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Association mapping (AM) is a powerful tool for fine mapping complex trait variation down
to nucleotide sequences by exploiting historical recombination events. A major problem in
AM is controlling false positives that can arise from population structure and family
relatedness. False positives are often controlled by incorporating covariates for structure
and kinship in mixed linear models (MLM). These MLM-based methods are single locus
models and can introduce false negatives due to over fitting of the model. In this study,
eight different statistical models, ranging from single-locus to multilocus, were compared
for AM for three traits differing in heritability in two crop species: soybean (Glycine max L.)
and maize (Zea mays L.). Soybean and maize were chosen, in part, due to their highly
differentiated rate of linkage disequilibrium (LD) decay, which can influence false positive
and false negative rates. The fixed and random model circulating probability unification
(FarmCPU) performed better than other models based on an analysis of Q-Q plots and on
the identification of the known number of quantitative trait loci (QTLs) in a simulated data
set. These results indicate that the FarmCPU controls both false positives and false
negatives. Six qualitative traits in soybean with known published genomic positions were
also used to compare these models, and results indicated that the FarmCPU consistently
identified a single highly significant SNP closest to these known published genes. Multiple
comparison adjustments (Bonferroni, false discovery rate, and positive false discovery
rate) were compared for these models using a simulated trait having 60% heritability and
20 QTLs. Multiple comparison adjustments were overly conservative for MLM, CMLM,
ECMLM, and MLMM and did not find any significant markers; in contrast, ANOVA, GLM,
and SUPER models found an excessive number of markers, far more than 20 QTLs. The
FarmCPU model, using less conservative methods (false discovery rate, and positive false
discovery rate) identified 10 QTLs, which was closer to the simulated number of QTLs than
the number found by other models.
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INTRODUCTION

Connecting genotype to phenotype, known as genetic mapping,
is important for modern crop breeding and improvement
(Mackay, 2001). Two of the most commonly used approaches
for genetic mapping are association mapping (AM) and
biparental linkage mapping (LM). AM is an alternative
approach to traditional mapping of biparental populations and
is currently widely used in plant, animal (Goddard and Hayes,
2009), model species (Brachi et al., 2010), and human genetics
(Risch andMerikangas, 1996; Nordborg and Tavaré, 2002). Most
important traits in plants are complex and controlled by many
genes and influenced by environment. With advancements in
high throughput genotyping and sequencing technologies, single
nucleotide polymorphisms (SNPs) provide relatively low cost
and dense marker coverage across various genomes (Syvänen,
2005). Genotyping diverse lines provides thousands of SNPs
across the genome that enables fine mapping complex trait
variation down to nucleotide sequences by exploiting historical
recombination events (Zhu et al., 2008). AM has lower overall
statistical power to detect rare alleles and epistatic interactions
than traditional LM, but it has several advantages, which include
increased mapping resolution, broader allele coverage, reduced
time and cost compared to developing biparental mapping
populations, and potentially greater number of alleles evaluated
(Yu et al., 2006).

Associating functional variants (alleles, loci) to phenotypes is
a fundamental aim of both AM and LM (Botstein and Risch,
2003). The detection of quantitative trait loci (QTLs) through
AM depends on the level of linkage disequilibrium (LD) between
functional loci and markers. LD refers to a nonrandom
association of alleles at different loci. LD is influenced by
physical linkage and recombination, but it is a separate
phenomenon—unlinked loci can be in a state of LD, and
linked loci can be in a state of linkage equilibrium (Terwilliger
and Weiss, 1998). The level of LD extent in a specific set of
experimental genotypes can be measured statistically and has
been widely leveraged in plants and animals to map and clone
genes controlling complex genetic traits (Risch and Merikangas,
1996; Dunning et al., 2000; Pritchard and Przeworski, 2001;
Nordborg and Tavaré, 2002). LD can be measured based upon
the correlation between alleles at pairs of loci as physical distance
between the loci increases. Outcrossing crop species, such as
maize, have more genetic diversity (Remington et al., 2001; Yan
et al., 2009) and also more rapid LD decay than self-pollinated
species such as soybean, which has less overall genetic diversity
(Gupta et al., 2006; Hyten et al., 2007; Schmutz et al., 2010; Song
et al., 2015). Species with faster LD decay over physical distance,
as compared to those with slow LD decay, require higher marker
density over the genome to capture associations between marker
and phenotype (Yu et al., 2006).

Several statistical models are available to identify associations
between marker loci and numerous phenotypes that range from
simple to increasingly complex. As genotypic data are becoming
more readily available, accurately decoding the complexity of
traits in a diverse population is only possible if accurate and more
Frontiers in Plant Science | www.frontiersin.org 2
comprehensive statistical models can distinguish true biological
associations from false positives arising from population
structure and family relatedness without overcorrecting and
resulting in false negatives. Using covariates for structure and
kinship in the statistical model can control these confounding
factors. STRUCTURE (Pritchard et al., 2000), principal
component analysis (PCA) (Price et al., 2006), and a
discriminant analysis of principal components (DAPC)
(Jombart et al., 2010) are approaches that use genetic markers
to determine population organization. Results from
STRUCTURE and PCA are similar, but PCA is generally more
commonly used due to lower required computational resources
and time to generate covariates. False positives can also arise due
to more recent common ancestry and family relatedness, which
can be controlled by inclusion of a kinship matrix into the linear
model. Identity-by-state is one of the most commonly used
approaches to estimate familial relatedness among individuals
in a diverse population (Loiselle et al., 1995).

