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Introduction: In recent decades, the interest has grown to quantify the green area index
as one of the key characteristics of crop canopies (e.g. for modelling transpiration, light
interception, growth). The approach of estimating green area index based on multispectral
reflection data from unmanned airborne vehicles with lightweight sensors might have the
potential to deliver data with sufficient accuracy and high throughput during the
whole season.

Materials and Methods: We therefore examined the applicability of a recently launched
drone-based multispectral system (Sequoia, Parrot) for the prediction of whole season
green area index in winter wheat, with data from field trials in Northern Germany (2017,
2018 and 2019). The explanatory power of different modeling approaches to predict
green area index based on multispectral data was tested: linear and non-linear regression
models, multivariate techniques, and machine learning algorithms. Further, different
predictors were implemented in these models: multispectral data as raw bands and as
ratios. Additionally, a new approach for the evaluation of green area index predictions
during senescence is introduced. It is shown that a robust calibration during growth phase
is applicable during senescence as well.

Results and Discussion: A linear model which includes all four wavebands provided by the
sensor in three ratios (VIQUO) and a Support Vector Machine (SVM) algorithm allow a reliable
and sufficiently accurate whole season prediction. The VIQUO-model is recommended as the
best model, as it is precise but still relatively simple, thus easier to communicate and to apply
than the SVM. The integrated values of predicted green area indices in an independent trial are
highly correlated with their final biomass (R2: VIQUO = 0.84, SVM = 0.85) which represents
the process of radiation interception, one of the determining factors of growths. This is an
indicator for both, a robust model calibration and a high potential of the tested multispectral
system for agricultural research and crop management.

Keywords: green area index, unmanned aerial vehicle, multispectral, winter wheat, whole season, vegetation index,
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INTRODUCTION

In agricultural science, the monitoring of canopies throughout
the growing season is of major concern to understand, predict,
and manage crop growth. A fundamental parameter of canopies
is the green area index (green plant area per ground area; GAI),
which plays a central role in the processes of radiation
interception and transpiration by vegetation. Because GAI
changes continuously from sowing to harvest, sequenced
measurements are necessary. For this purpose, non-destructive
methods are advantageous. Additionally, applications in
precision agriculture and the phenotyping of large plant
material collections require the measurement of large areas in
feasible time. Both demands are fulfilled by remote spectral
sensors (Salamí et al., 2014).

Since the first introduction of remote sensing data for the
satellite driven surveillance of vegetated areas, this field of
research has developed significantly (Weiss et al., 2020). In the
same time, new scopes of application of spatial data have
emerged. It became quickly evident that satellite sensors
cannot meet all requirements of remote sensing applications,
due to insufficient spatial and temporal resolution. To overcome
these restrictions, new platforms for complemental or alternative
data acquisition were introduced (e.g. onboard traction-engine,
airplanes) (Zecha et al., 2013).

First developed for military applications (Majumdar et al.,
2001; Beard et al., 2006), unmanned aerial vehicles (UAV)
turned in focus of civilian remote sensing with special
attention in the domain of agriculture (Salamí et al., 2014).
With their measurement distance between ground (tractor,
handheld) and satellite, UAV can reach both, high ground
coverage as well as high spatial resolution. Furthermore, they
are independent of cloud cover (in contrast to satellites) and are
in some environments the only opportunity to reach sufficient
temporal resolution within certain time periods during season.
Considering these features, UAVs might be the most promising
carrier systems for airborne spectral sensors in agricultural
research and precision agriculture (Puri et al., 2017; Raparelli
and Bajocco, 2019; Tsouros et al., 2019).

Despite the high spatial resolution of UAV-data, there are
still a lot of factors influencing the spectral reflectance signal,
such as soil background and radiation conditions. To
compensate this spectral variability, it is common practice to
associate crop characteristics not only with one spectral band,
but with at least two, merged into a vegetation index (VI)
(Tucker et al., 1981; Baret and Guyot, 1991; Verger et al., 2014).

In recent decades, a high number of VIs have been developed
to characterize different crop characteristics. The certainly most
popular VI is the normalized difference vegetation index (NDVI)
by Rouse et al. (1974), combining the spectral range of red
with the near infrared (NIR). The NDVI has been shown to be
sensitive to different crop characteristics, such as leaf area index
(LAI), GAI, dry matter, and nitrogen content (e.g. Serrano et al.,
2000; Lelong et al., 2008; Berni et al., 2009; Mistele and
Schmidhalter, 2010; Nebiker et al., 2016; Ni et al., 2017).
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However, it is a known fact that the sensitivity of the NDVI
towards these crop characteristics is heavily dependent on the
degree of soil coverage, being insensitive above a LAI of
2–3 m2 m-2 (Serrano et al., 2000; Haboudane et al., 2004; Pinty
et al., 2009; Viña et al., 2011). Thus, for the most crops the NDVI
cannot provide information for a long time in the vegetation
period. Several newly developed VIs are more or less able to
compensate this saturation effect, but are still subject to a number
of influences restricting their usability through the whole
growing season and on different sites, such as different species,
growth stages, the process of senescence, site- and year-effects
(e.g. Gitelson et al., 2003; Serrano et al., 2000; Li et al., 2010).

In recent time, new, multivariate methods as well as non-
linear algorithms have been introduced in the calibration of
spectral data to crop data, such as Partial Least Squares
Regression (Höskuldsson, 1988) or Support Vector Machines
(SVM) (Burges, 1998). As a consequence of this broad field of
different VIs, used spectral bands, different multispectral sensors,
and different prediction models, the best way to use a spectral
sensor for the prediction of any canopy characteristic might be
reassessed separately for each new sensor model.

