All organisms have evolved mechanisms to cope with a broad range of biotic and abiotic stresses
(Hou et al., 2012; Liu et al., 2012; Tian et al., 2017; Chang et al., 2018). The former is caused by
external organisms such as bacteria, virus, fungi, and animals (Liang et al., 2010; Huang et al., 2013;
Zhang et al., 2014; Zhang F. et al., 2015; Xing et al., 2017), whereas the latter is attributable to
environmental conditions, such as drought (Zhao S. et al., 2016; Tang et al., 2017), cold temperature
(Sui, 2015), changes in salinity (Cui et al., 2018), and so on. Unlike animals, plants are sessile and
have therefore developed unique stress responses involving many types of sensor that ensure
their survival.

In nature, plants are vulnerable to pathogens and predators. The immune system in animals has
innate and adaptive components; immune signaling cascades have been widely studied in fish (Liu
et al., 2011; Sun et al., 2012; Li et al., 2013; Liu T. et al., 2017), cow (He C. et al., 2016; Hou et al.,
2017; Hou et al., 2018), pig (Zheng S. et al., 2017; Zheng et al., 2018), and mouse (Cui et al., 2011;
Yoshida et al., 2019). In contrast, plants lack the adaptive component and rely primarily on two
layers of innate immunity in their response to pathogen infection. Plants sense pathogens through
recognition of conserved microbe-associated molecular patterns and host-derived damage-
associated molecular patterns (Boller and Felix, 2009). Additionally, disease resistance proteins
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recognize effector molecules secreted by pathogens and induce a
more robust and rapid immune response that usually leads to
programmed cell death (Zhang et al., 2018). However, immune
activation perturbs the cell cycle, which controls plant growth;
recent evidence suggests a close connection between cell cycle
kinetics and immunity in plants (Bao and Hua, 2015).

Plants can detect various environmental signals such as high
salt concentration (Shen et al., 2014; Wang S. et al., 2014; Liu S.
et al., 2017; Sui et al., 2017), cold temperature (Tang et al., 2012;
Liu et al., 2013; Zhao X. et al., 2014; He Y. et al., 2016), reactive
oxygen species levels (Li K. et al., 2012), waterlogging (Song et al.,
2011; Chen et al., 2016; Zhang Y. et al., 2017), phosphate scarcity
(Sui et al., 2017), and ultraviolet (UV) radiation (Chen et al.,
2013; Deng et al., 2015). Failure to appropriately respond to these
stressors decreases plant productivity and affects human food
and animal feed supplies. As such, considerable effort has been
invested in developing methods to improve stress resistance in
crop plants such as wheat (Gong et al., 2017; Kong et al., 2017),
peanut (Hou et al., 2014; An et al., 2015), rice (Yang et al., 2013;
Bai et al., 2016), tobacco (Guo et al., 2013; Cao et al., 2017),
tomato (Sun et al., 2010; Meng et al., 2015), maize (Zhao K. et al.,
2010; Wang S. et al., 2014), cotton (Zhao et al., 2012; Wang et al.,
2016), and bean (Weng et al., 2011; Zhao B. et al., 2016).