The incorporation of population structure and a kinship
matrix as covariates in mixed linear models (MLM) has
become a popular approach to control false positives. Since the
first MLM of AM was published by Yu et al. (2006), many MLM-
based methods have been proposed (Zhang et al., 2010; Wang
et al., 2014). All these models are single-locus models, which
means that they comprise a one-dimensional genome scan by
testing one marker at a time, iteratively for every marker in a
dataset. This single-locus approach fails to match the true genetic
model of complex traits that are controlled by numerous loci
simultaneously. To cope with this problem, multilocus AM
models have been recommended because these models
consider the information of all loci simultaneously (Wang
et al., 2016). MLM-based models can also induce false
negatives due to over fitting of the model where some
potentially important associations can be missed (Liu
et al., 2016).

False negatives in AM can result when multiple comparison
adjustments are used to determine statistical significance. Two
commonly used multiple comparison methods in AM are
Bonferroni correction (Holm, 1979) and false discovery rate
(FDR) (Benjamini and Hochberg, 1995), which select the
significant threshold. However, overly conservative thresholds
can lead to high false negative error rates. Therefore, selection of
an appropriate model and threshold are important steps in
identifying markers that are truly associated with specific traits
and which could be located within or very close to genes that
control the trait variation, while controlling both false-positive
and false-negative associations.

The objective of this study was to compare eight different AM
statistical models, ranging from single to multilocus, for three
previously reported traits and six simulated traits in soybean and
maize. These crops were selected because of their difference in
LD as indicated by the LD decay rate: maize, which is naturally
outcrossing, displays much more rapid LD decay than soybean, a
self-pollinating species. We also compared these eight statistical
models for six qualitative traits in soybean, all of which have
known causal genes with published genomic positions. Finally,
February 2020 | Volume 10 | Article 1794
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we evaluated five multiple comparison methods when used in
conjunction with these eight AM models.
MATERIALS AND METHODS

Data Collection
This study included three datasets collected from previously
published or online sources (referred to as “previously reported
traits” subsequently). These previously reported datasets were
the best linear unbiased predictions (BLUP) values across
different environments for each trait. We also simulated six
datasets from two crop species: soybean and maize. Previously
reported data for soybean included canopy wilting (CW) with a
broad sense heritability (H) of 80% (Kaler et al., 2017a), carbon
isotope ratio (d13C, H = 60%, Kaler et al., 2017b), and oxygen
isotope ratio (d18O, H = 20%, Kaler et al., 2017b). For maize, the
previously reported data included days to tasseling (DT, H =
85%), ear height (EH, H = 80%), and ear diameter (ED, H = 85%)
(Flint-Garcia et al., 2005). For both soybean and maize, six traits
were simulated that varied in heritability and the number of
QTLs (Q). These simulated traits were generated using the same
genotypic markers that were used for AM of previously reported
data. These six simulated datasets for each crop had varying
heritabilities and genetic architectures. We simulated traits with
H = 20% and Q = 20 (H20_Q20), H = 60% and Q = 20
(H60_Q20), H = 80% and Q = 20 (H80_Q20), H = 20% and Q =
40 (H20_Q40), H = 60% and Q = 40 (H60_Q40), and H = 80%
and Q = 40 (H80_Q40). The R-script to generate the simulated
data sets is provided in a supplement (Table S1). These data were
simulated to have random QTLs effects. The simulated data for
soybean and maize are provided in Supplementary Data Files 1
and 2, respectively. Previously reported data of soybean consisted
of 346 accessions as described by Kaler et al. (2017b), and
previously reported data of maize (Flint-Garcia et al., 2005)
consisted of 279 accessions from the Panzea database website
(www.panzea.org).

Genotypic Data and LD
Genotypic data for both crops consisted of SNP markers. In
soybean, SNP data were obtained from the Illumina Infinium
SoySNP50K iSelect SNP BeadChip that provided 42,509 SNP
markers for all 346 accessions (Song et al., 2013; Song et al.,
2015). In maize, SNP data were obtained from the Illumina
MaizeSNP50 BeadChip that provided 50,896 SNP markers for
273 accessions (Flint-Garcia et al., 2005). Quality control checks
were performed, which included removing monomorphic
markers, markers with minor allele frequency (MAF) ≤ 5%,
and markers with a missing rate higher than 10%. An LD-kNNi
method, which is based on a k-nearest-neighbor-genotype, was
applied to impute the remaining missing marker datasets
(Money et al., 2015).

After performing quality controls, 31,260 SNPs for soybean
and 48,833 SNPs for maize with MAF > 5% were used for AM.
For maize, SNPs were more or less equally distributed across the
genome for both euchromatic and heterochromatic regions
(Figures S1). For soybean, SNPs were not equally distributed
Frontiers in Plant Science | www.frontiersin.org 3
across the genome; there was higher marker density in
euchromatic than heterochromatic regions (Figure S2). All
chromosomes of maize had more SNPs than those of soybean
(Table S2). The decay rate of LD was estimated using the GAPIT
R package (Lipka et al., 2012). The decay rate of LD was much
greater in maize than soybean with an average LD across all
chromosomes decaying to r2 = 0.25 in less than 1 kb. In
comparison, in soybean, an average LD across al l
chromosomes decayed to r2 = 0.25 in approximately 2,000 kb
(Figure S3). In soybean, LD decay rates were different in
euchromatic and heterochromatic regions (Hyten et al., 2007;
Schmutz et al., 2010; Kaler et al., 2017a; Kaler et al., 2017b).
Using both regions together affected the results of LD decay rate.

