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The CRISPR/Cas9 system is a powerful tool for targeted gene editing in many organisms
including plants. However, most of the reported uses of CRISPR/Cas9 in plants have
focused on modifying one or a few genes, and thus the overall specificity, types of
mutations, and heritability of gene alterations remain unclear. Here, we describe the
molecular characterization of 361 T0 transgenic tomato plants that were generated using
CRISPR/Cas9 to induce mutations in 63 immunity-associated genes. Among the T0
transformed plants, 245 carried mutations (68%), with 20% of those plants being
homozygous for the mutation, 30% being heterozygous, 32% having two different
mutations (biallelic), and 18% having multiple mutations (chimeric). The mutations were
predominantly short insertions or deletions, with 87% of the affected sequences being
smaller than 10 bp. The majority of 1 bp insertions were A (50%) or T (29%). The mutations
from the T0 generation were stably transmitted to later generations, although new
mutations were detected in some T1 plants. No mutations were detected in 18
potential off-target sites among 144 plants. Our study provides a broad and detailed
view into the effectiveness of CRISPR/Cas9 for genome editing in an economically
important plant species.

Keywords: CRISPR/Cas9, genome editing, immunity-associated genes, tomato, Off-target mutation
INTRODUCTION

Derived from a native adaptive immune system in eubacteria and archaea, the CRISPR/Cas system
enables the alteration of DNA sequences in many organisms to achieve precise gene modifications
(Jaganathan et al., 2018). Themost widely used Streptococcus pyogenesCas9 (SpCas9) requires the 20-
bp spacer sequence of a guide RNA (gRNA) to recognize a complementary target DNA site upstream
of a protospacer adjacent motif (PAM) and generates a double-stranded break (DSB) near the target
.org February 2020 | Volume 11 | Article 101
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region (Xie and Yang, 2013). DSBs are repaired through either
non-homologous end joining (NHEJ) or homology-directed
recombination (HDR) resulting in small insertions/deletions
(indels) or substitutions at the target region, respectively (Jinek
et al., 2012). Compared to other genome editing tools such as zinc
finger nucleases (ZFNs; Kim et al., 1996) and transcription
activator-like effector nucleases (TALENs; Bogdanove and
Voytas, 2011), CRISPR/Cas is more robust in that the Cas
protein can theoretically bind to any genomic region preceding
a PAM site and, importantly, target multiple sites simultaneously.
However, the possibility of off-target mutations caused by
CRISPR/Cas is a potential concern in both basic and applied
research in plants, although it has been reported that off-target
effects of CRISPR/Cas occur at a much lower frequency in plants
than in mammals (Fu et al., 2013; Kuscu et al., 2014). The most
effective way to minimize off-target mutations is to select a gRNA
target with little or no homology to other genomic regions (Baltes
and Voytas, 2015). Other methods to reduce off-target mutations
include using paired Cas9 nickases (Ran et al., 2013) or paired
fusions of a catalytically dead Cas9 nuclease to the FokI cleavage
domain (Guilinger et al., 2014; Tsai et al., 2014).

As one of the most important vegetable crops in the world
(Kimura and Sinha, 2008), tomato (Solanum lycopersicum) is an
important source of health-promoting nutrients including
vitamin C and E, minerals, and carotenes such as ß-carotene
and lycopene (Canene-Adams et al., 2005). However, tomato
production is threatened by many infectious diseases, including
bacterial speck disease caused by Pseudomonas syringae pv.
tomato (Pst), which can result in severe economic losses due to
reduced yield and quality (Xin and He, 2013). A large number of
candidate immunity-associated genes have been identified in
tomato, but validation of the functional importance of these
genes had been technically challenging before the emergence of
CRISPR/Cas technology (Pedley and Martin, 2003; Oh and
Martin, 2011; Rosli et al., 2013; Pombo et al., 2014). Although
CRISPR/Cas has been used to modify genes with key roles in
growth, development, and biotic and abiotic stresses in plants
(Ito et al., 2015; Jacobs et al., 2017; Nekrasov et al., 2017;
Rodriguez-Leal et al., 2017; Shimatani et al., 2017; Yu et al.,
2017; D’Ambrosio et al., 2018; Hashimoto et al., 2018; Li et al.,
2018a; Li et al., 2018b; Tashkandi et al., 2018; Zsogon et al., 2018;
Ortigosa et al., 2019; Wang et al., 2019; Xu et al., 2019), all of the
reported studies have focused on one or a few genes and could
not provide broad insights into the specificity, types of mutations
and heritability of genome editing by CRISPR/Cas9 in tomato.

