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Understanding plant adaptation mechanisms to prolonged water immersion provides options
for genetic modification of existing crops to create cultivars more tolerant of periodic flooding.
An important advancement in understanding flooding adaptation would be to elucidate
mechanisms, such as aerenchyma air-space formation induced by hypoxic conditions,
consistent with prolonged immersion. Lysigenous aerenchyma formation occurs through
programmed cell death (PCD), which may entail the chemical modification of polysaccharides
in root tissue cell walls. We investigated if a relationship exists between modification of pectic
polysaccharides through de-methyl esterification (DME) and the formation of root aerenchyma
in select Fabaceae species. To test this hypothesis, we first characterized the progression of
aerenchyma formation within the vascular stele of three different legumes—Pisum sativum,
Cicer arietinum, and Phaseolus coccineus—through traditional light microscopy histological
staining and scanning electron microscopy. We assessed alterations in stele morphology,
cavity dimensions, and cell wall chemistry. Then we conducted an immunolabeling protocol to
detect specific degrees of DME among species during a 48-hour flooding time series.
Additionally, we performed an enzymatic pretreatment to remove select cell wall polymers
prior to immunolabeling for DME pectins. We were able to determine that all species
possessed similar aerenchyma formation mechanisms that begin with degradation of root
vascular stele metaxylem cells. Immunolabeling results demonstrated DME occurs prior to
aerenchyma formation and prepares vascular tissues for the beginning of cavity formation in
flooded roots. Furthermore, enzymatic pretreatment demonstrated that removal of cellulose
and select hemicellulosic carbohydrates unmasks additional antigen binding sites for DME
pectin antibodies. These results suggest that additional carbohydrate modification may be
required to permit DME and subsequent enzyme activity to form aerenchyma. By providing a
greater understanding of cell wall pectin remodeling among legume species, we encourage
further investigation into the mechanism of carbohydrate modifications during aerenchyma
formation and possible avenues for flood-tolerance improvement of legume crops.
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INTRODUCTION

Flooding is among the most common and costly natural disasters
inflicted upon agricultural lands (Doocy et al., 2013). Between
2005 and 2015, global economic losses of over $19 billion were
incurred due to destruction of crops and erosion of arable land
from flooding (Conforti et al., 2018). Increased coastal flooding
and changes of annual precipitation are predicted to cause
significant economic losses within the next century
(Hirabayashi et al., 2013). To aid in mitigating the future
economic impact of flooding damage on plants, significant
research has been conducted in the field of crop improvement
with regards to understanding plant adaptations to water
immersion (Grover et al., 2000; Evans, 2004; Bailey-Serres
et al., 2012; Valliyodan et al., 2016; Mustroph, 2018).

One adaptive mechanism plants utilize against flooding is the
creation of aerenchyma (Drew et al., 1980; Jackson and
Armstrong, 1999). Aerenchyma tissues are characterized by the
formation of large, air-filled channels or cavities in the stems,
leaves or roots in plant cortical or vascular tissues (Yamauchi
et al., 2013; Takahashi et al., 2016). These cavities allow plants to
tolerate hypoxic conditions induced through prolonged water
immersion by maintaining oxygen levels sufficient for cellular
respiration and reducing the number of cells utilizing oxygen
(Evans, 2004; Postma and Lynch, 2011; Yamauchi et al., 2013).
Additionally, oxygen from aerenchyma diffuses through the
plant apoplast into the surrounding soil, which increases soil
oxygen content and protects tissues from infection by bacteria
and fungi favored by anaerobic conditions (Jackson and
Armstrong, 1999; Cronk and Fennessy, 2009; Takahashi
et al., 2016).

Aerenchyma is often classified as either primary aerenchyma,
forming within cortical tissues, or secondary aerenchyma,
forming from cell divisions of meristematic phellogen layers
(Shimamura et al., 2010). Primary aerenchyma can be either
schizogenous, forming through separation of middle lamella
between cells, or lysigenous, utilizing programmed cell death
(PCD) of specific cells and tissues to form new cavities
(Gunawardena et al., 2001a; Evans, 2004; Ishizaki, 2015).
Lysigenous aerenchyma may also be formed in non-cortical
tissues, such as the stele of legume roots such as Pisum
sativum (pea) (Rost et al., 1991; Gladish and Niki, 2000; Sarkar
and Gladish, 2012; Pegg et al., 2018) and Phaseolus coccineus
(scarlet runner bean) roots under conditions of flooding stress
(Takahashi et al., 2016).

Lysigenous aerenchyma formation is known to involve PCD
that utilizes modification and subsequent deconstruction of plant
cell walls to create aerenchyma cavities (Gunawardena et al.,
2001a; Sarkar and Gladish, 2012). The plant cell wall itself is a
dynamic structure consisting of interlinking matrices of
xyloglucan and cellulose microfibrils inside a network of
hydrated pectic polysaccharides (i.e. pectins) (Carpita, 1996).
Modification of cell wall pectic polysaccharides is of significance
in many plant physiological processes, such as fruit ripening
(Hyodo et al., 2013; Paniagua et al., 2014), leaf abscission
(Lashbrook and Cai, 2008), pollen tube growth (Bosch and
Frontiers in Plant Science | www.frontiersin.org 2
Hepler, 2005) and lateral root emergence (Vilches-Barro and
Maizel, 2015).

The process of de-methyl esterification (DME) modifies the
pectin backbone structure (i.e. homogalacturonan) within plant
cell walls by removing methyl ester groups from a-(1–4)-linked
D-galacturonic acid chains. (Wolf et al., 2009; Daher and
Braybrook, 2015). As a result, negatively charged carboxyl
groups are created that participate in cross-linking reactions
with calcium cations (Supplemental Figure 1). These cross-
linking interactions form an “egg box” structure of paired
homogalacturonan chains that allows susceptibility to
hydrolytic enzymatic degradation of the pectin backbone from
polygalacturonase (Supplemental Figure 2) and pectate lyase
activity that destabilizes the cell wall matrix (Ochoa-Villarreal
et al., 2012; Pérez-Pérez et al., 2019).