Plants growth results from the coordinated interaction of
mitotic cell cycle and cell expansion. As in animals, the plant cell
cycle consists of four distinct phases: G1 (postmitotic
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interphase), S (DNA synthesis phase), G2 (premitotic
interphase), and M (mitosis/cytokinesis). Cell cycle progression
is driven by cyclin-dependent kinases (CDKs) which cooperated
with cyclins. There are seven classes of cyclins in plants which
consists of approximately 60 cyclin genes. Among them, we
know more about the A, B, and D classes. In general, D-type
cyclins are considered as the regulators of G1-to-S transition, A-
type cyclins are thought to control S-to-M phase, and B-type
cyclins control G2-to-M transition. At G1-to-S transition,
CDKA/CYCD complex phosphorylates the retinoblastoma-
related (RBR) protein which activates the S-phase transcription
factor, “E2F”. E2Fs promotes the G1–S transition by modulating
the expression of genes involved in DNA replication, cell-cycle
progression and chromatin dynamics (del Pozo et al., 2006). The
negative regulation of G1/S transition is the KRPs (Kip-related
proteins) and SIM (SIAMESE) which play roles as the inhibitors
of CDKA/CYCD complex. At G2/M transition, CDKA and
CDKB bind to CYCA, CYCB, or CYCD and drive cells into
division. Meanwhile, the activities of CDKA and CDKB are
negatively regulated by the WEE1 kinase. The CDC25
homologous kinase, which dephosphorylates the inhibitory
phosphorylated site in CDK, still needs to be identified. Once
the CDK/CYC complexes are activated, they trigger the G2-to-M
transition through phosphorylating numerous of different
substrates. Mitotic exit requires the proteolytic degradation of
the cyclin subunits which mediated by the anaphase-promoting
FIGURE 1 | Schematic representation of the mitotic cell cycle in plants. At the G1 phase, D-type cyclins (CYCD) interact with the A-type CDK (CDKA), forming the
CDKA/CYCD complex. The activity of CDKA/CYCD complex can be negatively regulated by KPR and SIM proteins. Once activation, this complex phosphorylates
RBR to release the transcript factor E2Fa/b-DP. This E2Fa/b-DP complex binds to the E2F box and activate the transcription of S phase genes. At the G2 and M
phase S, CYCA and CYCB are strongly expressed and their gene products assemble with CDKA and CDKB. The CYCD can also associate with CDKs. At the
beginning of G2 phase, CDK activity are inhibited because of the phosphorylation of Y14 and T15 site by WEEI kinase. The CDC25-related kinase, which removes
the inhibitory phosphate groups, still needs to be identified. Once the CDK/CYC complex are active, they phosphorylate MYB3R transcription factors and activate
mitotic genes’ transcription. Mitotic exit requires anaphase-promoting complex (APC), which degrades cyclins through ubiquitin-proteasome pathway.
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complex (APC) (Capron et al., 2003) (Figure 1). Although the
basic mechanisms which control mitotic cell cycle progression
are conserved from plants to vertebrate, plants have unique
molecules orchestrating the cell cycle. Moreover, plants have
usually a variety of cyclins even though the function of many of
which is unclear. At the same time, plants don’t have Cyclin E,
which is a major target for organ regulators in animals (Halder
and Johnson, 2011).

In addition to mitotic cell cycle, the endocycle plays pivotal
role in plant growth. Endocycle means that DNA replication in
the absence of cytokinesis and leads to polyploid. The switch from
the mitotic cell cycle to the endocycle involves changes in the
regulation and abundance of a wide broad of cyclin-dependent
kinases (CDKs), cyclins (CYC), and regulatory proteins/
transcription factors. Endopolyploidy is common in
reproductive tissues of plants, for example the nutritive tissue
of the endosperm in seeds. The onset of endopolyploidy is
induced in some cell tissues in response to stress. In this review,
we summarize the molecular link between environmental signals
and cell cycle progression and the stress response in plants.

Cell Cycle Regulation and Immunity
All animals and plants are vulnerable to infection with viruses and
bacteria. For example, cattle and pigs are easily infected with
bovine ephemeral fever virus and porcine circovirus, respectively
(Yu et al., 2012; Wang X. et al., 2014), and rely on innate and
adaptive immunity for protection. The bacterial strain BGI-1,
isolated from the gut of the German cockroach (Blattella
germanica), contributes to anti-entomopathogenic fungal
infection (Huang et al., 2013). Additionally, pathogenic
microorganism invasion induces the innate immune responses
in zebrafish (Yang H. et al., 2017). Toll-like receptor (TLR)22 (Li
H. et al., 2017), TLR18 (Shan et al., 2018), X box-binding protein 1
(Li T. et al., 2017), and interferon regulatory factor 1 (Shan et al.,
2016; Zhu et al., 2016a; Zhu et al., 2016b) have been identified as
critical molecules involved in immunity in the common carp.
However, unlike animals, plants lack a somatic adaptive immune
system and instead rely on the innate immunity of each cell to
detect signals originating from sites of infection (Ausubel, 2005;
Chisholm et al., 2006). Plants detect the extracellular pathogens
through plasma membrane-localized pattern recognition
receptors (PRRs) that recognize conserved microbe-associated
molecular patterns (MAMPs), such as bacterial flg22 and elf18
(active epitopes of bacterial flagellin and elongation factor-Tu,
respectively), and then drive patterns-triggered immunity (PTI)
(Petutschnig et al., 2010). In addition, plants possess a variety of
resistance (R) genes which encode proteins containing nucleotide
binding (NB) and leucine rich repeat (LRR) domains. NB-LRR
proteins induce effector-triggered immunity (ETI) after specific
perception of pathogenic T3SEs.