Recently, we developed the Plant Genome Editing Database
(PGED; http://plantcrispr.org/cgi-bin/crispr/index.cgi) which
provides information about a collection of tomato lines with
CRISPR/Cas9-induced mutations in immunity-associated genes
(Zheng et al., 2019). In the present study, we molecularly
characterized 361 T0 transgenic tomato plants that were
generated using CRISPR/Cas9 to induce mutations in 63
candidate immunity-associated genes. To enhance the mutation
efficiency and reduce the number of transformations needed, we
evaluated gRNA efficiency by transient expression in tomato
leaves and conducted tomato transformat ion with
Frontiers in Plant Science | www.frontiersin.org 2
Agrobacterium pools containing 2–4 Cas9/gRNA constructs.
This initial evaluation of gRNAs allowed us to select the most
efficient ones for tomato stable transformation while using
“agrobacterium pools” with various Cas9/gRNAs constructs
shortened the time for generating multiple tomato mutant lines.
We established an efficient CRISPR/Cas9 system to generate a
large number of primary transgenic lines and we report for the
first time a systematic investigation of the specificity of targeting,
the types of mutations generated and the heritability of the
mutations through multiple generations of tomato. Our
CRISPR/Cas9-induced tomato mutant plants provide a
powerful resource for better understanding the molecular
mechanisms of plant-microbe interactions in the future.
MATERIALS AND METHODS

Guide RNA (gRNA) Design and Construct
Development
All 20-nt gRNAs specific for the target genes were designed using
the software Geneious R11 as described previously (Jacobs et al.,
2017). The tomato (Solanum lycopersicum) reference genome
sequence (SL2.5 or SL3.0) was used as an off-target database to
score each gRNA (GN19 or gN19; “g” represents a manually added
“G” to accommodate the transcription initiation requirement of
the U6 promoter if the first nucleotide is not a G at target sites)
preceding a PAM (NGG) sequence. For each gene, 2–3 gRNA
targets with minimum off-target scores were designed. Single or
multiple gRNA cassettes were cloned into a binary vector p201N:
Cas9 by Gibson assembly as described previously (Jacobs and
Martin, 2016). Colonies containing correct gRNA sequences were
confirmed by PCR and Sanger sequencing.

Evaluation of gRNA Efficiency by
Agroinfiltration in Tomato and Nicotiana
benthamiana Leaves
Each Cas9/gRNA vector was transformed into the
Agrobacterium tumefaciens strain 1D1249 (Wroblewski et al.,
2005) by electroporation. For agroinfiltration into tomato leaves,
the bacterial cells containing different gRNA plasmids were
grown in liquid YEP medium with 150 mg/L kanamycin
overnight at 30°C. The bacterial pellet was collected and
resuspended in an induction buffer containing 10 mM MgCl2,
10 mM MES (pH 5.7), and 200 mM acetosyringone (Sigma-
Aldrich). Bacterial suspensions were adjusted to OD600 = 0.3 and
incubated at room temperature for 2–5 h. The third and fourth
leaves of 4-week-old tomato plants were infiltrated with needle-
less syringes and the whole plant was then placed in a growth
chamber with a temperature of 22°C–24°C, 16 h light/8 h dark
photoperiod and 65% relative humidity. Three days later, a pool
of six leaf discs were collected from three individual plants (two
leaf discs from each of three plants) that had been infiltrated with
the tested Cas9/gRNA vector, and used for genomic DNA
extraction, PCR and sequencing. The web-based tool TIDE
(https://tide.deskgen.com) was used to determine the mutation
frequency induced by corresponding Cas9/gRNA vectors.
February 2020 | Volume 11 | Article 10
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Tomato Transformation
Tomato transformation was performed either at the plant
transformation facility at the Boyce Thompson Institute (BTI)
or North Carolina State University (NCSU) (Gupta and Van Eck,
2016; Van Eck et al., 2019). Modifications of the transformation
methods were made for Rio Grande (RG), including using 100
mg/L kanamycin for selection, and adding 0.1 mg/L indole-3-
acetic acid (IAA) to the plant regeneration media (2Z, 1Z) and 1
mg/L IAA to the rooting medium. Each Cas9/gRNA vector was
first electrotransformed into Agrobacterium tumefaciens
LBA4404 (BTI), AGL1 (BTI), or GV3101(pMP90) (NCSU). In
most cases, 2–4 Agrobacterium culture preparations (of the same
Agrobacterium strain), each carrying a different Cas9/gRNA
construct, were pooled together and used for transformation to
minimize the number of experiments. Tomato genotypes RG-
PtoR or RG-prf3 were used for transformation if not specifically
labeled (Table 1).