Therefore, the objective of this study was to develop an easy-
to-handle, reliable UAV-based approach to predict whole season
GAI of winter wheat which could usefully be transferred into
precision agriculture and support agricultural research. For this
purpose, a recently launched low to medium cost UAV-based
multispectral system was deployed, namely the Parrot
Sequoia sensor.

The focus was on the questions: (1) Is the Sequoia sensor
providing sufficiently meaningful multispectral images for the
monitoring of winter wheat growth on plot level? (2) How can
the data be used best for the prediction of the crop characteristic
GAI? (2a) Can one calibration approach for GAI be employed
throughout the whole growing season? (2b) Are the VI-based
approaches excelled by the new multivariate methods?
MATERIALS AND METHODS

Study Site and Trial Design
Data acquisition was conducted during three years (growing
seasons 2016/17, 2017/18 and 2018/19) at the Hohenschulen
Experimental Farm (10.0 E, 54.3 N, 30 m a.s.l.) of the Kiel
University, located in Northern Germany. The long-term
average temperature is 8.9°C, the precipitation average
788 mm (Deutscher Wetterdienst, 2013). The site is
characterized by a small-scale heterogeneous soil, the main soil
type being a pseudogleyic sandy loam.

Destructive sampling for sensor calibration was conducted as
additional measurement in different ongoing trials. In the growing
season 2016/17, data were collected within Trial A and Trial B, in
2017/18 in Trial B and Trial C and in 2018/19 only in Trial C. Trial
A is a four-field rotation since 2003, with winter wheat following
winter oilseed rape. Four different nitrogen levels are tested in
February 2020 | Volume 10 | Article 1798
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interaction with four different cultivars in four replications
(Table 1). Trial B and C are experimental sites, placed each year
on a different field. In Trial B four different sowing densities of four
cultivars are examined whereas in Trial C six cultivars and two
nitrogen levels are tested (Table 1). Except the treatments
mentioned, the wheat crops were managed according to regional
farmer’s practice.

Data Collection
The following sections (GAI Reference Measurement up to
Advanced Predictive Models) describe the process from data
Frontiers in Plant Science | www.frontiersin.org 3
collection through data processing to model calibration and
evaluation. To clarify the procedure, it is illustrated schematically
in Figure 1.

GAI Reference Measurement
At every sampling date (Table 2), three replications of the
respective trial were sampled, hence 48 plots. In every plot, the
aboveground plant material of an area of 0.25 m² was withdrawn
and its BBCH stage (Lancashire et al., 1991) was scored. The
fresh matter was fractionized into leaf, stem, ear, and senescence.
The category senescence comprised all fresh matter no longer
considered as green and was the only fraction not being included
in the calculation of the GAI, wherefore the LAI, Stem Area
Index and Ear Area Index were determined using a LiCor 3100
leaf area meter (LiCor Inc., NE, USA).
FIGURE 1 | Flowchart of the process of data collection, data processing, model calibration, and model evaluation (CV, cross validation; GAD, green area duration;
MAE, mean absolute error; RMSE, root mean square error; VI, vegetation index).
TABLE 1 | Different treatments of the three field trials.

Trial
(Replications)

Treatments

Cultivar Nitrogen levels and split
application rates

[kg N ha-1]

Sowing Seed
Density

[Kernels m-2]

Trial A
(n = 3)

Benchmark
Dekan
KWS
Maddox
RGT
Reform

0: 0/0/0
80: 40/40/0

160: 80/40/40
240: 80/80/80

270

Trial B
(n = 3)

Brilliant
Dekan
Piko
Solehio

200: 80/80/60 50
100
200
400

Trial C
(n = 4)

Elixer
Hybery
JB Asano
Piko
SUR99820
Solehio

110: 50/60/0
220: 50/110/60

280
TABLE 2 | Sampling dates and the most frequent BBCH stage (mode).

Trial Sampling date (BBCH)

Season 2016/17 Season 2017/18 Season 2018/19

Trial A 2017-04-11 (31)
2017-05-16 (37)
2017-06-07 (65)
2017-06-27 (75)
2017-08-07 (92)
2017-08-29 (0)

– –

Trial B 2017-04-04 (30)
2017-05-09 (33)
2017-05-30 (51)
2017-07-18 (83)

2018-03-14 (21)
2018-04-24 (29)
2018-05-22 (37)

–

Trial C – 2018-04-18 (24)
2018-05-15 (37)
2018-06-04 (61)
2018-07-17 (92)

2018-11-27 (21)
2019-04-09 (31)
2019-05-06 (33)
2019-06-03 (55)
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On August 07, 2017 and on July 17, 2018 ripening was
considered as terminated (BBCH 92), thus, at these dates a
GAI of 0 was assigned to each plot of the relevant trial.
Spectral data from the bare ground of the plots from Trial A at
August 29, 2017 were included in the dataset as well.

A description of the GAI-course during the senescence by
destructive sampling and measurements of the green area is not
possible as the differentiation between green and senesced plant
material is not clearly defined and because, in parallel to this
zonal process, a gradual degradation of chlorophyll takes place.
The concept to evaluate GAI-predictions during this
development stage is further specified in Further Evaluation of
GAI-Models.

Reflectance Measurements
Every sampling date was accompanied by an overflight with an
UAV-based multispectral camera within at most three days. The
plant development during this time span was considered as
negligible, thus no interpolation techniques (as for example
used by Broge and Mortensen, 2002) were applied. An
overflight after the sampling was in each case used to know at
which position the samples were taken exactly, by visual
determination of the additional hole in the canopy. For further
evaluation of the GAI-models, 14 additional overflights on
Trial C in the season 2017/18 were made (April 04, April 16,
April 23, May 03, May 16, May 22, June 01, June 06, June 12,
June 20, June 26, July 05, July 13, July 17).