Broad sense heritability of traits was calculated using the
formula: H =  s2

G   =   (s2
G + ( s

2
ϵ
r )), where s2

G is the genotypic
variance, s2

ϵ is the residual variance, and r is the number of
replications. Marker-based narrow sense heritability (h2) was
estimated to understand the variation and trend of predictive
ability across traits (Kruijer et al., 2015) using the GAPIT R
package. In the GAPIT package, the MLM model can be
described as: Y=Xb+Zu+e, where Y is the vector of observed
phenotypes; b is an unknown vector containing fixed effects,
including the genetic marker, population structure (Q), and
the intercept; u is an unknown vector of random additive
genetic effects from multiple background QTL for individuals/
lines; X and Z are the known design matrices; and e is the
unobserved vector of residuals. The u and e vectors are assumed
to be normally distributed with a null mean and a variance of:

Var   u
e

� �
= G 0

0 R

� �
, where G = s2aK with s2a as the additive

genetic variance and K as the kinship matrix. Homogeneous
variance is assumed for the residual effect; i.e., R = s2eI, where
s2e is the residual variance. The proportion of the total variance
explained by the genetic variance is defined as marker-
based heritability.

Description of AM Models
The eight AM models evaluated ranged from simple to complex
and included: (i), analysis of variance (ANOVA), (ii) general
linear model (GLM) with PCA (principle component analysis)
(Price et al., 2006), (iii) MLM with PCA + K (Kinship matrix for
family relatedness estimates) (Yu et al., 2006), (iv) compressed
MLM (Zhang et al., 2010), (v) enriched compressed MLM (Li
et al., 2014), (vi) settlement of MLM under progressively
exclusive relationship (SUPER) (Wang et al., 2014), (vii)
multiple loci MLM (MLMM) (Segura et al., 2012), and (viii)
fixed and random model circulating probability unification
(FarmCPU) (Liu et al., 2016). Models from (i) to (vi) are single
locus models, and (vii) and (viii) are multilocus models. Table 1
lists and briefly summarizes keys aspects of models evaluated in
the present study.

The GLM with PCA model is expected to reduce the false
positives that arise due to only population structure (Price et al.,
2006). The MLM with PCA and K model includes the kinship
matrix in the model and is expected to reduce the false positives
that arise from family relatedness (Yu et al., 2006). Both GLM
and MLM are reported to control false positives better than
February 2020 | Volume 10 | Article 1794
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ANOVA (Price et al., 2006; Yu et al., 2006). The MLM model is
reported to perform better than the GLM model alone by
controlling false positives (Yu et al., 2006). Advantages of the
MLM model to control false positives disappear for complex
traits when they are associated with population structure having
extensive genetic divergence. The MLM model controls the P-
value inflation well, but it also leads to false negatives, thereby
weakening identification of true associations (Zhang et al., 2010).
To deal with this problem, the compressed MLM model
(CMLM) was developed, which clusters the individuals into
groups and fits genetic values of groups as random effects in
the model (Zhang et al., 2010). The CMLM method improves
statistical power compared to regular MLM methods (Zhang
et al., 2010). Another suggested way to deal with P-value
deflation due to MLM is to use a SUPER model in which only
the associated genetic markers, instead of all the markers, are
used as pseudo Quantitative Trait Nucleotides (QTNs) to derive
kinship (Wang et al., 2014). Whenever a pseudo QTN is
correlated with the testing marker, it is excluded from those
used to derive kinship. The SUPER model applies a threshold on
LD between the pseudo QTNs and the testing marker. This
method improves the statistical power compared to using overall
kinship from all markers.

FarmCPU is a multilocus model that was developed to control
false positives without comprising false negatives (Liu et al.,
2016). This model is not used extensively for AM of complex
traits in crops because it has not been compared with other
models for previously reported and simulated data. The
FarmCPU model uses a modified MLM method, multiple loci
linear mixed model (MLMM), and incorporates multiple
markers simultaneously as covariates in a stepwise MLM to
partially remove the confounding between testing markers and
kinship. To completely eliminate the confounding, MLMM is
Frontiers in Plant Science | www.frontiersin.org 4
divided into two parts: fixed effect model (FEM) and a random
effect model (REM) and uses them iteratively. FEM contains
testing markers, one at a time, and multiple associated markers
as covariates to control false positives. To avoid model overfitting
in FEM, the associated markers are estimated in REM by using
them to define kinship. The P-values of testing markers and the
associated markers are unified at each iteration. This model
reportedly improves statistical power, increases computational
efficiency, and the ability to control false positives and false
negatives as compared to other models (Liu et al., 2016).