DME activity has been previously identified during cortical
aerenchyma development in several crop species such as Zea
mays (maize) (Gunawardena et al., 2001a), Oryza sativa (rice)
(Qu et al., 2016) and Saccharum sp. (sugarcane) (Leite et al.,
2017). Aerenchyma development is suspected to rely on DME to
initiate degradation of the cell wall matrix by forming
homogalacturonan residues susceptible to enzymatic hydrolytic
cleavage (Gunawardena et al., 2001b; Pegg et al., 2018). However,
an investigation into the chemical structure of the DME residues
near aerenchyma cavities has been performed on relatively few
plants species (Sarkar et al., 2008; Leite et al., 2017; Pegg
et al., 2018).

In this project, we addressed the potential role of pectin
modification during root aerenchyma formation in three
members of the legume family (Fabaceae): P. sativum, Cicer
arietinum, and P. coccineus. Our results indicated that pectin
DME occurs in select cell regions prior to or during the
formation of lysigenous aerenchyma in these legume species
and that variation in the degree of pectin methyl-esterification
(ME) is significant to cavity formation. Additionally, evidence
exists for the removal of associated cell wall polymers such as
cellulose and xylan as a potential requirement for DME activity
to occur during aerenchyma formation.
MATERIALS AND METHODS

Seedling Growth and Flooding Treatment
Seedlings were grown according to method of Gladish and Niki
(2000). For each species 20 seeds (P. sativum and C. arietinum),
or 10 seeds (P. coccineus), were sown, per beaker, into 2 l beakers
filled with 1800 ml of sterile, super-coarse vermiculite (Perlite
Vermiculite Packaging Industries, Inc., USA), moistened with
650 ml of deionized water, and covered with aluminum foil.
Beakers were placed into 25°C growth chambers for 5 d in
complete darkness to initiate root growth. Three replicates for
each flooding treatment (12, 24, and 48 h water immersion) and
each control (0, 12, 24, 48 h without flooding) were created using
a separate 2 l beaker for each replicate.