Interaction with pathogens influences cell cycle progression in
plants. In Arabidopsis thaliana, Cabbage leaf curl virus infection
alters the expression of cell cycle-related factors; overexpression of
CYCD3;1 or E2FB, both of which promote mitosis, increases
polyploidy and strongly inhibits Cabbage leaf curl virus infection
(Ascencio-Ibanez et al., 2008). Powdery mildew (PM), which is
Frontiers in Plant Science | www.frontiersin.org 3
the main pathogen of cereal crops, stimulates the endocycle and
increases calcium signaling at the infection site in Arabidopsis.
The loss-of-function mutant of MYB3R4, a transcription factor
required for endocycle initiation, suppresses PM growth
(Chandran et al., 2009). However, it’s currently unclear how cell
immunity response is communicated to cell cycle progression.

In a broad sense, PTI functions through several pathways such
as the hormone pathways or the phosphorylation of mitogen-
activated protein kinases (MAPKs) or the rapid production of
reactive oxygen species (ROS) and Ca2+-mediated activation of
Ca2+-dependent kinases (CDPKs) that activate transcription
factors to induce the expression of down-stream genes.
Immunity-triggered growth inhibition might be partly related
to jasmonates (JA)-mediated inhibition of the cell cycle. Increased
JA level is a positive defense response to pathogen infection. Chen
et al. (2011) indicated that JA suppressed CDKA;1 and CYCB1;1.
Recent studies have further revealed that JA signaling stabilizes
DELLA proteins which induce the CDKA and CDKB inhibitors
KRP2, SIM, and SMR (Achard et al., 2009). Therefore, inhibited
cell cycle progression may be a consequence of hormone.
Harnessing the toxic properties of reactive oxygen species
(ROS) to fight against invading pathogens might be another
reason for prolonged cell cycle. ROS in adequate concentration
directs the invaded plant cells towards apoptosis so as to restrict
the fungal infection spread (Bastas, 2014). In mammalian cells,
ROS influence cell cycle progression via phosphorylation and
ubiquitination of CDKs and cell cycle regulatory molecules, such
as CKI and Cdc25. ROS exert their effect on Cdc25 activity via
enhancing phosphorylation of Cdc25 or alternatively inactivation
of Cdc25 by sulfonation of cysteine in the active site (Verbon
et al., 2012). Therefore, it’s reasonable to speculate plant ROS play
roles in the similar ways as in mammalian. Regardless of
pathogen type, ETI is commonly accompanied by programmed
cell death (PCD) at the infection site to stop pathogen spread
(Zebell and Dong, 2015).

It’s of significant importance to investigate whether cell cycle
regulatory genes promote immunity positively. The Arabidopsis
genes OMISSION OF THE SECOND DIVISION (OSD)1 and its
homolog UV-B-INSENSITIVE (UVI)4 negatively regulate the
activities of anaphase-promoting complex (APC)/cyclosome.
Overexpression of both OSD1 and UVI4, or APC6 deficiency,
enhances immunity to pathogens by stimulating the expression
of disease resistance genes, such as SNC1, which is associated
with inhibition of the endocycle (Bao et al., 2013). However, the
mechanisms by which OSD1 and UVI4 enhance immunity still
need to be explored. In fact, recent studies indicated a direct link
of cell cycle regulators in immunity, for example, TEOSINTE
BRANCHED1, CYCLOIDEA, PCF1 (TCP)15, and MODIFIER
OF SNC1 (MOS1). As a transcription factor, TCP15 regulates the
transcription of CYCA2;3 (Li Z. et al., 2012) and SUPPRESSOR
OF rps4-RLD1, which encodes a protein that negatively regulates
plant immunity (Kim et al., 2014). In Arabidopsis, MOS1 directly
interacts with TCP15, and affect the expression of CYCD3;1 and
the immune receptor gene SUPRESSOR OF npr1-1 ,
CONSTITUTIVE (SNC )1 . Add i t i ona l l y , CYCD3 ;1
overexpression enhances immune responses and SNC1 protein
January 2020 | Volume 10 | Article 1765
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levels. Moreover, G1-S phase checkpoint proteins Rb and E2F
engaged in immune-related PCD (Chandran et al., 2014).