Genotyping and Mutation Analysis
Genomic DNA was extracted from tomato cotyledons or young
leaves using a modified CTAB method (Murray and Thompson,
1980). The existence of T-DNA was confirmed by PCR using
primers listed in Table S6. To determine the mutation specificity,
genomic regions flanking the target site of each gene were
amplified with specific primers (see PGED; http://plantcrispr.
org/) and sequenced by Sanger sequencing. TIDE was used to
rapidly evaluate the mutated allelic sequences using the
sequencing files (.ab1 format), especially for PCR amplicons of
biallelic, heterozygous, or chimeric mutants whose mutation
length and frequency cannot be determined due to
superimposed sequencing chromatograms.

Off-Target Evaluation
To evaluate potential off-target mutations caused by gRNAs in
CRISPR-induced mutant plants, twelve gRNAs were selected and
used as queries to search for potential off-target sites across the
tomato genome with up to 4-nt mismatches and 1-nt indel by the
software Geneious R11 or with up to 3-nt mismatches by a web tool
Cas-OFFinder. Each off-target site was given a score based on how
similar it was to the spacer sequence of gRNAs. A higher score for an
off-target site indicated a higher similarity to the original target site
and a higher likelihood to cause off-target mutations. A shortlist of
potential off-target sites of each gRNA queried was generated by
selecting their relatively high-scoring off-target sites predicted by
eitherGeneious R11 orCas-OFFinder (Table 3). Similar tomutation
genotyping described above, genomic regions flanking the putative
off-target sites were amplified with specific primers (Table S7) and
PCR ampliconswere sequenced to detect if off-targetmutationswere
induced in those regions.
RESULTS

CRISPR/Cas9 Targeting of Immunity-
Associated Genes in Tomato
To study the efficiency and specificity of genome editing in
tomato by CRISPR/Cas9 and to better understand plant-
Frontiers in Plant Science | www.frontiersin.org 3
pathogen interactions, we generated a collection of tomato
lines with targeted CRISPR/Cas9-induced mutations in genes
that have been implicated in the immune response. Candidate
genes were selected based on previous studies involving RNA-
Seq, biochemical approaches, virus-induced gene silencing
(VIGS), or yeast two-hybrid (Y2H) screens (Zeng et al., 2012;
Rosli et al., 2013; Pombo et al., 2014; Giska and Martin, 2019);
orthologs of immunity-associated genes reported in other plant
species such as Arabidopsis and rice were also included (Shimizu
et al., 2010; Hutin et al., 2015; Xin et al., 2016; Yamada et al.,
2016; Stegmann et al., 2017).

For each candidate gene, at least two gRNAs targeting
different DNA sites were designed and separately cloned into a
Cas9-expressing binary vector p201N:Cas9 (Jacobs and Martin,
2016). The gRNAs were designed to be highly specific at target
sites and their predicted off-target sites contained at least one
nucleotide mismatch in the seed sequence (the last 12
nucleotides preceding the PAM) or two nucleotide mismatches
against the full 20-bp protospacer (although some gRNAs were
designed to intentionally modify multiple homologs
simultaneously). Most Cas9/gRNA constructs in this study had
only one gRNA expression cassette per plasmid, except one
construct that contained three gRNA cassettes targeting three
Aquaporin transporter genes (Table 1).

Evaluation of gRNA Effectiveness by
Agroinfiltration in Tomato and Nicotiana
benthamiana Leaves
To initially evaluate the effectiveness of gRNAs and subsequently
enhance the mutation rate in stably transformed tomato plants,
195 gRNAs were tested for their ability to cause mutations using
Agrobacterium infiltration (agroinfiltration) in tomato leaves
(Figure 1A; Table S1). After agroinfiltration, DNA was
isolated from the leaf tissue and the genomic region spanning
each target site was PCR amplified, sequenced, and analyzed with
a web-based tool called Tracking of Indels by Decomposition
(TIDE; https://tide.deskgen.com; Brinkman et al., 2014) to
calculate the mutation frequency. gRNAs with mutation
frequency >0 (p < 0.0001) were considered to be effective in
inducing mutations in this assay while those with mutation
rate = 0 were considered ineffective. A total of 61.5% of the
tested gRNAs were effective in inducing transient mutations in
tomato leaves (Figure 1B). Among these, 96% had a mutation
rate greater than 0% but less than 10% in this assay, while only
five gRNAs (4%) had a mutation frequency over 10%
(Figure 1C).