To perform flooding treatments, three sets of beakers (12, 24,
and 48 h water immersion) were removed from growth
February 2020 | Volume 10 | Article 1805
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chambers, placed under a laminar flow hood, and filled with
sterile deionized water to the surface level of the vermiculite
substrate. An additional three sets of beakers (12, 24, and 48 h
non-flooded) corresponding to the same timepoint as the
flooding treatments were also removed from growth chambers
but were not flooded to serve as control samples. Three non-
flooded beakers representing the 0-hour timepoint were harvested
at that time. Remaining beakers were returned to 25°C growth
chambers and removed at either 12 h, 24, or 48 h after flooding to
be harvested for sectioning.
Sectioning, Fixation and Embedding
Five to ten root segments were harvested from each species per
flooding treatment or non-flooding control. Segments were cut
with carbon steel razor blades (Electron Microscopy Services,
USA) from either 1.5–5 cm (P. sativum and P. coccineus) or 3–7
cm (C. arietinum) away from root tips. Segments were fixed in
1% paraformaldehyde and 2% glutaraldehyde solution in
deionized water for 24 h at 5°C. Segments were then washed
3× with deionized water (15 min per wash), embedded in 3.5%
agarose (Sigma-Aldrich, CAS 9012-36-6, USA) at 40°C,
solidified, mounted on stubs of epoxy resin, and sectioned at
100 µm thickness on a Vibratome Series 1000 Sectioning System
(Ted Pella, Inc., Redding, CA, USA). Sections from each root
were stored separately in three separate pools (per treatment, per
species) in 0.1M tris-buffered saline solution (pH 7.4) with 0.1%
sodium azide at 5°C.
Frontiers in Plant Science | www.frontiersin.org 3
Histological Staining and Area
Measurement
Randomly selected root sections from each species pool were
stained with 0.1% toluidine blue O stain (Electron Microscopy
Sciences, RT26074-05, Hatfield, PA, USA) for 20 s, then washed
three times with deionized water. Sections were placed in
deionized water on standard 1 mm glass slides, flanked by two
22 × 22 mm, No. 1 coverslips serving as spacers, and covered
with a 24 × 60 mm, No. 1.5 coverslip. A minimum of three
sections (one section per individual root) from each species were
observed per time point using bright field illumination on a
Nikon Eclipse E200 upright binocular light microscope (Nikon,
USA) with a 20× dry objective. Each section was photographed
with a 12.2-megapixel CMOS digital camera (Samsung Galaxy S8
SM-G950U, Samsung, USA). Average area for aerenchyma
cavities (n = 3) in each legume species was calculated for 12,
24 and 48 h flooding timepoints by measuring the 2D surface
area of sections at each timepoint with ImageJ software (National
Institutes of Health, USA). Data was plotted as a bar chart
displaying average values with standard error bars using
Microsoft Excel (Microsoft, USA).
Scanning Electron Microscopy
Randomly selected root sections from each species pool were
placed in 1% osmium tetroxide in deionized water for 24 h.
Sections were washed 3× with deionized water (15 min per
wash), following by an ethanol dehydration series. Samples in
FIGURE 1 | Toluidine Blue Staining of three Fabaceae root species during a 48-hour flooding time course: (A–C) Pisum sativum (pea), (D–F) Phaseolus coccineus
(scarlet runner bean, SRB), (G–I) Cicer arietinum (chickpea). (J) Average area measurement of aerenchyma cavities across legume species and flooding timepoints
with standard error bars (n = 3). Aerenchyma cavities indicted with white stars and wedges. Xylem and phloem indicated with yellow wedges/brackets and red
wedges, respectively. C = cortex. Tylose-like cells (TLCs) indicated with green wedges. Degraded cell wall components (dark blue accumulations) indicated with
orange arrows. Scale Bars = 100 µm.
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100% ethanol were CO2 critical point drying, and then gold
sputter-coated for 90 s to obtain a coating of 20 nm thickness.
Samples were viewed on a Zeiss Supra 35 VP FEG SEM at 10 keV
and 7.4 mm working distance.
Immunolocalization
Ten randomly selected sections from each species pool, for
control (five sections) and experimental treatments (five
sections), were placed into sterile 24-well cell culture plates
and blocked with 7% normal goat serum (Thermo Fisher
Scientific, USA) for 24 h at 5°C. Samples were washed 3× (15
min per wash) with 10 mM Tris-buffered saline (pH 7.4)
containing 0.1% TWEEN-20 (TBST) then incubated with 1/20
dilutions of LM19 (PlantProbes, University of Leeds, UK), JIM7
or JIM5 (CCRC, University of Georgia, USA) monoclonal
antibodies for 24 h at 5°C (Supplemental Table 1). After
incubation, samples were washed three times with TBST buffer
and treated with 1/500 dilution of IgG goat anti-rat secondary
antibody conjugated to Alexa Fluor™ 647 fluorescent dye
(Thermo Fisher Scientific, USA) for 24 h at 5°C while wrapped
with Parafilm M sealing film and covered in aluminum foil.
Samples were washed a final time with three changes of TBST
buffer and mounted in 100% glycerol (Sigma-Aldrich, CAS 56-
81-5, USA) on standard 1 mm glass slides. Slides were covered
with 24 x 60 mm, No.1 coverslips with two 22 × 22 mm, No. 1
coverslips applied underneath to serve as spacers. Samples were
stored at 5°C in darkness when not in use.
Frontiers in Plant Science | www.frontiersin.org 4
Enzyme Treatment
Randomly selected roots sections from each species pool for the
48-hour flooding treatment timepoint were incubated according
to vendor instructions in the following enzyme solutions at 50°C
for 2 h: 4% Cellulase, 1% xylanase, 3% pectinase, and 4%
Viscoenzyme L (Sigma-Aldrich, USA) in 0.05 M citrate buffer
(pH 5.0). Positive control treatment entailed incubation of
samples in 0.1 M sodium carbonate (pH 11.4) at 50°C for 2 h
to fully de-methyl-esterify homogalacturonan on exposed
surfaces of the sample and ensure binding by LM19 antibody.
Negative control treatment entailed incubation of samples in
0.05 M citrate buffer (pH 5.0) at 50°C for 2 h to replicate standard
LM19 binding pattern observed without enzyme pretreatments.
Samples were then washed three times with TBST buffer, treated
with LM19 primary monoclonal antibody, and incubated with
secondary antibody conjugated to Alexa Fluor® 647 (Thermo
Fisher Scientific, USA) prior to mounting in 100% glycerol on 1
mm glass slides covered with 24 × 60 mm No.1 coverslips.
Fluorescence Microscopy
Autofluorescence and immunostained tissue sections were
observed on an Olympus FV500 Laser Scanning Confocal
system (Olympus Corporation, USA) using 20×/0.70 NA and
40×/0.75 NA dry objectives. Excitation of aldehyde-induced
autofluorescence and Alexa Fluor® 647 dye was achieved with
405 nm and 633 nm laser diodes, respectively. Images were
recorded using a Photometric HQ cooled CCD camera.
FIGURE 2 | Scanning electron micrographs of aerenchyma formation in the Fabaceae species. (A–D) Pisum sativum, (E–H) Phaseolus coccineus, and (I–L) Cicer
arietinum root cross sections displaying cavity formation in vascular tissue over a 48-hour flooding time course. Xylem indicated by yellow brackets. Tylose-Like Cells
(TLCs) indicated with green wedges and brackets. Co = cortex. Scale bars = 100 µm.
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RESULTS

Distinct Morphological Characteristics
Accompany Aerenchyma Development in
Select Fabaceae Species
In this study, we used histological staining and scanning electron
microscopy (SEM) to examine the morphogenesis of
aerenchymatous cavities in Fabaceae. Toluidine blue staining
and SEM of three species, P. sativum, C. arietinum (chickpea),
and P. coccineus, during a 48-hour flooding time course revealed
similarities and differences in cell wall chemistry and
morphological dimensions (Figures 1 and 2, Supplemental
Table 2) experienced by the root vascular stele.

P. sativum aerenchyma formation was consistently observed
at 12 h after flooding stress was induced (Figures 1A and 2B).
Cavity formation began near the metaxylem of one xylem pole
within the stele and expanded to form a transversely circular
aerenchymatous space that occupied the center of the stele
(Figure 2B). Release of large bubbles during cross sectioning
of P. sativum suggests these cavities were filled with air.
Consistent with previous reports (Lu et al., 1991; Niki et al.,
1998) aerenchyma became partly occluded with new tissue
expanding from the margin of the vascular cavity within 24-48
h of flooding (Figures 1B, C, J and 2C, D). We described these
Frontiers in Plant Science | www.frontiersin.org 5
tissues as being composed of large, nucleated “bubble-like” cells
that we name “tylose-like cells” (TLCs) due to their cosmetic
resemblance to tyloses found in xylem vessels of various
hardwoods (Esau, 1965; Carlquist, 2013; Leśniewska et al.,
2017). Interestingly, toluidine blue stained tissue near the
margins of the aerenchyma and the TLCs a bright magenta
color that was not found elsewhere in the root cross section
(Figures 1B, C).