The UAV applied was an eBee by senseFly, a micro aerial
vehicle (following the classification of Allen et al., 2011), with fixed
wings and automatic flight manager. It served as carrier system for
the Parrot Sequoia camera (Parrot Drones SAS, France, Paris), a
multispectral sensor which records simultaneously images in four
reflection-bands; green (550 nm), red (660 nm), red edge (RE,
735 nm), and near-infrared (NIR, 790 nm). Besides RE, all
reflection-bands have a bandwidth of 40 nm, RE just of 10 nm.
The Sequoia camera has an incoming light sensor and provides
therefore fractional reflection values regarding the incoming
radiation. Before each flight, images of a grayscale target were
made for radiometric calibration.

The software eMotion3 from senseFly was used as flight
manager. Every position on the ground was at least
photographed five times to ensure a sufficient data quality. The
chosen resolution was 8 x 8 cm pixel-1. All images were
preprocessed in the post flight-manager of eMotion 3 and
afterwards imported and processed using the Pix4Dmapper
software (Pix4D SA., Switzerland). On days with fast moving
clouds, a manual screening of the images was conducted to
exclude those images containing both, regions with cloud
shadow and full sunlight. The results were four orthogonal
reflection maps, one for every waveband. The extraction of the
reflectance data of the sampling spots was undertaken in QGIS
version 3.8.0 (QGIS Development Team, 2018), whereby all
pixels of a sampling spot were summarized as median.

With a RTK-enabled eBee, it is possible to include RINEX-
files (Receiver Independent Exchange Format) in the post-flight-
Frontiers in Plant Science | www.frontiersin.org 4
processing in eMotion 3. If this function was not available, the
reflectance maps were georeferenced manually using the
Georeferencer Plugin in QGIS.
MODEL CALIBRATION

Data Sets
At the very beginning, plots assessed as compromised in any
manner (e.g. strong weed abundance, damages by game, lodging)
were excluded of further consideration. This affected especially
Trial B, as in 2017 the data of the whole sowing density 50 K m-2-
treatment were sorted out due to strong weed abundance and the
data of sowing density 400 K m-2 of the cultivar Solehio after
early July due to lodging. In 2018 in Trial B, problems in crop
establishment of the cultivar Dekan and additional waterlogging
stress led to too little sampling material in the lowest sowing
density variant at the end of May and in the two lowest sowing
density variants in June.

Considering GAI, values above 7 m² m-2 were excluded from
the dataset because under local growing conditions these high
values do never occur as a treatment mean and they were
considered as more harmful then useful for calibration
purposes (concerns six samples of the calibration dataset and
one of the evaluation dataset). Furthermore July 18, 2017;
June 27, 2017 and June 11, 2018 were omitted from GAI-
dataset as the process of senescence had already started (see
GAI Reference Measurement).

Finally, the data from Trial A and Trial B (2016/17 and
2017/18) were combined to form one single calibration dataset,
covering a broad spectrum of GAI-values, crop managements,
and environmental factors (e.g. irradiance at flight day, ground
coverage, nitrogen levels and sowing densities), whereas the data
from Trial C constitute the evaluation dataset (45% of the total
data volume). Calibration and evaluation dataset never share a
common date and flight, respectively. The result is a high level of
independence between both data sets (final sample size for GAI-
calibration: 474, GAI-evaluation: 383).

Statistical Analysis
All statistical analysis was conducted in R Core Team, 2017.

Linear Regression Models
Every single band, their combination with and without
interaction, the quotients of NIR and Green, NIR and Red,
NIR and RE, their combination with and without interaction
and the NDVI (the quotient of NIR-Red and NIR+Red, by Rouse
et al., 1974), as most common VI, were tested for their sensitivity
towards GAI.

Based on the calibration dataset, linear models between GAI
and the components of the VIs were fitted, whereas for the NDVI
an exponential term was introduced, taking into consideration its
known non-linear behavior (Wiegand et al., 1992; Chen and
Cihlar, 1996; Myneni et al., 1997; Lelong et al., 2008; Viña
et al., 2011).
February 2020 | Volume 10 | Article 1798
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For the comparison of the different VIs, two statistical metrics
were selected: the root mean square error (RMSE) and the mean
absolute error (MAE). The RMSE was chosen for comparability
with the results of other studies. However, since the RMSE gives
more weight to large errors but the predictive power of the
models at low GAI-values is at least as important as at high GAI-
values (non-linear relationship between light interception and
GAI), the MAE was used to compare the advantages and
disadvantages of the different models.

Advanced Predictive Models
To streamline the process of model creation, the integrative
package caret (Kuhn, 2017) was used. The models were
implemented by different additional packages: Partial Least
Squares Regressions using pls (Mevik et al., 2016), SVM using
kernlab (Karatzoglou et al., 2004), K Nearest Neighbor using
caret (Kuhn, 2017), Multivariate Adaptive Regression Spline
using earth (Milborrow, 2017), and Boosted Trees using gbm
(Ridgeway, 2017).

For Partial Least Squares, SVM, and K Nearest Neighbor, all
predictors were centered and scaled prior to model fitting. The
models Partial Least Squares, SVM, K Nearest Neighbor,
Multivariate Adaptive Regression Spline, and Boosted Trees
possess tuning parameters. These were found by a grid search
and the optimal model was selected by the smallest RMSE value.
The parameters usually have a tradeoff between descriptive and
predictive modeling performance. To prevent overfitting by an
optimization of the descriptive quality, the RMSE for parameter
selection was calculated by a 10-fold cross-validation. The hold-
out sample was specifically selected by date. Tuning parameter
“n.minobsinnode” for the Boosted Tree model was held constant
at the value of 10. Selected tuning parameters are shown in
Table S1.