Agroinfiltration of tomato leaves is not very efficient and to
test whether this affected our estimate of gRNA mutation
efficacy, we evaluated the mutation efficiency of two of the
gRNAs (Bti9ab-1 and Drm3-1) which each have identical
target sites in both tomato and Nicotiana benthamiana (Figure
S1). The mutation frequency induced by these two gRNAs in
tomato was much lower than in N. benthamiana (Figure S1A).
In addition to these two gRNAs, we also tested another four
gRNAs that each target two of the four homologs of the Mai1
gene in N. benthamiana (Roberts et al., 2019; Figure S1B). In N.
benthamiana, the majority of the gRNA targets showed a
February 2020 | Volume 11 | Article 10
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TABLE 1 | Mutation rates and mutation types in T0 transgenic plants. See also Table S3.

Target genes Solyc # # of transgenic plants # of edited plants Mutation rate (%)a Mutation typesb

ADE Solyc05g005700 10 5 50 3 homo; 1 hetero; 1 chimeric
AOX Solyc08g075550 9 8 89 2 homo; 2 biallelic; 3 hetero; 2 chimeric
APE Solyc11g018800 1 1 100 1 biallelic
Aquaporin 1/2/3c Solyc11g069430 (Aquaporin

1)
12 10 83 5 homo; 2 biallelic; 10 hetero; 2

chimeric
Solyc06g074820 (Aquaporin
2)
Solyc08g066840 (Aquaporin
3)

BHLH Solyc03g114230 3 3 100 3 biallelic
BSK830 Solyc12g099830 8 6 75 2 biallelic; 3 hetero; 1 chimeric
BSK830 (Hawaii
7981)d

Solyc12g099830 6 5 83 3 biallelic; 1 hetero; 1 chimeric

Bti9-interactor Solyc09g008010 1 1 100 1 homo
Bti9ab Solyc07g049180 4 3 75 2 homo; 1 biallelic
CathepsinB1 Solyc02g076980 29 20 69 8 homo; 8 biallelic; 2 hetero; 2 chimeric
CathepsinB2 Solyc02g077040 11 8 73 2 homo; 3 biallelic; 3 hetero
CORE Solyc03g096190 7 6 86 1 homo; 4 biallelic; 1 hetero
Drm-3 Solyc01g099840 3 3 100 2 biallelic; 1 hetero
EDS1 Solyc06g071280 2 2 100 1 homo; 1 chimeric
ERF5 Solyc03g093560 7 5 71 2 biallelic; 1 hetero; 2 chimeric
Fen Solyc05g013290 18 13 72 5 biallelic; 7 hetero; 1 chimeric
Fen (RG-pto11)e Solyc05g013290 15 9 60 2 homo; 4 biallelic; 5 chimeric
Fls2.1 Solyc02g070890 4 4 100 3 homo; 1 hetero
Fls3 Solyc04g009640 11 7 64 5 homo; 2 hetero
LRRXII-1 Solyc06g076910 5 1 20 1 biallelic
LRRXII-2 Solyc04g012100 4 3 75 1 biallelic; 2 hetero
Mai1 Solyc04g082260 4 1 25 1 hetero
Mai5 Solyc10g085990 11 8 73 2 homo; 5 hetero; 1 chimeric
MAP3Ka Solyc11g006000 6 6 100 4 biallelic; 2 hetero
Min7 Solyc12g017830 5 4 80 1 biallelic; 1 hetero; 2 chimeric
MKK1 Solyc12g009020 2 2 100 1 biallelic; 1 chimeric
MKK2 Solyc03g123800 6 5 83 1 homo; 4 biallelic
MKK4 Solyc03g097920 2 1 50 1 hetero
MKKK15 Solyc02g065110 8 6 75 4 hetero; 2 chimeric
MKKK66 Solyc08g081210 3 1 33 1 hetero
MLO16 Solyc11g069220 4 4 100 1 biallelic; 2 hetero; 1 chimeric
NOD Solyc11g008200 8 7 88 1 homo; 4 hetero; 2 chimeric
NPR1 Solyc07g040690 5 1 20 1 hetero
NRC1/2/3f Solyc01g090430 (NRC1) 8 5 63 1 homo; 3 biallelic; 1 hetero