P. coccineus aerenchyma formation followed a similar pattern
as P. sativum with initiation adjacent to metaxylem (Figures 1D
and 2F) and creation of a transversely ovoid or circular cavity
that occupied the center of the stele (Figures 1F and 2G, H).
Release of large bubbles from the aerenchyma during cross
sectioning suggests these cavities were filled with air, similar to
observations made in P. sativum. Unlike Pisum, Phaseolus
aerenchyma formation did not entail creation of TLCs at any
point within a 48-hour flooding treatment (Figures 1F, J and
2H). Occasionally, Phaseolus sections showed large, circular
remains of degraded cell tissue deep within aerenchyma
(Figure 1H). Similar to P. sativum, application of toluidine
blue resulted in cells bordering the aerenchyma staining a
bright magenta color (Figures 1D–F).

C. arietinum aerenchyma formation was quite distinct from
either P. sativum or P. coccineus. Large, transversely oblong
FIGURE 3 | Scanning electron microscopy images of 48 hr-flooded Cicer arietinum (chickpea) root sections during aerenchyma formation. (A) Vascular stele (yellow
bracket) with region of active cavity formation (yellow wedges), 100×. (B) Collapse and compression of cell walls near the edge of the vascular stele (yellow bracket)
as seen in the magnified area highlighted in red from (A), 1,500×. (C) Degradation of cell walls indicated by “pock-mocked” appearance (green wedges) and
increased abundance of suspected storage plastids (magenta stars). (D) Accumulation of cell wall components in apoplast space (orange wedges) at 2,000×
magnification. Scale bars at (A) 100 µm and (B–D) 10 µm.
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cavities were observed as early as 12 h after flooding (Figure 1,
Supplemental Table 2), with a unidirectional expansion of
aerenchyma over time, which began near the stele xylem poles
and extended into the root cortex (Figures 1G and 2J), though
notable examples were observed of aerenchyma formation
remaining confined within the stele (Supplemental Figure 3).
Formation of a cavity appeared to separate and split portions of
the xylem poles (Supplemental Figures 4B–D) that were
previously intact (Supplmental Figure 4A) . Closer
examination of TLCs formed during periods of flooding stress
revealed occasional accumulations of collapsed cells surrounded
by TLC walls (Figure 3B) and characteristic signs of enzymatic
activity, as indicated by “pooling” of degraded cellular
components (Figure 3D). Degradation of these cells appeared
to occur concurrently with TLC formation within the stele
(Figures 1H, I and 2K, L). Endodermis and pericycle layers
appeared to be more resistant to degradation compared to other
cortical and vascular tissues, which resulted in an “hourglass-
shaped” aerenchyma cavity observed in some cross sections
(Figures 1H and 2K, L). Air most likely fills the aerenchyma
due to bubble release during sectioning, similar to observations
made earlier in the experiment for P. sativum and P. coccineus.
By 48 h after initial exposure to flooding aerenchyma had been
mostly filled with TLCs (Figures 1I and 2L), resulting in severely
diminished cavity size (Figure 1J), in a fashion similar to P.
sativum. In addition, near the margins of aerenchyma within the
Frontiers in Plant Science | www.frontiersin.org 6
cortex of C. arietinum roots toluidine blue stained cells a bright
magenta (Figures 1G–I), similar to observations made in TLCs
of P. sativum (Figures 1B, C) and borders of aerenchyma in P.
coccineus (Figures 1D–F), which suggests a similar chemical
modification has occurred in these cell walls.
Immunolabeling of Fabaceae Root Radial
Sections Indicates Specific Degrees of
Pectin De-Methyl Esterification Adjacent
to Aerenchyma
To evaluate the significance of cell wall pectin modification
during aerenchyma formation, we labeled each Fabaceae
species with three monoclonal antibodies targeting
homogalacturonan pectin residues with differing degrees of de-
methyl esterification (DME): LM19 (DME homogalacturonan),
JIM5 (partially DME homogalacturonan), and JIM7 (fully
methylated homogalacturonan). Immunolabeling of P. sativum
flooding-time course series sections showed binding by LM19,
JIM5 and JIM7 antibodies within central parenchyma,
metaxylem, cortical apoplast and cells near phloem sieve tube
elements (Figure 4). During aerenchyma formation, 12 and 24 h
after flooding, binding by LM19 and JIM5 antibodies was
detected within the cell walls and middle lamella of four to six
cell layers adjacent to forming aerenchyma cavities (Figures 4F,
G, J, K). Binding of JIM7 appeared to indicate a similar
FIGURE 4 | Localization patterns of ME and DME homogalacturonan in Pisum sativum during aerenchyma formation. Micrographs demonstrating monoclonal
antibody labeling of (A–D) JIM7, (E–H) JIM5, and (I–L) LM19 on cortex, endodermis (red wedge), pericycle (yellow wedge), xylem (blue star), phloem sieve tube
elements (yellow star), and pith (red star) of root cross sections. Areas with prominent antibody labeling indicated with white brackets. Aerenchyma cavities indicated
with white edges. Tylose-Like Cells indicated with white stars. Co, cortex, LRP, lateral root primordia. Scale bars = 100 µm.
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localization pattern within cells adjacent to aerenchyma but was
more restricted and localized to three cell layers or less adjacent
to the aerenchyma cavity (Figures 4B, C). All three antibodies
labeled TLCs produced by roots flooded for 48 h, suggesting the
presence o f mul t ip l e DME and methy l e s te r ified
homogalacturonan epitopes (Figures 4D, H, L). Interestingly,
the availability of the epitopes may be different based on
chemical composition due to the observed “spottiness” of the
JIM7 antibody binding pattern (Figure 4D) compared to JIM5
(Figure 4H) and JIM7 (Figure 4L).