Interpretation of Q-Q Plots and Model
Evaluation
Examining quantile-quantile (Q-Q) plots is one of the most
common ways of determining if models control false positives
and false negatives (Stich et al., 2008; Stich and Melchinger, 2009;
Würschum et al., 2012; Riedelsheimer et al., 2012; Kristensen
et al., 2018). The Q-Q plot shows the expected negative-log of
association probability (X-axis) across all markers versus the
observed negative-log of association probability values (Y-axis).
If a Q-Q plot has a straight line close to the 1:1 line without any
tail, then it follows a uniform distribution, which means the null
hypothesis is true and that there is no significant association or
causal polymorphism. Any deviation of this straight line would
indicate that the null hypothesis was not true and there were
significant associations present. If the Q-Q plot does not have a
straight line and tail, it indicates that there are false positives
when a line inflates upward and there are false negatives when
line deflates downward. If a Q-Q plot has a straight line, close to
the 1:1 line, with a sharp upward deviated tail, it indicates that
both false positives and false negatives were controlled, and that
there are true associations and causal polymorphisms. This
happens because most of the P-values observed follow a
TABLE 1 | Description of eight genome-wide association mapping models.

Model Description References

Analysis of variance
(ANOVA)

Single locus analysis, the null hypothesis of an ANOVA using a single SNP is that there is no difference between the trait
means of any genotype group.

Lewis, 2002

General Linear Model
(GLM)

Single locus analysis, the GLM uses principle components as covariates in the model to reduce the false positives that
arise due to only population structure.

Price et al., 2006

Mixed Linear Model
(MLM)

Single locus analysis, the MLM uses principle components and kinship matrix in the model to reduce the false positives
that arise from the family relatedness and population structure.

Yu et al., 2006

Compressed MLM
(CMLM)

Single locus analysis, the CMLM clusters the individuals into groups and fits genetic values of groups as random effects in
the model that improves statistical power compared to regular MLM methods.

Zhang et al., 2010

Enriched CMLM
(ECMLM)

Single locus analysis, the ECMLM calculates kinship using several different algorithms and then chooses the best
combination between kinship algorithms and grouping algorithms.

Li et al., 2014

Settlement of MLM
Under Progressively
Exclusive Relationship
(SUPER)

Single locus analysis, the SUPER model uses the associated genetic markers (pseudo Quantitative Trait Nucleotides),
instead of all the markers, to derive kinship. Whenever a pseudo QTN is correlated with the testing marker, it is excluded
from those used to derive kinship.

Wang et al., 2014

Multiple Loci Mixed
Linear Model (MLMM)

Multi-locus analysis, the MLMM incorporates a kinship matrix and selected cofactors, performed better with regard to the
false-discovery rate and the QTL detection power than a model incorporating only a kinship matrix or only cofactors.

Segura et al., 2012

Fixed and random
model Circulating
Probability Unification
(FarmCPU)

Multi-locus analysis, this model uses a modified MLM method, Multiple Loci Linear Mixed Model (MLMM), and
incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding
between testing markers and kinship. To completely eliminate the confounding, MLMM is divided into two parts: Fixed
Effect Model (FEM) and a Random Effect Model (REM) and uses them iteratively. FEM contains testing markers, one at a
time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting in FEM, the
associated markers are estimated in REM by using them to define kinship. The P-values of testing markers and the
associated markers are unified at each iteration.

Liu et al., 2016
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uniform distribution (i.e., they are not in LD with a causal
polymorphism, so the null hypothesis is true) but the few that
are in LD with a causal polymorphism will produce significant P-
values [extremely low = extremely high -log (P-values)] and
these are in the “tail”.

We evaluated these eight models for false positives and false
negatives based on the Q-Q plots. A sharp deviation from the
expected P-value distribution in the tail area would indicate that
a model appropriately controlled both false positives and false
negatives. Models were also compared using qualitative traits in
soybean, which have known published genes for flower color
(Takahashi et al., 2010), stem termination (Bernard, 1972), seed-
coat luster (Gijzen et al., 2003), seed-coat color (Clough et al.,
2004), hilum color (Carpentieri-Pipolo et al., 2015), and
pubescence color (Toda et al., 2002; Zabala and Vodkin, 2003).
Models were also compared using simulated data in which there
were a known number of QTLs in the simulated data. The
accuracy of a model was evaluated by identifying the number of
QTLs in the simulated data.

Evaluation of Multiple Comparisons
Methods for AM
Three common multiple comparison methods were compared
for determining statistical significance with a cutoff of P = 0.05.
These methods included Bonferroni, false discovery rate, and
positive false discovery rate. These comparisons were made using
the PROC MULTTEST procedure of SAS version 9.4 (SAS
Institute, 2013). The models were also compared to no
multiple comparison adjustment at a P-value of 0.0003.
RESULTS

Phenotype Descriptions
There were broad phenotypic ranges for all the traits evaluated in
both soybean and maize (Table 2), which is required for
dissecting complex traits through association analysis
(McCarthy et al., 2008). Among the three traits in maize,
broad and marker-based narrow sense heritability ranged
between 80% to 85% and 70% to 80%, respectively. Among the
three traits in soybean, broad and marker-based narrow sense
Frontiers in Plant Science | www.frontiersin.org
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heritability ranged between 20% to 80% and 3% to 71%,
respectively (Table 2).