Further Evaluation of GAI-Models
To examine the sensitivity of some selected VIs through the
growing season, the dataset was further divided in seven different
GAI-classes and the MAE and the relative MAE (rMAE) of the
GAI-predictions in the different GAI-classes was calculated
individually. As the rMAE is determined as the quotient of the
MAE and the mean GAI of the considered class, no rMAE could
be calculated for the class “Dead Plant” (division through 0
not possible).

Further it was considered if one GAI-model can be applied
regardless of the cultivar (unaffected by different leaf angles and
single leaf reflectance). For this purpose, calibration and
evaluation dataset were reduced to the data of the two cultivars
represented in both datasets: Solehio and Piko. Those two
cultivars are quite contrasting ones (Table 3): Piko represents
a compact growth habitus with rather short and planophile
leaves while Solehio shows a pronounced vertical growth with
long, erectophile leaves. Based on the calibration subset, two
linear models were calibrated; a “common” model which
estimates the GAI via reflectance data only and an “extended”
Frontiers in Plant Science | www.frontiersin.org 5
model, including the cultivar as an additional factor. The effect of
cultivars on the GAI-estimation was assessed by comparing the
MAEs of the models with regard to the calibration- and the
evaluation dataset. Additionally, an ANOVA was performed to
test whether there is a significant difference between the two
models or rather a significant effect of the cultivars in the
“extended” model.

For the examination of the models during the senescence
we built on the approach of Serrano et al. (2000) of introducing
an empirical green fraction factor. However, in contrast to
the biomass-based approach of Serrano et al. (2000), a
chlorophyll-driven approach was chosen. The methodology is
based on SPAD-measurements which are converted into a
“canopy greenness”-factor. Required data for this approach
were collected by measurements with a chlorophyll meter
(SPAD-502, Konica Minolta) in the growing season 2016/17
during the phase from maximal GAI until harvest on 13 dates
(June 20, June 24, June 28, July 2, July 5, July 8, July 11, July 14,
July 17, July 20, July 23, July 26, and July 30) in all leaf
layers (10 leaves per layer). Used plant material was a subset
of a large genotype trial (eight genotypes: Piko, Dekan, Hybery,
Jafet, Biscay, SUR99820, Brilliant, and Lambriego Inia, in three
replications). Crop management included 220 kg N ha-1 (Nmin

in early spring subtracted) and application of herbicides
as well as pesticides. Tested plots were spread over a large
area with much variation in soil properties, which resulted
in an increased variation regarding the canopy greenness
during senescence. Different leaf layers make up for different
shares of the total canopy area. To account for this effect,
20 shoots of each genotype were sampled, fractionated into leaf
layers, stem, and spike and the green area was determined as
described before.

Multiple authors showed a nonlinear relationship between
SPAD-measurements and chlorophyll concentrations (Markwell
et al., 1995; Uddling et al., 2007; Ling et al, 2011). To get a closer
link to the physiological base of “greenness”, we transformed
SPAD-readings to chlorophyll concentrations in g m-2 (per unit
leaf area), using the equation from Uddling et al. (2007).

Chlorophyll concentrations of each leaf layer were
multiplied by its fraction of the overall canopy leaf area and
the sum of these weighted concentrations is the average
chlorophyll concentration of the canopy in g m-2.

Weibull curves were fitted on single plot level to the
relationship between chlorophyll concentration and thermal
time. Each value of a plot was reduced by the minimum value
of its fit and afterwards divided by its maximum value, resulting
TABLE 3 | Characteristics of the cultivars Piko and Solehio (May 9, 2017;
sowing density 400 K m-2).

Characteristic Piko Solehio

Mean Angle (°) 63.5 72.5
Stem Dry Matter/Leaf Dry Matter 1.21 2.18
Specific Leaf Area (g m-2) 185.94 171.95
Leaf Nitrogen Concentration (%) 4.71 4.4
February 2
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in the parameter “measured canopy greenness” (ranges between
one at maximal GAI and 0 when leaves are clearly senesced.

For the evaluation of the GAI-models during the senescence,
all predicted values after June 19 (start of senescence) were
divided by the value on June 19 to get the “predicted canopy
greenness”. These predictions were hence correlated to the
measured canopy greenness and the goodness of fit was
assessed via MAE and R².

In a final step, the informative value of the calibrated models
was tested by their application. This had two objectives: The
evaluation of the whole season GAI-predictions with the different
models and the illustration of the potential and suitability of the
resulting GAI-information for agricultural research and
commercial crop production.

For this purpose, we refer to a very simple but common
method of correlat ing VI-measurements with crop
characteristics (Watson et al., 1963; Pinter et al., 1981; Tucker
et al., 1981; Bartholome, 1988; Rasmussen, 1992; Serrano et al.,
2000). In these studies the spectral measurements were
summarized in a VI, most commonly the NDVI, and, either
on single dates or time-integrated over multiple dates, correlated
with crop yield or final biomass. In this context, the VI represents
the duration and intensity of the photosynthetic capacity of the
canopy (Serrano et al., 2000) and it has been proven that the
correlation of the parameters can be increased by a good
performing VI (Tucker et al., 1981; Serrano et al., 2000). It
seems therefore suitable to test our GAI-models with
this approach.