In P. coccineus, LM19, JIM5 and JIM7 antibodies displayed
specific localization patterns within central parenchyma, cortical
tissue apoplast, and cell walls of peripheral regions bordering the
sieve tube elements (Figures 5 and 7G–I). By 12 h offlooding, all
antibodies showed localization within cell walls and middle
lamellas of central parenchyma cells within three to four cell
layers of the aerenchyma, which suggests that de-methyl-
esterification had probably begun. At 24–48 h after flooding,
LM19 and JIM5 labeling was localized to most of the cell walls
and middle lamellas of the root central parenchyma due to the
increasing size of the aerenchyma cavity (Figures 5G, H, K, L).
Similar to results seen in P. sativum (Figure 4), the binding
pattern of JIM7 was noticeably less consistent and uniform
compared to JIM5 and LM19 despite having shared
localization patterns (Figures 5A–D).
Frontiers in Plant Science | www.frontiersin.org 7
Immunolabeling patterns for C. arietinum (Figure 6) were quite
distinct from either Pisum sativum or P. coccineus (Figures 4 and 5).
General localization patterns for LM19, JIM5 and JIM7 indicated
the presence of all three antibody epitope structures in cortical
apoplast, pericycle layer, xylem and cells bordering sieve tube
elements of Cicer (Figure 6). Interestingly, LM19 and JIM7
antibody labeling was also prevalent on 0.5–1.0 µm membrane-
bound bodies (MBB) found within cells of the pericycle, endodermis
and inner cortical cell layers (Figures 6A–D, I–L), while it was
mostly absent from similar tissues when labeled with JIM5 (Figures
6E–H). During aerenchyma formation, antibody labeling was
limited to cell walls immediately adjacent to the cavity
(Supplemental Figures 3A–C), newly formed TLCs (Figures 6B–
D, F–H, J–L), or cell MBBs in the case of LM19 and JIM7 (Figures
6B–D, J–L and 7D, F). Less consistent antibody binding patterns
for LM19 and JIM7, compared to JIM5, was observed in cells
adjacent to aerenchyma extending into the root cortex and TLCs
developing within that region (Figures 6B, C, J, K and 7A, C),
which suggests an absence of ful ly DME and ME
homogalacturonan. By comparison, JIM5 binding was prominent
in cortical cells adjacent to aerenchyma, which implies the presence
of partially DME homogalacturonan in these same cortical areas
(Figures 6F–H and 7B). However, JIM5 poor binding in the MBB
of the inner cortex and stele, which contrasted with the consistent
labeling observed from LM19 and JIM7 (Figures 7D–F).
FIGURE 5 | Localization patterns of ME and DME homogalacturonan in Phaseolus coccineus during aerenchyma formation. Micrographs demonstrating monoclonal
antibody labeling of (A–D) JIM7, (E–H) JIM5, and (I–L) LM19 on cortex, endodermis (red wedge), pericycle (yellow edge), xylem (blue star), phloem sieve tube
elements (yellow star), and pith (red star) of root cross sections. Cell layers prominently labeled with antibodies are indicated with white wedges. Aerenchyma cavities
indicated with white stars. Co, cortex. Scale bars = 100 µm.
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Enzyme Treatments Suggest Cell Wall
Components Mask LM19 Epitope by Cell
Wall Matrix
Enzyme pretreatments of root sections before staining with
LM19 antibody for DME homogalacturonan allowed
evaluation of possible epitope site “masking” by other cell wall
matrix components. Removal of cellulose prior to antibody
labeling did not significantly alter LM19 localization pattern in
either P. sativum or C. arietinum compared to sodium carbonate
(Figures 8A, D, E, H) or citrate buffer control treatments
(Figures 8A, E–G, K, L). However, cellulose removal in P.
coccineus (Figure 8M) did increase LM19 localization pattern
coverage in cell walls and middle lamella bordering the
aerenchyma cavity and cortical apoplast when compared to
sodium carbonate (Figure 8Q) and citrate buffer control
treatments (Figure 8R). Xylan removal expanded LM19
binding pattern to cover the cortical apoplast in all species
(Figures 8B, H, N) compared to control treatments (Figures
8E, F, K, L, Q, R) with visual changes in cortical apoplast binding
consistency in Pisum and Phaseolus, and cell walls in tissue
adjacent to aerenchyma in Cicer. Negative control treatments
with pectinase (Figures 8C, I, O) and Viscoenzyme® L enzyme
cocktail (Figures 8D, J, P) resulted in removal of LM19 binding
pattern for Pisum and Phaseolus (Figures 8D, P), but had little
effect on Cicer outside of loss of antibody binding in cell walls of
Frontiers in Plant Science | www.frontiersin.org 8
the outer cortical cell layers (Figure 8J). Interestingly, treatment
with Viscoenzyme® L enzyme cocktail altered the binding
pattern of LM19 to permit labeling of xylem in Phaseolus,
which suggests that removal of several cell wall polysaccharides
is required for pectin in similarly lignified cell walls of this species
to become available for antibody binding (Figure 8P).
DISCUSSION