Model Comparison With Soybean Data
Eight different AM models that ranged from simple to complex
were compared using three previously reported traits and six
simulated traits for soybean and maize (Figures 1 and 2). These
eight AM models identified different numbers of significant
markers associated with the previously reported and simulated
traits for soybean when we consider the same significance
threshold (Table 3). For example, if we consider the
significance threshold as −Log10 (P) > 3.5 to declare a
significant association for a simulated trait with 20 QTLs, we
identified 2465 SNPs from ANOVA, 520 from GLM, 24 from
MLM, 24 from CMLM, 16 from ECMLM, 229 from SUPER, 26
from MLMM, and 19 from FarmCPU (Table 3). All models,
except the FarmCPU and MLMM, identified multiple significant
SNP marker associations in close physical distance on the
chromosome. These large peaks were generated because one
SNP from these peaks had the highest significant association
with traits, but the other markers at a given peak were in high LD
with this most significant marker.

For the CW trait (H = 80%), the ANOVA, GLM, and SUPER
models had a large number of false positives as indicated by a
substantial inflation of P-values (Figure 1A). Q-Q plots of
complex models including MLM, CMLM, and ECMLM had a
straight line with a slightly deviated tail, which indicated that
these models reduced the false positives. However, most markers
were close to the straight line of 1:1, indicating that they may
have been reported as false negatives (Figure 1A). In contrast,
the FarmCPU model followed a straight line close to 1:1, with a
sharp upward deviated tail, indicating that this model controlled
both false positives and false negatives (Figure 1A). For d13C
(moderate H = 60%), results of all models were similar to the CW
trait, indicating that the FarmCPU model controlled both false
positives and false negatives more effectively than other models
(Figure 1B). For a low heritability trait, d18O, the Q-Q plot for all
models, except FarmCPU, deflated downward, indicating that
these models increased false negatives. In contrast, Q-Q plots of
the FarmCPU model for d18O had a straight line close to the 1:1
with a slightly deviated tail, indicating that FarmCPU controlled
both false positives and false negatives (Figure 1C).

Results from Q-Q plots of the six simulated traits in soybean
were consistent with results from the previously reported data
(Figures 1D–I). That is, ANOVA, GLM, and SUPERmodels had
an inflation of P-values indicating there were a large number of
false positives whereas MLM, CMLM, ECMLM, and MLMM
controlled false positives but not false negatives. The Q-Q plots
for FarmCPU indicated control of both false negatives and false
positives. For all simulated traits, the ANOVA model had a large
number of false positives because it inflated the P-value in the Q-
Q plots (Figures 1D–I). When a simulated trait had a low
heritability (H = 20) and a large QTL number (40), all
complex models that incorporated the PCs and kinship matrix
increased the number of false negatives, except the FarmCPU
model (Figure 1G). When a simulated trait had a high
heritability with 20 or 40 QTLs, complex models that included
TABLE 2 | Descriptive statistics of days to tasseling (DT), ear height (EH), and
ear diameter (ED) in maize, and canopy wilting (CW), carbon isotope ratio (d13C),
and oxygen isotope ratio (d18O) in soybean.

Maize Soybean

DT EH ED CW d13C d18O

Mean 67.58 61.38 36.74 16.99 −29.06 20.87
Standard Deviation 5.75 20.27 4.05 6.46 0.27 0.43
Minimum 54.50 8 23.72 7.50 −29.81 19.20
Maximum 85.00 136 46.35 45.63 −28.37 22.29
Skewness 0.41 0.64 −0.29 1.39 −0.12 −0.11
Range 30.50 128.00 22.63 38.13 1.46 3.09
Count 279 279 279 346 346 346
Broad sense heritability (%) 85 80 85 80 60 20
Narrow sense heritability (%) 70 72 80 71 29 3
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both PCs and kinship matrix reduced the false positives (Figures
1F, I), but still the FarmCPU model had a straight line that
followed the 1:1 line with a sharp deviated tail compared to
other models.

Maize
In maize, we observed large effects of population structure and
family relatedness. Similar to soybean (Table 3), the models that
included the PCs and kinship matrix for maize identified a
smaller number of markers than models that did not (data not
shown). Likewise, the models that had no adjustment (ANOVA)
or included only PCs (GLM) increased the number of significant
Frontiers in Plant Science | www.frontiersin.org 6
markers for both previously reported and simulated traits when a
specific threshold level was used compared with other complex
models (Table 3). All single-locus models gave a peak of
multiple, significant SNPs, which may result in missing the
identification of other important genomic regions that may not
have that high level of significance (P-value) as the markers in the
peak region that are in high LD with the most significant marker.
However, the multilocus model, FarmCPU and MLMM, did not
show any clusters of significant markers in maize; instead they
provided the highest significant marker at a specific genomic
location, which led to identification of more markers at different
locations (data not shown). Based on the Q-Q plots for all
FIGURE 1 | Quantile-quantile (QQ) plots of the eight models including Analysis of Variance (ANOVA), General Linear Model (GLM), Mixed Linear Model (MLM),
Compressed MLM (CMLM), Enriched Compressed MLM (ECMLM), Settlement of MLM Under Progressively Exclusive Relationship (SUPER), Multiple Loci Mixed
linear Model (MLMM), and Fixed and random model Circulating Probability Unification (FarmCPU) for three real traits including canopy wilting (A), carbon isotope ratio
(B), and oxygen isotope ratio (C), and six simulated traits that varied in heritability (H) and quantitative trait loci (Q) including H = 20% and Q = 20 (H20_Q20)
(D), H = 60% and Q = 20 (H60_Q20) (E), H = 80% and Q = 20 (H80_Q20) (F), H = 20% and Q = 40 (H20_Q40) (G), H = 60% and Q = 40 (H60_Q40) (H), and
H = 80% and Q = 40 (H80_Q40) (I) in Soybean. The grey area represents the 95% concentration band.
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previously reported and simulated traits, the FarmCPU model
performed much better than other models as indicated by the Q-
Q plots with a straight line close to the 1:1 line with most sharply
deviated tail (Figure 2).