Sequoia data from the 14 flights in the season 2017/18 from
Trial C was hence used to calculate GAI-courses on plot level
through the whole season with the different tested GAI-models.
Between the dates, the GAI was linearly interpolated.
Subsequently, the green area duration was calculated by
integrating the GAI over the whole season. Then, the
proportion of variance explained of the final biomass was
examined. Furthermore, the development of the variance
explained during season was considered, hence whether and
how efficient the GAI-models convert additional multispectral-
data to agronomic reasonable information.
Frontiers in Plant Science | www.frontiersin.org 6
RESULTS

Linear Regression Models
None of the s ing le bands per forms convinc ing ly
(MAEevaluation = 1.41–2.64 m2 m-2, Table S2). Combining the
bands increases the performance considerably, especially if
interactions between the bands are allowed (16 different terms,
MAEevaluation = 0.99 m2 m-2, Table S2). The single ratio-models
perform noticeably better than the single band-models
(MAEevaluation = 0.55–0.81 m2 m-2, Table 4). The combination of
different ratios provides considerably better results than the single
ratios, with a lower MAEcalibration if interactions are allowed, but
with a better performance at evaluation if not (Table 4). It is
noteworthy that the increase of the predictive error from calibration
to evaluation is considerably lower for most of the Simple Ratio
approaches (on average 61%, Table 4), than for the single band-
models (on average 80%, Table S2) and that the increase of the
single-band model with interaction is the highest (230%).

In summary, the combination of NIR/Green, NIR/Red,
and NIR/RE without interaction convinces the most
(MAEevaluation = 0.45 m2 m-2 and RMSEevaluation = 0.71 m2 m-2,
Table 4) , fol lowed by the simple ratio of NIR/RE
(MAEevaluation = 0.55 m2 m-2 and RMSEevaluation = 0.74 m2 m-2,
Table 4).

These two were hence selected for further evaluation, together
with the NDVIexp as the most common VI. The VI combining all
spectral bands provided by the Sequoia camera as NIR-based
quotients was named VIQUO. The equations for the calibrated
models are given in Table 4.

Advanced Predictive Models
On average, the advanced predictive models perform better than
the VI-models, in terms of raw reflections, reflectance ratios, in
the calibration and the evaluation (Tables 4, 5, S2 and S3). While
the raw data models provide similar MAEs in terms of
calibration, their MAEs in the evaluation are at least 111%
higher (Tables 5 and S3).

Focusing on the ratio-based models, it is noticeably that the
best predictive models in calibration are the worst in the
TABLE 4 | Measurement of model performance for VI-based GAI-prediction [m2 m-2] in calibration and evaluation with ratios of reflections as predictors and the
equation for the calibrated GAI-models.

Linear
model

MAEcalibration

(RMSEcalibration)
MAEevaluation

(RMSEevaluation)
Equation

NIR/RE 0.44 (0.60) 0.55 (0.74) -5.498 + 4.64 · NIR/RE (1)
NIR/Red 0.45 (0.69) 0.81 (1.27) -0.2066 + 0.1984 · NIR/Red (2)
NIR/Green 0.36 (0.56) 0.64 (0.98) -1.023 + 0.499 · NIR/Green (3)
NIR/RE +
NIR/Red +
NIR/Green
(VIQUO)

0.35 (0.53) 0.45 (0.71) -2.829243 + 1.814068 · NIR/RE - 0.004532 · NIR/Red + 0.321576 · NIR/Green (4)

NIR/RE ×
NIR/Red ×
NIR/Green

0.31 (0.51) 0.46 (0.72) 0.23558 - 0.72441 · NIR/RE + 0.11783 · NIR/Red - 0.02023 · NIR/Green + 0.01313 · NIR/Red · NIR/Green +
0.10864 · NIR/Red · NIR/RE + 0.28252 · NIR/RE · NIR/Green - 0.01195 · NIR/RE · NIR/Green · NIR/Red

(5)

NDVIexp 0.42 (0.66) 0.69 (1.04) 0.00197 · exp(8.42847 · ((NIR – Red)/(NIR + Red)) (6)
mean 0.39 (0.59) 0.58 (0.89)
February 2020 | Volume 10 | Article 17
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evaluation (e.g. Boosted Trees with an increase of predictive error
of 79%, Table 5). The best models in the evaluation are the SVMs
with linear respectively radial Kernel and the Multivariate
Adaptive Regression Spline (MAEevaluation = 0.44 m² m-2). Due
to its relative simplicity, the SVM with linear Kernel (SVM,
MAEevaluation = 0.44 m² m-2 and RMSEevaluation = 0.71 m m-2) is
chosen to represent advanced predictive modeling methods for
further investigation and comparison with the VI-models.

Further Evaluation of GAI-Models
Comparing the performance of the selected VI-models with the
SVM via their MAEs (Tables 4 and 5), it can be stated that the SVM
Frontiers in Plant Science | www.frontiersin.org 7
performs considerably better than the NDVIexp and the NIR/RE,
both in terms of calibration and evaluation, whether the VIQUO
has a lower MAEcalibration as the SVM and its MAEevaluation is only
slightly higher. The increase of predictive error from calibration to
evaluation is relatively high with the NDVIexp-model (64%,
Table 4), but nearly the same with the SVM-, the NIR/RE- and
the VIQUO-model (22–29%, Tables 4 and 5). However, while the
predictive error of SVM and VIQUO is increasing at high GAI-
values, the predictions of NIR/RE meets the high GAIs well, but its
predictions at low GAI-values scatter strongly, producing for the
most part negative predictions (Figure 2). Looking at Figure 2, it is
notably that several points in the high GAI-range in the evaluation
TABLE 5 | Measurement of model performance for GAI-prediction [m2 m-2] with advanced predictive models in calibration and evaluation with ratios of reflections as
predictors.