The present study described shared characteristics, and notable
differences among aerenchyma formation as a result of sudden
flooding in three members of Fabaceae: P. sativum, P. coccineus,
and C. arietinum. A unique characteristic of aerenchyma
formation in Fabaceae is the location of the aerenchyma cavity
within the root stele (Lu et al., 1991; Rost et al., 1991; Niki et al.,
1995; Niki and Gladish, 2001). In all three species studied,
aerenchyma formation was detected in stele tissues within 1.5–
3 cm of the root apical meristem and became increasingly visible
in older tissue zones away from the root tip. Similar to previous
research (Gladish et al., 2006), we observed initiation of
aerenchyma formation in the stele in central parenchyma cells
adjacent to metaxylem followed by transverse expansion of the
cavity to occupy most of the central parenchyma region in each
species (Figures 1 and 2). However, in C. arietinum we observed
FIGURE 6 | Localization patterns of ME and DME homogalacturonan in Cicer arietinum during aerenchyma formation. Micrographs demonstrating monoclonal
antibody labeling of (A–D) JIM7, (E–H) JIM5, and (I–L) LM19 on cortex, endodermis (red wedge), pericycle (yellow edge), xylem (blue star), phloem sieve tube
elements (yellow star), and pith (red star) of root cross sections. Speckling pattern (magenta brackets) indicate cells containing membrane-bound bodies (MBBs).
Aerenchyma cavities indicated with white stars. Areas with poor or non-existent antibody labeling indicated with white brackets. Tylose-Like Cells (TLCs) indicated
with white wedges. Co, cortex, LRP, lateral root primordia. Scale bars = 100 µm.
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a unique aerenchyma formation pattern characterized by cavity
formation continuing into the inner cortex and resulting in a
large, rectangular or hourglass-shaped cavity when viewed in
cross section (Figures 1G, H and 2J, K). The biological
significance of the aerenchyma pattern in C. arietinum, and
why it differs from that of P. sativum and P. coccineus, is
unknown but it may influence survival time of C. arietinum in
hypoxic conditions by reducing the number of extraneous,
oxygen-consuming cells in roots, as has been noted in other
work in Z. mays and O. sativa (Drew et al., 2000; Evans, 2004).
Furthermore, extending the aerenchyma cavity into the root
cortex may increase the volume of air that C. arietinum can
conduct during hypoxic conditions as compared to P. sativum
and P. coccineus. Aerenchyma of all three species contain air, as
indicated by the release of bubbles during cross-sectioning of
root tissues, along with confirmation of oxygen content in P.
coccineus aerenchyma in intact roots by previous research
(Takahashi et al., 2016). This suggests the possibility that
Frontiers in Plant Science | www.frontiersin.org 9
increases in aerenchyma air volume, due to changes in
aerenchyma cavity dimensions, may enable prolonged
functioning of aerobic metabolic processes in root tissues
exposed to low-oxygen conditions.

Our study also described the formation of previously reported
space-filling parenchyma cells (Lu et al., 1991; Niki et al., 1998;
Pegg et al., 2018) during periods of prolonged flooding stress that
cosmetically resemble tyloses found in hardwood plants (Esau,
1965; Carlquist, 2013; Leśniewska et al., 2017). The biological
significance of these “tylose-like cells” (TLCs) forming in Pisum
and Cicer samples is unclear with respect to formation and
eventual filling of aerenchyma cavities during periods of
flooding stress. Tyloses are often observed within older xylem
tissues of vascular plants as ingrowths of parenchyma cells that
prevent or limit water transport as a response to drought stress or
pathogenic infection (Pallardy, 2008; Zhao et al., 2014; Micco
et al., 2016). In some species of Fabaceae, TLCs may serve a
similar purpose by removing the airspace within the stele
FIGURE 7 | Immunolabeling of three Fabaceae species with monoclonal antibodies targeting pectin residues with varying degrees of de-methyl-esterification. (A–C)
Pisum sativum, (D–F) Cicer arietinum, (G–I) Phaseolus coccineus root cross sections. Antibody labeling indicated with green false color. Areas with loss of antibody
labeling signal indicated with white brackets. Micrographs contain labeled aerenchyma cavities (white stars and wedges), xylem (red wedges), and phloem (magenta
wedges) in cross-sections from root segments. LRP, lateral root primordia. Scale bars = 100 µm.
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through replacement with parenchyma and repairing a structural
weakness induce by prolonged presence of aerenchyma
cavities (citation).

Further observation of legume root sections with scanning
electron microscopy revealed characteristic signs of cell wall
collapse and enzymatic degradation in cells adjacent to
expanding cavities (Figure 3). This supports previous research
which proposed that root aerenchyma formation in certain
members of Fabaceae (Lu et al., 1991; Rost et al., 1991; Niki
et al., 1995; Niki and Gladish, 2001), rice (Joshi and Kumar,
2012) and tomato (Kawase, 1981) is lysigenous in nature.
Furthermore, our study noted that cell wall degradation was
very localized within one to three cell layers of forming
aerenchyma (Figure 3), and suggests that a carefully regulated
and localized PCD mechanism is required to form aerenchyma
in this plant family (Sarkar et al., 2008b; Sarkar and Gladish,
2012) while preventing an uncontrolled enlargement that would
consume essential xylem and phloem vasculature within the root
stele (Sarkar et al., 2008b; Sarkar and Gladish, 2012). This may be
particularly important in the case of C. arietinum since the
expanding cavity partially removes one of xylem poles in the
tetrarch stele, which could require the conservation of the
remaining three xylem bundles to ensure proper water
conduction through the root. Development of lysigenous
aerenchyma may also prevent inhibition of aerobic cellular
respiration in legume roots by creating an internal oxygen-
containing channel when the rhizosphere environment
Frontiers in Plant Science | www.frontiersin.org 10
becomes hypoxic due to flooding (Drew et al., 2000; Evans,
2004; Takahashi et al., 2016).