Qualitative Traits of Soybean
Flower color in soybean is a qualitative trait that is conferred by
theW1 gene. A small (65 bp) insertion of tandem repeats in exon
3 that truncates the translation product prematurely, resulting in
a white flower instead of the wild-type purple flower (Zabala and
Vodkin, 2005; Zabala and Vodkin, 2007). The W1 locus is
Frontiers in Plant Science | www.frontiersin.org 7
located on Gm13 at 4552540-4557331 base pairs in the
Wm82.a1.v1.1 genomic assembly (Schmutz et al., 2010). As
both alleles are widespread in soybean germplasm, this trait is
ideal to determine which model would best identify markers
closely linked to the known causative allele. The FarmCPU,
GLM, and ANOVA models identified the most significant SNP
associated with flower color on Gm13 (Figure 3). Other models,
except the MLMM, identified most significant markers at
different positions on Gm13 that were further away from the
published gene on the same chromosome. For example, MLM
identified the highest significant SNP at 3,822,639 base pairs.
FIGURE 2 | Quantile-quantile (QQ) plots of the eight models including Analysis of Variance (ANOVA), General Linear Model (GLM), Mixed Linear Model (MLM),
Compressed MLM (CMLM), Enriched Compressed MLM (ECMLM), Settlement of MLM Under Progressively Exclusive Relationship (SUPER), Multiple Loci Mixed
linear Model (MLMM), and Fixed and random model Circulating Probability Unification (FarmCPU) for three real traits including days to tasseling (A), ear diameter (B),
and ear height (C), and six simulated traits that varied in heritability (H) and quantitative trait loci (Q) including H = 20% and Q = 20 (H20_Q20) (D), H = 60% and Q =
20 (H60_Q20) (E), H = 80% and Q = 20 (H80_Q20) (F), 2 = 20% and Q = 40 (H20_Q40) (G), H = 60% and Q = 40 (H60_Q40) (H), and H = 80% and Q = 40
(H80_Q40) (I) in Maize. The grey area represents the 95% concentration band.
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MLMM identified the highest significant SNP on Gm19. Unlike
the other models, FarmCPU identified only the single SNP on
Gm13 at the position 4,559,799 bp, closest to the position of
Frontiers in Plant Science | www.frontiersin.org 8
W1gene, in the Wm82.a1.v1.1 genomic assembly (Schmutz et al.,
2010) (Figure 3).

Similar results were observed when models were compared
using five other qualitative traits in soybean including hilum
color, pubescence color, seed-coat color, seed-coat luster, and
stem termination (determinacy) (data not shown). Figure 4
shows the comparison of FarmCPU models with MLM for
different qualitative traits. We chose a comparison of
FarmCPU with MLM because it is a commonly used model for
AM. The FarmCPU model identified a single significant SNP
close to the genes associated with qualitative traits, instead of
identifying a large peak of SNPs with MLM (Figure 4). For
example, the FarmCPU model identified the single most
significant SNP associated with stem termination on Gm19 at
the position 45,000,827 base pairs closest to the position of the
Dt1 gene (45,183,357– 45,185,175 base pairs), instead of a large
peak of SNPs with MLM. For three qualitative traits including,
hilum color, pubescence color, and stem termination, the
identified significant SNPs with the largest –Log10 P-value
from the peak were similar to the position of the peak
identified by the FarmCPU model (Figure 4). The most
significant marker for hilum color and pubescence color was
on Gm06 at the position 18,766,611 base pairs which was 28,586
TABLE 3 | Comparison of the number of significant markers (P ≤ 0.05) identified
by multiple comparison methods including Bonferroni (Bon), false discovery rate
(FDR), and positive false discovery rate (PFDR) using a simulated trait for soybean
that had a heritability 60% and 20 QTLs (H60_Q20) in eight different association
models eight including analysis of variance (ANOVA), general linear model (GLM),
mixed linear model (MLM), compressed MLM (CMLM), enriched compressed
MLM (ECMLM), settlement of MLM under progressively exclusive relationship
(SUPER), multiple loci mixed linear model (MLMM), and fixed and random model
circulating probability unification (FarmCPU).