Taken together, these findings indicate that plants balance cell
cycle regulation and immune response through manipulating the
level of cyclins or the activation of CDKs. Plants respond to
pathogen attack via arrested cell cycle progression depend on the
state at which plants are attacked. At mitosis, inhibition of APC/
C activation will contribute to immunity. At G1, S, or G2 phase,
operating the expression of cyclins or check point proteins, such
as E2Fs and MYB3R, are of good benefit to immunity. It’s
reasonable to speculate that the biological significance of using
cell cycle components as regulators of immunity is to turn cells
from endoreduplication, which favors pathogen infection, to cell
cycle arrest or cell death, and therefore prevent pathogen
infection spread. Though recent studies have broadened our
knowledge of immunity-cell cycle trade-off, future efforts are
needed to identify the immunity-growth pathway and the
detailed molecular mechanisms. Single-cell RNA sequence
technology, RNA-Seq approach and proteomic analysis will
help to underscore molecular connections that ensure
antagonistic regulation of growth and immunity in plants
under natural or abiotic stress conditions.
Cell Cycle Regulation and Abiotic Stress
Adaptation
Salinity, temperature, moisture, and light are abiotic factors that
influence plant growth and crop yield, which is shown to be a
consequence of cell proliferation and the cell expansion. A rapid
response to changing conditions is critical for successful
adaptation. Plants respond to different stresses through a
variety of mechanisms. In the following sections, we highlight
the role of protein kinases that regulate cell cycle progression in
the response to abiotic stressors.

Salt Stress
In general, high salinity leads to ion toxicity, water deficit, and
oxidative stress. Osmotic stress also reduces cell division rates
and cell numbers in leaves, roots, or the shoot meristem. Calcium
ion (Ca2+) responses, reactive oxygen species (ROS) burst and
abscisic acid (ABA)-dependent protein kinases are involved in
response to high salinity. However, recent evidence has begun to
underline the cell cycle regulator’s importance in stress response,
especially cyclins and CDKs. A. thaliana, a non–salt-tolerant
plant, is widely used as a model to investigate the molecular
mechanisms of salt tolerance (Qi et al., 2010; Sun et al., 2013;
Zhang L. et al., 2017; Zheng Y. et al., 2017). Two CDKs have been
identified in A. thaliana: AtCDC2a regulates the G1/S and G2/M
transitions, whereas AtCDC2b is mainly expressed in S and G2
phases in meristem tissues. Upon NaCl treatment, the
transcription of AtCDC2a and CYCA2;1 was decreased in the
vascular cylinder of the root, which correlated with reduced
lateral root formation. In root tips, AtCDC2a, CYCA2;1, and
CYCB1;1 were downregulated along with reduced root growth (S
et al., 2004; West et al., 2004). West et al. (2004) demonstrated
that, in Arabidopsis thaliana roots, mild salt stress leads to loss of
Frontiers in Plant Science | www.frontiersin.org 4
CDK activity and reduced promoter activity of CYCB1;2. Severe
salt stress transiently decreases the expression levels of the
cyclins CYCA2;1 and CYCB;1. In addition, Zhao L. et al.
(2014) revealed that heat and cold treatments both induced a
pronounced cell accumulation in G2/M transition and NaCl
treatment results in an extensive inhibition in both S and G2/M
phase by analyzing DNA content in maize (Zea MAYS l).
Furthermore, the perturbed cell cycle progression is attributed
to the dynamic histone acetylation change which participated in
the control of CDKs and cyclins transcription. Thus, high salinity
affects cell cycle regulation via control the cell cycle regulators.
However, molecular players which perceive Na+ ions and confer
salt stress to regulated cyclins and CDKs are still need to
be unraveled.