Our research also revealed the presence of de-methyl-
esterified (DME), partially DME and fully methyl-esterified
(ME) pectin residues in the cell walls and middle lamella of
stele and cortical tissues involved in aerenchyma formation.
Previous research proposed that removal of methyl ester
substitutions from the homogalacturonan domains of pectin
enables degradation of cell walls by unblocking cleavage sites
between pectin residues, which are then targeted by
polygalacturonases, pectin lyases and similar hydrolytic
enzymes (Dheilly et al., 2016). Our observations showed that
DME pectin is spatially localized within one to three cell layers
around aerenchyma and increases from partial and fully DME
during aerenchyma development (Figures 4–7). This indicates
a direct correlation between DME pectin formation and
degradation of root cell walls. Furthermore, DME process
may also strengthen the plant primary cell wall pectin
matrix through interactions with calcium cations (Hocq
et al., 2016), benefitting roots by increasing cell wall
mechanical strength (Celus et al., 2018) near the forming
aerenchyma to compensate for the structural weakness
caused by a large air channel within the stele. This
enhancement of cell wall strength would be particularly
advantageous for plants such as C. arietinum which have
non-symmetrical aerenchyma extending into cortex tissues
with thin primary cell walls.
FIGURE 8 | Effect of enzymatic pretreatments on LM19 labelling pattern in Fabaceae roots with aerenchyma. Fluorescent antibody labeling pattern of LM19 (green),
composited with aldehyde induced fluorescence (magenta), to show distribution of de-methyl esterified homogalacturonan pectin in root cross sections. (A, G, M)
Treatment of 2% cellulase, (B, H, N) 1% xylanase, (C, I, O) and 1% pectinase solutions. (D, J, P) Treatment of Viscoenzyme® L enzyme solution (i.e. combination of
cellulase, lichenase, pectinase, xylanase, etc.) to act as a negative control. (E, K, Q) Treatment of 0.1 M sodium carbonate, pH 11.4 solution to enhance LM19
binding pattern as a positive control. (F, L, R) Treatment of 0.05 M citrate buffer (negative control). White stars and wedges represent aerenchyma cavities. Scale
bars = 100 µm.
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Notable changes in pectin methyl-esterification were also
noted in TLCs in P. sativum and C. arietinum. Similar to cells
and middle lamella destined for degradation, the TLCs were
thoroughly labeled with antibodies against DME (LM19) and
partially DME (JIM5) homogalacturonan (Figures 4 and 6). The
presence of DME homogalacturonan in TLCs primary walls has
not been previously described and is likely due to action of pectin
methylesterase activity upon the homogalacturonan backbone.
Removal of methyl esters from homogalacturonan promotes
hydrolytic enzyme activity required for “loosening” of primary
cell walls prior to wall expansion (Foster, 1967; Micco et al., 2016;
Wu et al., 2018) and is a possible prerequisite for expansion of
TLCs into the aerenchyma cavity. Additionally, de-methyl-
esterification of pectin may permit enlargement of TLCs prior
to development of secondary wall patterning (Goulao et al.,
2011), as suggested by cell wall morphology observed in the
present study (Supplemental Figure 5)

Enzyme treatments performed in this study indicated that
hemicelluloses such as xylan, along with cellulose, may “mask”
pectin from recognition by monoclonal antibodies targeting de-
methyl esterified homogalacturonan residues (Figure 8,
Supplemental Figure 6). Previous research suggests that
“masking” occurs due to pectin and xylan binding to each
other within primary cell wall matrices and physically blocking
access of antibodies to epitope binding sites (Marcus et al., 2008).
The presence of masking effects in our root samples suggests the
possibility that pectin de-methyl-esterification may occur in a
wider region of the central parenchyma than previously observed
in the present study. This prediction was supported by results in
P. sativum and P. coccineus (Figures 8B, F, N, R) where removal
of xylan expanded LM19 antibody labeling into stele tissue
further away from aerenchyma cavities. Non-flooded control
samples also manifested this labeling pattern, but to a less
consistent degree, suggesting that the flooding treatment itself
may alter effectiveness of xylanase enzymatic pretreatment
(Supplemental Figures 6B, F, N, R). Interestingly, antibody
binding patterns for DME pectin do not appear to change
noticeably following removal of either cellulose or xylan in C.
arietinum root sections when compared to non-enzyme-treated
controls in either flooded samples (Figures 8G, H, L) or non-
flooded samples (Supplemental Figures 6G, H, L). These
observations suggest that primary cell wall polysaccharides in
C. arietinum may be organized differently compared to P.
sativum and P. coccineus, thereby preventing or limiting
masking effects on pectin residues. Additionally, small
differences in LM19 binding pattern contiguity between
flooded (Figure 8) and non-flooded (Supplemental Figure 6)
samples indicate that immersion in water may subtly alter cell
wall chemistry throughout root segments from these legumes.
One possible consequence is an increase in the hydration of the
primary cell wall, resulting in changes to molecular rigidity of the
pectin cross-linking network (Vicré et al., 1999; Bidhendi and
Geitmann, 2015; Lampugnani et al., 2018) and potential
alteration of enzyme penetration and activity that would
explain the differences observed in the pre-treatment protocol
(Figure 8, Supplemental Figure 6).
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Our research also suggests the possibility of stele regions with
strong antibody labeling having masking effects negated by
previous removal of other cell wall components. Removal of
xylan, and to a lesser extent cellulose, in areas adjacent to
forming aerenchyma appears to eliminate masking and create
the DME pectin antibody binding patterns seen in this study
(Figures 8F, L, R). This hypothesis is supported in our study by
observations that LM19 binding patterns in root cross-sections
treated with cellulase, xylanase, and sodium carbonate (Figures
8A, B, E, G, H, K, M, N, Q) are greatly expanded throughout
root stele compared to control treatments (Figures 8F, L, R) with
DME pectin localized near the aerenchyma cavity. As a result of
our observations, we propose that aerenchyma formation may
depend on activity of multiple cell wall remodeling enzymes (i.e.
cellulase, xylanase) working together to achieve cell wall
degradation. Specifically, xylanases and cellulases may degrade
xylan and cellulose polysaccharides in advance of de-methyl-
esterification of pectin by PME enzymes and subsequent
degradation by pectinases.