−Log10 P ≥ 3.5 Bon FDR PFDR

ANOVA 2,465 411 7,204 9,760
GLM 520 38 1,336 1,966
MLM 24 0 0 0
CMLM 24 0 0 0
ECMLM 16 0 0 0
SUPER 229 5 327 521
MLMM 26 0 0 0
FarmCPU 19 4 10 10
For comparative purposes, a P-value threshold (–Log10 P ≥ 3.5) without any adjustment is
included.
FIGURE 3 | Manhattan plots of -Log10 (P) vs. chromosomal position of SNP markers associated with flower color in soybean from eight models including Analysis
of Variance (ANOVA) (A), General Linear Model (GLM) (B), Mixed Linear Model (MLM) (C), Compressed MLM (CMLM) (D), Enriched Compressed MLM (ECMLM) (E),
Settlement of MLM Under Progressively Exclusive Relationship (SUPER) (F), Multiple Loci Mixed linear Model (MLMM) (G), and Fixed and random model Circulating
Probability Unification (FarmCPU) (H).
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base pairs distant from the T locus. Pubescence coloration and
hilum coloration are in part determined by loss of function
mutation affecting the Glyma06g21920 gene which results in
grey pubescence at plant maturity and, in the right genetic
background, can result in buff or imperfect hila (Zabala and
Vodkin, 2003).

For seed-coat color and luster, the MLM identified the most
significant SNPs on different chromosomes compared to the
FarmCPU model (Figure 4). For seed-coat color, the FarmCPU
model identified the most significant SNP on Gm8 at 21,385,804
base pairs close to the Glyma08g27050 gene (21392963-21395430
bp), which is involved in flavonol biosynthesis (Palmer et al.,
2004; Zabala and Vodkin, 2007; Yang et al., 2010). This marker
association is most likely reporting the natural gene silencing
cluster which results in yellow seed-coats (Clough et al., 2004;
Tuteja et al., 2004) However, MLM identified the most
significant SNP on Gm13 at the position 22,126,286 base pairs,
where there was no gene present associated with seed coat color.
Frontiers in Plant Science | www.frontiersin.org 9
For seed-coat luster, the FarmCPU model identified the most
significant SNP on Gm15 at 12,986,703 base pairs within a gene
Glyma15g16670 (12,982,823-12,987,622), which is involved in a
function of epidermis development. In contrast, MLM identified
the SNP on Gm16 at 3,791,771 base pairs, which was not located
close to any known gene for seed coat luster. Seed coat color and
luster are controlled by more than one gene, hence, the
FarmCPU model identified additional significant SNPs on
other chromosomes, and all those regions are located close to
previously reported genes for these traits (Palmer et al., 2004;
Yang et al., 2010).

Multiple Comparisons Methods for AM
Different multiple comparison methods were compared for
determining statistical significance with a cutoff of P = 0.05.
These comparison methods included: Bonferroni, false discovery
rate, and positive false discovery rate (Holm, 1979; Hommel,
1988; Hochberg, 1988; Benjamini and Hochberg, 1995). The
FIGURE 4 | Manhattan plots of −Log10 (P) vs. chromosomal position of SNP markers associated with five qualitative traits in soybean from two models including,
Mixed Linear Model (MLM) and Fixed and random model Circulating Probability Unification (FarmCPU).
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significance level of –Log10 (P > 1.3, which is an equivalent to the
P < 0.05) was used as a threshold before and after performing
multiple comparison adjustments. We compared these methods
for all traits in maize and soybean, but for brevity, we only show
results of the simulated trait, H60_Q20 in soybean (Table 3).
Results of all other traits were consistent with this trait (data not
shown). These results indicated that these multiple comparison
methods for AM were very conservative and only depended on
the P-value of the association test. These results were evaluated
based on the number of markers identified after adjustments. If
the number of markers identified was more than 20, it indicates
that there were false positives. If the number of markers
identified was less than 20, it indicates that there were false
negatives. In this study, ANOVA, GLM, and SUPER models had
very large –Log10 P-values for significant associations; when
multiple comparisons adjustments were performed, all 20 QTLs
were above the significance level of –Log10 P > 1.3 (Table 3).
Checking the Q-Q plots for this trait (Figure 1E), indicated that
the ANOVA, GLM, and SUPER models did not control false
positives well in a diverse population. The FDR and PFDR
methods gave more false positives than the Bonferroni method in
the ANOVA, GLM, and SUPER models (Table 3). Complex
models (MLM, CMLM, ECMLM, and MLMM), which were
expected to control false positives arising from population
structure and family relatedness, did not identify any significant
associations after performing multiple comparisons adjustments.
These complex models reduced the P-value inflations (Table 3),
which led to an increase in the false negative error rates. For the
FarmCPU model, the Bonferroni adjustment identified 4 out of 20
highly significant associations, which means that these methods
gave 16 false negative associations; the false discovery rate and
positive false discovery rate adjustments with the FarmCPU model,
identified 10 out of 20 highly significant associations, resulting in 10
false negatives above the selected cutoff value of –Log10 P > 1.3
(which is an equivalent to the P < 0.05) after adjustments (Table 3).
Without any multiple comparison adjustments, FarmCPU identified
19 out 20 associations at a cutoff of 3.5 (–Log10 (P) ≥ 3.5; P ≤ 0.0003).
DISCUSSION

AM is based on the LD of marker with a QTL and is a popular
approach for fine mapping traits of interest. LD in an AM
population can also result from population structure, family
relatedness, selection, and genetic drift (Flint-Garcia et al.,
2003; Yu et al., 2006), which are the major reasons of false
positive associations. The success of AM to identify true
associations depends on the ability to separate LD of the
marker with a QTL from LD due to other causes. There is a
need for an appropriate model that can correctly identify LD
caused by population structure and family relatedness.