Interestingly, there exists a group of salt-tolerant plants which
grow in highly saline soil or water called halophyte (Zhao S. et al.,
2010; Zhao et al., 2011; Zhang T. et al., 2015). An example of a
halophyte is Suaeda salsa (Chen et al., 2010; Cheng et al., 2014;
Guo et al., 2015; Guo et al., 2018), which produces dimorphic
seeds on the same plant, brown seeds but not black seeds are able
to germinate under conditions of high salinity owing to the
presence of a seed coat (Wang et al., 2015; Song et al., 2016; Xu
et al., 2016; Song et al., 2017). In this species, ion transport
signaling contributes to salt tolerance through the action of
various genes including HIGH-AFFINITY POTASSIUM
TRANSPORTER (SsHKT)1 (Shao et al., 2014), SODIUM/
HYDROGEN EXCHANGER (SsNHX)1 (Liu et al., 2018), and
ASCORBATE PEROXIDASE (SsAPX) (Song and Wang, 2015).
Besides, S. salsa treated with 200 mM NaCl generated healthier
seeds with higher starch, soluble sugar, protein, and lipid
contents than those treated with other concentrations of NaCl
(Sui et al., 2010; Yang et al., 2010; Zhang et al., 2010; Li X. et al.,
2012; Sun et al., 2015; Zhou et al., 2016). Another salt-tolerant
plant is Limonium bicolor, a recretohalophyte with salt glands
and a bladder that enable the secretion of excess salt into the
environment (Yuan et al., 2013; Yuan et al., 2014; Yuan et al.,
2015a; Yuan et al., 2015b; Yuan et al., 2016a; Yuan et al., 2016b).
Recent studies show that the rate of secretion is determined by
K+ and Ca2+ concentration (Ding et al., 2010; Feng et al., 2014;
Feng et al., 2015; Leng et al., 2018). In Thellungiella salsuginea,
microRNAs and unsaturated fatty acids enhance resistance to
high salinity (Zhang et al., 2013; Sui and Han, 2014). It’s
meaningful to detect whether the genes or microRNAs or
unsaturated fatty acids mentioned above help to sustain the
normal expression of cyclins and the activities of CDKs to
some extent.

In conclusion, halophytes have evolved functional
adaptations, ensuring their survival in saline environment.
Analysis the difference between halophytes and glycophytes in
transcriptomics and proteomics contributes to discover genes
which is responsible for salt tolerance. Moreover, although most
crop plants are glycophytes and are unable to tolerate high levels
of salt stress, the abilities of glycophytes to withstand salt stress
differ. This natural variation can be utilized to identify genetic
components underlying salinity tolerance in glycophytes.
Furthermore, screening proteins interacting with cyclins or
January 2020 | Volume 10 | Article 1765
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CDKs under normal or stressed conditions are conductive to find
molecules which confer salt stress signal to manipulated cell cycle
regulators. Crops can be genetically engineered to resist high
salinity through the expression of salt-responsive genes from
halophytes; this has been demonstrated by the generation of salt-
tolerant varieties of tomato, wheat, soybean, tobacco, peanut,
cotton, and A. thaliana (Kong et al., 2011; Deng et al., 2016; Yang
Z. et al., 2017).
Temperature Stress
Plants are continually exposed to changes in the ambient
temperature. Both chilling and hot can negatively affect plant
growth and development. Temperature stress triggers Ca2+

fluxes, kinase cascades, and accumulation of abscisic acid.
These factors activate cell cycle checkpoints that delay entry
into mitosis (Kadota et al., 2004; Kadota et al., 2005). In plants,
more and more evidence has emerged to reveal the molecular
mechanisms that regulate CDK functions in adapt to
temperature stress. Under mild heat stress, proliferating cells
are transiently arrested at G1/S or G2/M phase in BY2 cells,
depending on the stage at which the stress was applied (Jang
et al., 2005). The arrested cell cycle partially due to the reduced
transcription of CYCA and CYCB and, as a consequence,
decreased CDK activity. On the other hand, high temperatures
induce a signaling cascade that leads to programmed cell death
(Larkindale and Knight, 2002; Vacca et al., 2004).