Advanced Predictive Models MAEcalibration (RMSEcalibration) MAEevaluation (RMSEevaluation) Equation

Partial Least Squares 0.36 (0.55) 0.47 (0.76) … (7)
Support Vector Machine (linear Kernel) 0.36 (0.54) 0.44 (0.71) … (8)
Support Vector Machine (radial Kernel) 0.32 (0.51) 0.44 (0.69) … (9)
K Nearest Neighbor 0.33 (0.54) 0.47 (0.72) … (10)
Multivariate Adaptive Regression Spline 0.32 (0.51) 0.44 (0.70) … (11)
Boosted Trees 0.29 (0.47) 0.52 (0.82) … (12)
mean 0.33 (0.52) 0.46 (0.73)
February 2020
 | Volume 10 | Article 1
MAEs are colored dark grey if they are higher than the mean and white if equal or lower.
FIGURE 2 | Correlation of measured and predicted GAI for calibration (white) and evaluation dataset (grey) for the different VIs and equation of the linear regression
of measured vs. predicted values of the evaluation dataset (different shapes illustrate the three sampling seasons).
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are not met by any of the tested models. These data were obtained
during the last sampling date in 2018, after a long period of drought.
It is hence probable that they are already affected by senescence,
which is not adequate depicted in destructive measurements.

Figure 3 allows a closer view to the topic of varying model-
sensitivity through the season: With regard to the MAE, none of
the examined VIs has considerable problems in predicting low
GAIs (> 0 – < 0.25 & Dead Plants), with NIR/RE having the
highest predictive error (MAE = 0.29 m2 m-2). Due to the
exponential term, the NDVIexp-model predicts very well in
these classes, but it has considerable problems depicting high
GAI-values, with the highest MAEs in every other GAI-class
(Figure 3) and a massive scattering when predicting GAIs > 2
(Figure 2). SVM and VIQUO perform well at the low values and
are very sensitive to medium-range GAIs, with only small
differences between the two models. However, a saturation
effect is visible at GAIs > 5. In contrast, while the NIR/RE-
model is the worst in predicting low GAIs (0–0.25 & Dead
Plants) and only slightly better at medium GAIs (< 2, 2–3 and
3–4), it shows the best results when depicting GAIs above four
(MAE = 0.81 m2 m-2, rMAE = 16%) and is the only tested
approach with no saturation effects at the highest measured
GAI values.

For the assessment of cultivar-specific effects, the linear
NIR/RE-model was chosen (due to the low number of
predictors and the concern to not inflate the number of
interactions between cultivars and predictors). No significant
difference (p = 0.05) between the model with- and without
the interaction between reflectance and cultivar information
was determined by means of ANOVA and the MAEs of the
two models in calibration and evaluation differ only slightly
(without interaction: MAEcalibration = 0.40 m2 m-2, MAEevaluation =
Frontiers in Plant Science | www.frontiersin.org 8
0.55 m2 m-2, with interaction: MAEcalibration = 0.39 m2 m-2,
MAEevaluation = 0.54 m2 m-2).

Senescence
Transforming the SPAD-time series to canopy greenness enables
the quantification of the process of senescence (Figure 4).
Canopy greenness varies in a large range (~300 °C d, ~15 d),
due to variation of genotype and soil properties, and enables a
robust model evaluation during senescence.

The relationship between measured values of canopy greenness
(SPAD-meter) and predicted values (multispectral) by the tested
models for GAI-prediction is quite close (Figure 5). Regarding
MAE and R2, the model with NDVIexp is the worst-performing one
(MAE = 0.13 m2 m-2; R2 = 0.91), followed by VIQUO
(MAE = 0.10 m2 m-2; R2 = 0.92), NIR/RE (MAE = 0.10 m2 m-2;
R2 = 0.93), and SVM (MAE = 0.09 m2 m-2; R2 = 0.94) as the best
performing model. Especially the predictions of the VIQUO- and
the SVM-calibration are nearly unbiased.

Suitability for Agricultural Research and Commercial
Crop Production
The application of the selected models to the multispectral data
from Trial C in 2017/18 reveals that the different GAI-models
provide in part considerably differing results (Figure 6). While the
GAI-curves of the NDVIexp-, the SVM- and the VIQUO-model are
running very smooth and even through the season, the NIR/RE-
model has problems during senescence: at two flight dates, the GAI
seems to increase again at some plots and at the third-last date
negative GAIs are predicted. Apart from these three “problematic”
dates with regard to the NIR/RE, the GAI-curves of the SVM, the
VIQUO, and the NIR/RE are similar, whereas the NDVIexp predicts
a faster GAI-increase from April to May and an earlier decrease
FIGURE 3 | Mean absolute errors (MAE [m2 m-2]) and relative Mean absolute errors (rMAE [-]) of the different VIs for the evaluation dataset, calculated individually for
the different GAI-classes (n: sample size of the considered GAI-class). rMAEs of the class dead plant cannot be calculated due to division by zero.
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FIGURE 5 | Evaluation of selected GAI-models during the senescence. Data from June 19 is excluded from the calculation of the RMSE because of the self-
explanatory perfect fit.
FIGURE 4 | Canopy greenness for eight genotypes, grouped by replication (Repl.), in relation to degree days since sowing. The grey ribbon indicates the range of all
genotypes to facilitate their classification.
Frontiers in Plant Science | www.frontiersin.org February 2020 | Volume 10 | Article 17989