In this study, eight different statistical models, ranging from
single to multilocus, were compared for AM of three empirical
phenotype traits differing in heritability in two crop species,
soybean and maize, that vary in LD decay rates. The power of
SNP identification is determined by several factors including the
Frontiers in Plant Science | www.frontiersin.org 10
size of the population, the population structure, the extent of LD
in the population, the heritability and underlying genetic
architecture of the trait (Yu et al., 2006). For all previously
reported traits, several SNPs were identified in this study, which
indicated that all these traits were complex, quantitative traits,
controlled by a large number of genes with small effects. The
power of detecting SNP and mapping resolution for complex
traits depend on the LD exploited in the population by the
statistical model (Yu et al., 2006). As expected, faster LD decay
over physical distance was observed in maize compared to
soybean because maize is a cross-pollinated with a higher
recombination rate and soybean is a self-pollinated with a
lower recombination rate.

Based on the Q-Q plots, we observed a nonuniform
distribution of P values in the ANOVA, GLM, and SUPER
models of all empirical traits (Figures 1 and 2). These results
are similar to previous studies (Yu et al., 2006; Stich et al., 2008;
Zhao et al., 2011) indicating that these models are inappropriate
for AM of complex traits in plants because they generate
spurious marker-trait associations. Complex models including
MLM, CMLM, and ECMLM were proposed to correct
population structure and family relatedness (Yu et al., 2006).
We observed a straight line close to the 1:1 line with slightly
deviated tail in the Q-Q plots of MLM, CMLM, and ECMLM,
indicating that these models reduced the false positives, but
increased false negatives because most significant markers were
present close to the 1:1 line. These false negatives were generated
due to the overfitting of these complex models. Similar results
were observed in other studies (Wen et al., 2015; Tamba et al.,
2017; Li et al., 2018; Wen et al., 2018) where these complex
models generated more false negatives. In contrast, the Q-Q plot
of the FarmCPUmodel, a multilocus model, controlled both false
positives and false negatives as indicated by a straight line (close
to the 1:1 line) with a sharp deviated tail for all empirical traits in
both crops.

Some studies, where multilocus models, including mrMLM
(Wang et al., 2016), FASTmrEMMA (Wen et al., 2018), and
LASSO (ISIS EM-BLASSO) (Tamba et al., 2017), were used,
performed better than MLM-based models. Liu et al. (2016)
reported that the FarmCPU model avoids overfitting by using
two types of adjustments for testing markers. The first type of
adjustment was fitting covariates of population structure, family
relatedness, and pseudo-quantitative trait nucleotides; the
second type of adjustment either refines how family relatedness
is derived from all the markers, or selectively includes or excludes
pseudo-quantitative trait nucleotides based on their relationship
with the testing markers.

These eight AM models were also compared based on
simulated traits in which a known number of QTLs were
simulated. Among these models, the FarmCPU model
identified the number of QTLs close to the number of
simulated QTLs for all traits in both crops. Comparison of Q-
Q plots of different models for all simulated traits indicated that
the FarmCPU controlled better the false positives and false
negatives. Additionally, FarmCPU identified markers of
qualitative traits closer to the published location of genes
February 2020 | Volume 10 | Article 1794

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Kaler et al. Models and Multiple Testing Corrections for AM
controlling these traits compared to the other models. Instead of
providing a large peak as in other models, the FarmCPU model
provided a single most significant marker, which was always
present closest to the published genes.

For determining statistical significance in AM, different
multiple comparison methods are used with a cutoff of P =
0.05, and several of these methods were compared when used in
combination with the eight AM models. Complex models
(MLM, CMLM, ECMLM, and MLMM) were particularly
conservative and did not find any markers after adjustment;
these complex models and multiple comparison methods are
apparently increasing the number of false negatives. In contrast,
ANOVA, GLM, and SUPER models identified more than 20
QTLs after multiple comparison adjustments, indicating that
these models increased the false positives. In contrast, the
FarmCPU model performed better than other models for these
multicomparison adjustments by identifying 10 QTLs with less
conservative methods, FDR and PFDR. Based on the Q-Q plots
and the number of known simulated QTLs, the FarmCPU was an
appropriate model for controlling false positives and false
negatives compared to other models. Other multiple
comparison methods were overly conservative for selection of
significant threshold for AM. Determination of the correct
significant threshold for AM can be determined by an
empirical relationship based upon marker-based heritability
(Kaler and Purcell, 2019).
CONCLUSIONS

This study compared eight statistical models for AM of three
empirical phenotypic traits differing in heritability and six
simulated traits in two crop species, soybean, and maize,
varying in LD decays rates. Based on the Q-Q plots and the
number of known simulated QTLs, the FarmCPU was an
appropriate model for controlling false positives and false
negatives compared to other models. These finding were also
supported by the AM of six qualitative traits, which identified a
single most significant SNP closest to the known published
genes. The FarmCPU model performed better for multiple
comparison adjustments compared to other models because
adjustments were overly conservative for MLM, CMLM,
ECMLM, and MLMM and did not find any QTL. In contrast,
for ANOVA, GLM, and SUPERmodels, these adjustments found
more than 20 QTLs. From this study, we conclude that
Frontiers in Plant Science | www.frontiersin.org 11
FarmCPU provides a robust model for AM of complex traits
in plants, which effectively controls both false positives and
false negatives.
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