Rymen et al. (2007) demonstrated that the increased cell cycle
time inmeristem of leaves exposed to chilling was associated with
the up-regulated expression of cell cycle inhibitors such as KPRS.
Similarly, the EL2 gene from rice (Orysa;E2L) was induced to
transcript by low temperature. Orysa;E2L is a plant specific
inhibitor of CDK that inhibit CDKA1 activation during G1/S
transition through direct or indirect binding to CYCD (Peres
et al., 2007). In addition, cold stress stimulates the expression of
the transcription factor OsMYB3R2, which increases the
expression of several G2/M-specific genes such as OsCYCB1.
Furthermore, OsCYCB1 overexpression increased resistance to
cold stress (Ma et al., 2009). Moreover, many other cold-
responsive genes have been identified in T. salsuginea and rice
byRNA-sequencing (Zhou et al., 2014; Liu et al., 2016;Wang et al.,
2017). The T. salsuginea gene FILAMENTOUS TEMPERATURE-
SENSITIVE H8 was shown to alleviate cold-induced
photoinhibition (Liu et al., 2016). In rice (Oryza sativa), LOW-
TEMPERATURE RESPONSE PROTEIN KINASE 1 contributes to
cold resistance by regulating cytoskeletal rearrangement.
Meanwhile, phytochrome B diminishes cold tolerance by
modulating the expression of DEHYDRATION-RESPONSIVE
ELEMENT-BINDING 1 and unsaturated fatty acid content (Liu
et al., 2012; Yang et al., 2013; Zhou et al., 2014; He et al., 2016).
Ectopic expression of the above genes increases the ability of crops
to resist cold temperatures, although the underlying mechanisms
are unclear. It’s of interest to investigate whether the different
stress responsive genes work in the same signal pathway.