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Bukowiecki et al. GAI–Prediction by UAV
from June to July, reaching a GAI of 0 m2 m-2 already at the first
date in July. This results in notably lower NDVIexp-estimated green
area durations for some plots (Figure 7A). When comparing the
green area durations with the final biomasses, the correlation
achieved by the NDVIexp-predictions is nevertheless notably
Frontiers in Plant Science | www.frontiersin.org 10
better than those of the NIR/RE-model. This is attributable to the
instability of the NIR/RE-model during senescence, as the explained
variation decreases notably in this period (Figure 7B). This
characteristic of the R²-curve is unique, as the explanatory power
of the other GAI-models increases when more data is provided
FIGURE 6 | Seasonal course of predicted GAIs by different models in the growing season 2017/2018 on four different plots of Trial C (cultivar Solehio, 220 kg N ha-1). Grey
ribbons indicate the range of all models.
FIGURE 7 | (A) Correlation of total green area duration and final biomass (B) the R2 of the relationship between green area duration (calculated from sowing to date
x) and final biomass, with different models applied for the prediction of GAI. Final date in subfigure B corresponds to subfigure A.
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(Figure 7B). It is only due to this, that the final R² of the NIR/RE-
predictions is lower than the one of the NDVIexp-predictions, as
during the rest of the season, the NDVIexp-based green area
duration-predictions have the lowest informative value regarding
the final biomass and as the NIR/RE-predictions between May and
mid of June are even the best (Figure 7B). It is worth mentioning
that in the early May the four GAI-models have approximately the
same informative value, explaining about 50% of the final biomass
variation. The R²-curves of VIQUO and SVM increase constantly
and almost equally through the season and explain finally the
highest proportion of final biomass variation (> 80%, Figure 7B).
DISCUSSION

Before discussing different GAI-models or possible areas of
application, it is necessary to consider the applicability of the
Sequoia camera. Other studies using different UAV-based
sensors in general (Duan et al., 2017; Zhou et al., 2017;
Condorelli et al., 2018; Kanning et al., 2018), predecessors of
the Sequoia sensor (Verger et al., 2014; Haghighattalab et al.,
2016; Nebiker et al., 2016) and in particular the Sequoia sensor
(Condorelli et al., 2018; Tunca et al., 2018) showed promising
results in terms of comparability with ground-based
multispectral sensors and their implication to generate
information about crop characteristics. Our results match to
these findings; the Sequoia camera provides reliable and
sufficiently accurate data for crop monitoring purposes on plot
level in terms of a scientific context. This should be transferable
in the context of commercial crop production as well.

Whole-Season Applicability
A whole season- and cultivar-transferable approach for GAI-
prediction is preferable to specific models for several growth
stages, concerning simplicity in data processing and
communicability, both affecting transferability into practice. In
our data, no significant cultivar-specific effect can be identified.
When it comes to GAI-prediction, established calibration
methods exist until the GAI-maximum is reached. But
problems arise when the sensitivity of GAI-models is tested
after the start of the senescence, as the accurate identification
of the actual GAI is complicated or not possible at all due to the
inhomogeneous senescence of the plant organs and the gradual
degradation of leaf chlorophyll. Problems in estimating winter
wheat GAI during senescence based on multispectral data have
also been reported by other studies (Boegh et al., 2002;
Haboudane et al., 2004; Lelong et al., 2008; Richter et al.,
2012). They assumed that the decreasing performance of their
calibrated models originates not from the informative value of
the multispectral data but in the validity of the ground truth
GAI-measurements. The method introduced in this study,
enables the validation of our GAI-models during senescence
and hence the confirmation of these considerations. It could thus
be shown that the GAI-estimations of the tested models were
valid and that the models, being calibrated without any
senescence data (except dead plants), can provide reasonable
GAI-predictions for this part of the season as well.
Frontiers in Plant Science | www.frontiersin.org 11
The quality of the whole-season GAI-predictions was tested
further via the calculation of green area duration and the
correlation with the final biomass. Hereby, 80% of the variation
in the final biomass is explained by the NDVIexp-model, which fits
to the results ofWiegand et al. (1992) and Tucker et al. (1981) with
handheld devices. The new GAI-models VIQUO and SVM
explain even more of the observed variance (up to 85%).

Evaluation of GAI-Models
The best model to derive GAI-information should provide
reliable and precise GAI-information as simple as possible. In
terms of both, model complexity and communicability, the
models can be set in the same order: The application of raw
bands is the simplest approach, followed by the traditional two-
band ratios. The newly introduced VIQUO-model, based on all
four bands the Sequoia camera provides, follows shortly
afterwards and the advanced predictive models are for sure the
most complex and the most difficult to communicate. Therefore,
the central question to be answered is, if the increasing
complexity is worth it.

Raw reflection driven models are clearly not sufficient to
predict GAI adequately, regardless if they are integrated in an
advanced predictive model or not. The increase in MAE from
calibration to evaluation indicates instability in the relationship
of single bands to GAI between different sampling dates.
Problems in predicting crop characteristics with raw reflections
under varying irradiance conditions were found by Tucker et al.
(1981) and Verger et al. (2014) as well, both demonstrating at the
same time that this problem can be solved by using ratios instead.