Our findings in the present study provide directions for future
research into regulation and localization of components essential
to DME during aerenchyma formation. For example, we
observed that fragments of degraded root stele tissue may be
found inside aerenchyma during cavi ty formation
(Supplemental Figure 7), yet the destination of pectins from
degraded cells is unclear. In the case of C. arietinum, degraded
pectin residues with specific degrees of DME may accumulate
within MBB and be utilized to construct TLCs during later stages
of flooding. Pectin residues may also enter the apoplast (de
Freitas et al., 2012; Anderson, 2016) and may become
incorporated into the primary walls and middle lamella of cells
adjacent to forming aerenchyma cavities. Observed differential
metachromatic staining of toluidine blue near aerenchyma
cavities (Figure 1) could be the result of pH changes (O'Brien
et al., 1964; Niki et al., 2014; Bergholt et al., 2018) in the apoplast
and indicate liberated, negatively charged DME pectin residues
forming during cell wall or middle lamella degradation (Yamada
et al., 2015; Printz et al., 2016).

Additionally, the localization of calcium and cell wall
remodeling enzymes (i.e. pectin methylesterase and pectin
lyase) within legume stele tissues during aerenchyma
formation requires elucidation. Calcium is mainly localized in
the cell walls of plant tissues, accounting for 60–75% total
calcium content (Demarty et al., 1984), though it is also
present in the surrounding, fluid-filled apoplast (de Freitas
et al., 2012). High localization of calcium ions could indicate
susceptibility to enzyme degradation of cell walls by virtue of
Ca2+ linkages between DME homogalacturonan residues
(Grant et al., 1973; Wolf et al., 2009) and by serving as a
signaling molecule in proposed ethylene signal transduction
pathways that initiate PCD in cells adjacent to forming
aerenchyma (He et al., 1996; Gunawardena et al., 2001b).
Similarly, confirmation of elevated pectin methylesterase in
cells fated to be degraded was found to correlate with high
calcium concentrations: this provides supporting evidence in
legume roots for extensive pectin DME during aerenchyma
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expansion (Goulao et al., 2007; Rajhi et al., 2011; de Freitas
et al., 2012)

The regulation of gene expression leading to pectin DME
during Fabaceae aerenchyma formation also remains unclear.
Previous work in plants such as Arabidopsis thaliana
(Mühlenbock et al., 2007) and O. sativa (Yamauchi et al.,
2017) suggests the involvement of hydrogen peroxide (H2O2)
in the formation of cortical lysigenous aerenchyma. Additional
research involving Z. mays (Drew et al., 1980), P. sativum
(Gladish and Niki, 2008) and O. sativa (Yamauchi et al., 2017)
suggests ethylene signaling pathways may also play a role in
cortical aerenchyma formation. These pathways are initiated by
exposure to hypoxic, waterlogged conditions and result in gene
expression for cell wall remodeling enzymes such as cellulases,
xylanases, and pectinases (i.e. polygalacturonase and pectin
lyase)(Waldenmaier, 2011) through transcription factors such
as RAVs (Related-to-ABI3/VP1) identified in sugarcane (Li et al.,
2011; Tavares et al., 2019). Involvement of downstream
components for these pathways is supported in the results of
the present study (Figure 8), which indicate cellulase and
xylanase activity may degrade cell wall polymers (i.e. cellulose
and hemicellulose, respectively) that partially “mask” (protect)
pectin from enzymatic activities such as de-methyl-esterification
and hydrolytic cleavage of homogalacturonan by pectinases
(Voragen et al., 2009; Xue et al., 2013).

Research into genes involved in alternative processes, such as
lateral root emergence, may identify similar functions during
aerenchyma formation due to both events requiring cell wall
remodeling to accommodate new structures within root tissues
(Péret et al., 2009; Ishizaki, 2015; Porco et al., 2016; Leite et al.,
2017). Specifically, genes involved in the auxin signaling pathway
and cell wall remodeling genes such as those for auxin response
factors in A. thal iana (Sénéchal et al . , 2014) and
polygalacturonases (PGLR, PGAZAT) in O. sativa (Kumpf
et al., 2013) may have orthologs in legumes that also regulate
pectin modification during aerenchyma formation. The potential
presence of conserved cell wall remodeling genes among
disparate plant families encourages research into controlled
induction of aerenchyma via manipulation of an existing
genetic framework for pectin modification and subsequent cell
wall degradation in root tissues. Benefits of such work could lead
to crop improvement with respect to increased tolerance to
flooding, and, potentially, drought by plant root systems (Zhu
et al., 2010; Nord et al., 2013).
CONCLUSION

Initiation of aerenchyma formation in three Fabaceae species
begins with degradation of root parenchyma cells near
metaxylem of the stele. Expansion of aerenchyma cavities
continues within the stele (P. sativum and P. coccineus) or
from the stele and into cortical tissues (C. arietinum) unless
Frontiers in Plant Science | www.frontiersin.org 12
halted by formation of tylose-like cells (TLCs) that fill
aerenchyma of species such as P. sativum and C. arietinum.
Modification of the pectin homogalacturonan backbone
structure through de-methyl-esterification appears to be one
mechanism by which cell walls and middle lamella of tissues in
forming lysigenous aerenchyma are prepared for enzymatic
degradation to permit PCD and enable cavity formation.
Additionally, presence of fully and partially de-methyl-
esterified homogalacturonan residues in cell walls of forming
TLCs suggests these pectin structures are essential to
development of TLCs that occlude aerenchyma of P. sativum
and C. arietinum. Evidence exists for removal of cellulose and
hemicellulose (xylan) in the cell walls of tissues adjacent to
forming aerenchyma. Removal may occur prior to aerenchyma
formation to allow de-methyl-esterification and/or enzyme
access to pectin backbone structure.
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