Put together, plants adjust to high-temperature and low-
temperature via regulating the expression of different cell cycle
Frontiers in Plant Science | www.frontiersin.org 5
machinery components. The fact that plants have larger number
of cyclins compared with other eukaryotes may indicate cyclins
function in stress response or perception to some degree. Most
studies have revealed that temperature halt cell cycle progression
through decrease or increase the transcript levels of related genes,
however, we should take posttranslational modification of CDKs
into consideration. Despite all of this, additional studies are
needed to clarify the molecular basis for cell cycle regulators in
response to hot or cold conditions.
Drought Stress
Drought stress is one of the abiotic stresses that limit plant
growth and crop yield. Drought induces physiological changes in
plants that enable survival, such as stomatal closure, perturbation
of cell growth, and inhibition of photosynthesis. These processes
involve the activation or repression of transcription factors,
protein kinases, and metabolism-related enzymes. Here, we
focus on the effect of drought on cell cycle proliferation and
cell expansion. The growth of an organ is roughly divided into
two stages: the cell proliferation stage, in which the cell number
increases; and the cell expansion stage, in which cells expand to
their final size. In Arabidopsis and sunflowers, water deficit
affects both cell division and cell expansion. The reduced cell
number in sunflower leaves was owing to the arrested G1/S
transition. Progression to S phase is mediated by the activity of
cyclin-dependent kinase A (CDKA). We can speculate that
drought damages CDKA activity more or less. In wheat
seedlings subjected to mild water stress, leaf elongation rate
and mitotic activity were reduced in mesophyll cells due to
decreased activity of CDKA1, which is required for entry into
mitosis. This was accompanied by downregulation of cyclins and
the accumulation of cells in G1 or G2 phase (Schuppler et al.,
1998). Similarly, in maize leaves, cell division and CDKA1
activity was decreased in response to a mild water deficit,
resulting in the inhibition of endosperm development.
However, the amount of CDKA1 protein remained unaffected
suggesting that posttranslational regulation of CDKA1 was
responsible (TL and BA, 2001). In another drought-tolerant
Brachypodium leaves, cell expansion is affected while cell
proliferation is not, which is opposite to Arabidopsis and
maize. The molecules response to drought stress strongly
dependent on the developmental stage. In the leaf ’s
proliferation zone, drought stress had no effect on the
expression of genes related to cell division. By Affymetrix tiling
array analysis, the researchers identified numerous drought-
responsive genes which were mainly expressed in the mature
leaf zone. In summary, our current understanding of stress-
regulated growth is still very fragmentary, partly because studies
combining detai led growth analysis and molecular
characterization of growing tissues are relatively scarce.
Molecular characterization of the stress responses of growing
tissues has to be investigated by further step. Broadening our
knowledge of the mechanisms underlying growth reduction
under stress is an important prerequisite to further improve
crop productivity.
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Conclusion and Perspectives
As sessile organisms, plants are frequently challenged as their
environment changes during their lifetime. The ability of plants
to perceive and adapt to these changes facilitates survival and
production. Similarly, both biotic stress and abiotic stress perturb
cell cycle progression and, at worst, lead to programmed cell
death. Plants have evolved multiple mechanisms to defense
against stresses. In brief, perception of biotic and abiotic stress
signals activates signaling cascades that trigger ion fluxes, kinase
cascades, reactive oxygen species production, and accumulation
of hormones, such as abscisic acid (ABA) and jasmonic acid (JA).
Theses signaling molecules suppress the activities of CDKs via
controlling the expression level of cyclins or regulating the
posttranslational modification of CDKs and, as a consequence,
arrest the cell cycle or even exit cell cycle. This review highlights
the role of cell cycle modulation in the adaption of plants to
biotic and abiotic stresses and discusses the associated
mechanisms proposed by recent studies (Figure 2). Even
though the existing studies indicate that CDKs and cyclins are
important for the detection and adaptation to stress by plants,
there still exist many outstanding questions regarding the
relationship between plant defense responses and cell cycle
kinetics. For instance, it is unclear whether cyclins are directly
Frontiers in Plant Science | www.frontiersin.org 6
involved in sensing stresses and whether the cyclin molecules
differ in sensing abiotic stress and biotic stress. Additionally,
plant proteins that detect stress and transmit signals to delay cell
cycle progression remain to be identified. Moreover, it’s
unknown why elevating the transcription level of cyclins or
manipulating CDK activities could, to some extent, increase
the ability of plants to defense against stresses. Single cell RNA
sequencing approach, high-throughput, genome-wide
transcriptome and proteomic technologies will help us to
identify new genes and proteins involved in stress response
and then broad our knowledge about cell cycle regulation and
response adaption. Fully understanding the molecular signal
network which regulate stress response and cell growth is the
prerequisite for researchers to elevate crop plants’ resistance to
stresses and improve crop plants yield.
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FIGURE 2 | Interactions between stress/response signaling cascades and cell cycle regulation. Plant growth depends on cell division and expansion. Upon biotic
stress, cell surface pattern recognition receptors (PRRs) recognize conserved microbe-associated molecular patterns (MAMPs) or damage-associated molecular
patterns (DAMPs) or resistant (R) proteins and then transduce primary signal to secondary signal molecules including Ca2+ flux, ROS, jasmonates (JA) and MAPK
and eventually initiate immunity. Immune response induces prolonged cell cycle progression or programmed cell death. Overexpression of CDKs or cyclins could
enhance immune responses. Besides, G1-S phase checkpoint proteins Rb and E2F engaged in immune-related programmed cell death. Similarly, under abiotic
stress conditions, plant cells sense and percept the signals and transmit them to downstream signal molecules, such as Ca2+, Na+, ABA, and ROS. These signaling
cascades halt cell cycle progression through inhibiting the transcription of CDK/cyclins-related genes. Manipulating the level of CDK or cyclins could change the
defense response abilities. Severe abiotic stresses trigger programmed cell death.
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