When applying a two- or more-band approach, the questions
of band selection and their combination arise. Many studies have
worked on the issue which bands are essential to predict crop
characteristics, either based on a priori knowledge about plant
reflection characteristics (Baret and Guyot, 1991; Haboudane
et al., 2004) or by recording large number of wavelengths with
hyperspectral sensors and testing all possible combinations
(e.g. Thenkabail et al., 2000; Hansen and Schjoerring, 2003).
Based on the finding that already simple ratios (as NIR/RE)
provide relatively lowMAEs and on the attempt to keep the GAI-
models as simple as possible, we restricted our analysis on two-
band simple ratios, the combination of all possible simple ratios
in the VIQUO and the classical NDVI (with exponential fit), and
did not test different band combination approaches. In
accordance to the findings of other studies (Serrano et al, 2000;
Haboudane et al., 2004; Pinty et al., 2009; Viña et al., 2011) it was
shown that the NDVIexp is insensitive in dense canopies
(here: GAI > 2 m2 m-2). The NIR/RE, as best Simple Ratio, is
superior in predicting high GAIs. This result is in accordance
with many studies (e.g. Delegido et al.,2013; Zhou et al., 2017)
that the RE-band provides information even at high canopy
densities. However, the model performs inaccurately at low GAIs
and the NIR/RE-calculated GAI-curves are not stable through
the season. The latter could be a result of both, of lower
sensitivity of NIR/RE in the phase of senescence or of technical
problems of the RE-band (the RE-band is the narrowest of
the used bands, which could result in instabilities in the
measurements, for example at low irradiation).
February 2020 | Volume 10 | Article 1798
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The VIQUO- and the SVM-model can compensate the
temporarily low sensitivity of the RE-band and provide stable
GAI-predictions over the whole season. A stabilization of crop-
characteristic estimations with regard to differing irradiance
conditions by adding additional bands to the traditional two-
band approach has been reported by Mistele and Schmidhalter
(2010) as well. Other studies describe a decreasing saturation effect
and an increase of sensitivity obtained through additional bands
(Haboudane et al., 2004; Delegido et al., 2013). Haboudane et al.
(2004) increased the sensitivity of their model to GAI-values
> 4 m2 m-2 by adding a green-band to their NIR-Red-model
and achieved a whole season RMSE of 0.79 – 1.28 m2 m-2. In our
case, the VIQUO, including additionally the RE-band, is sensitive
to GAI-values ≤ 5 m2 m-2 and produces even more accurate
predictions (RMSEevaluation = 0.72 m2 m-2). Due to a very high
fraction of intercepted radiation at GAI-values ≥ 5, we hold
that sensitivity at rather low values is more important for the
model-selection. For different requirements, the NIR/RE-model
with its high sensitivity at high GAI-values might be the
adequate approach.

The advanced predictive models are able to produce lower
RMSEs than the VI-models, with the SVM even surpassing the
VIQUO (RMSEevaluation = 0.71 m2m-2). This improvement inGAI-
prediction is in accordance to the findings of Hansen and
Schjoerring (2003), but notably lower than that of Verrelst et al.
(2015), where the advanced predictive model reduced the RMSE by
nearly 30%. This could be due to their data set, as a simultaneous
consideration of different crop types might require more complex
model methods, or due to their evaluation approach, as they used a
cross-validation instead of an independent dataset, increasing the
probability of overparameterization. While there are no indications
that the here presented SVM-model is overparametrized (same
decrease in predictive power from calibration to evaluation than
the testes Simple Ratio-models), it has the same saturation effect for
GAI-values >5 as the VIQUO. Considering the sensitivity in the
different GAI-classes, the SVM is predicting mostly, but not in
every case, GAI more precise than the VIQUO. The GAI-curves
estimated with these two different models are nearly the same and
the correlation of green area duration to final biomass of the SVM-
model is consequently not notably better. On this base we consider
the higher complexity of the advanced predictive model as
not justified.

Transferability of the GAI-Calibration
Lastly, besides the validity through the whole season for different
cultivars, the applicability of the GAI-calibration across seasons
should be considered. In general, the transferability of purely
statistic-based approaches, as the calibration here presented,
might be regarded as problematic. Additionally, the use of
destructive GAI-data restricts the size of the data set to the
affordable workload and the local conditions of the respective
study site (e.g. number of seasons, plots, cultivars, nitrogen levels).
A concept to overcome these problems is the use of radiative
transfer models, such as PROSAIL, to generate reflectance- and
LAI-data sets for the sensor of interest (Richter et al., 2010;
Verger et al., 2014). However, this approach relies on the
estimation of several crop parameters (e.g. average leaf angle,
Frontiers in Plant Science | www.frontiersin.org 12
dry matter content, leaf mesophyll parameter). These parameters
may vary in plot trials, for example due to different cultivars and
fertilization levels (as exemplarily shown above for two cultivars),
and probably also on farm sites with heterogeneous crop growth.
Furthermore problematic may be to depict the sensitivity of the
raw bands to illumination conditions during image acquisition
when generating artificially reflectance data (Verger et al.,
2014) and the saturation effect when considering high GAIs
(Richter et al., 2010; Verger et al., 2014). These effects could be
examined closer in further investigations, using our data set as basis
for evaluation. However, taking into account these restrictions of
physically based calibration approaches, statistically-based
approaches can probably be considered at least of equal standing
and have shown to be stable over multiple seasons and many
different measurement dates in the presented data set.
CONCLUSION

The Sequoia multispectral camera was identified as an adequate
instrument for multispectral data acquisition for crop monitoring.

Different models for GAI-estimation were presented
and evaluated. For this purpose, a new approach for evaluating
GAI-models during senescence was introduced and
tested successfully.

Only two of the tested GAI-models can be considered as
reliable and sufficiently accurate for whole-season GAI-
prediction; the newly developed four-band VI-approach
VIQUO and the advanced predictive model SVM. Both models
use all four spectral bands provided by the Sequoia camera. The
two-band approaches are outperformed in terms of stability and
sensitivity. Only if especially sensitivity at high GAI-values is of
major importance, the alternative use of the NIR/RE-model
should be considered.

The VIQUO-model is recommended as best model to
estimate winter wheat GAI, as it provides a high precision in
GAI-prediction and is still relatively simple, thus easier to
communicate and to apply than the SVM.

The strong correlation between green area duration (derived
from GAI-predictions) and the final biomass demonstrates the
high potential of the used system (in combination with
appropriate calibration) for the application in agriculture
research and precision farming.
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