Solyc10g047320 (NRC2)
Solyc05g009630 (NRC3)

PAD4 Solyc02g032850 7 1 14 1 biallelic
PBCP Solyc03g116690 3 2 67 1 homo; 1 biallelic
PBL-T1 Solyc09g007170 5 3 60 1 biallelic; 2 chimeric
PBL-T2 Solyc01g067400 2 2 100 2 hetero
Peptide Transporter 3 Solyc05g009500 4 3 75 1 biallelic; 1 hetero; 1 chimeric
Permease Transporter Solyc03g005820 4 2 50 1 homo; 1 biallelic
PGA1f Solyc05g005560 5 2 40 2 hetero

Solyc05g005570
Pic1 Solyc07g066260 5 4 80 1 biallelic; 2 hetero; 1 chimeric
PR1b Solyc00g174340 6 4 67 3 biallelic; 1 chimeric
Propep1 Solyc04g072310 2 2 100 2 chimeric
RALF1 Solyc01g067900 3 3 100 1 homo; 2 biallelic
RALF2 Solyc01g099520 10 7 70 1 homo; 3 hetero; 3 chimeric
RbohB Solyc03g117980 8 3 38 1 homo; 2 biallelic
SAG101-1/2f Solyc02g069400 (SAG101-1) 3 2 67 1 homo; 1 biallelic

Solyc02g067660 (SAG101-2)
SlMlo1/9f Solyc04g049090 (SlMlo1) 10 9 90 1 homo; 2 biallelic; 3 hetero; 6 chimeric

Solyc06g010030 (SlMlo9)
SOBIR/SOBIR-likef Solyc06g071810 (SOBIR) 16 9 56 2 homo; 1 biallelic; 4 hetero; 3 chimeric

Solyc03g111800 (SOBIR-like)
Solute Transporter 2 Solyc05g005950 4 2 50 1 biallelic; 1 hetero

(Continued)
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mutation frequency of 10%–40%, while a small number had a
mutation frequency less than 5% (Figure S1B, C). These
observations suggest that inefficiency of agroinfiltration in
tomato leaves probably leads to an underestimate of the true
efficacy of gRNAs for generating mutations. This is supported by
later observations in which some low-efficient gRNAs were very
effective in inducing mutations in stably-transformed tomato
plants (Table S2). Factors that contribute to this lower activity of
gRNAs by agroinfiltration of tomato leaves are unknown but
might include possible specific immune responses of tomato
against Agrobacterium or less efficient infiltration due to leaf
morphology differences with N. benthamiana.

In most cases, we selected the most efficient gRNAs for
subsequent stable transformation in tomato, however, some
low-efficiency gRNAs were also used if limited gRNAs could be
designed for a particular target gene. Most gRNAs that were
effective in inducing mutations in the agroinfiltration transient
assay also induced mutations in stable transgenic seedlings, with
one exception where a gRNA that had a 4.4%mutation frequency
in the transient assay did not edit target genes in two stably-
transformed plants (Table S2). It was not possible, however, to
directly compare gRNA efficiency in the transient assay with that
in stable transformation, as other factors such as the bias of gRNA
transformation into plants using “Agrobacterium pools” and the
total number of regenerated transgenic seedlings varied from
gene to gene in stable transformation.

CRISPR/Cas9-Induced Mutations in T0
Transgenic Plants
A total of 361 putative primary (T0) transgenic tomato plants
were regenerated by Agrobacterium tumefaciens-mediated stable
transformation. To confirm the mutated sequence(s) in each
plant, genomic regions spanning the target sites were PCR
amplified and sequenced. All five possible genotypes, that is,
wild-type, homozygous for the mutation, biallelic (a different
mutation in each allele), heterozygous for the mutation, or
multiple mutations (chimeric), were detected in our stably
transformed tomato plants (Table 1). Direct sequencing of
PCR amplicons containing biallelic, heterozygous, or chimeric
mutations resulted in superimposed sequencing chromatograms,
which made it difficult to determine specific mutation types and
mutation frequency in those plants. To resolve this problem,
TIDE was used to rapidly determine the mutated allelic
Frontiers in Plant Science | www.frontiersin.org 5
sequences using the sequencing file (.ab1 format) with
superimposed chromatograms (Brinkman et al., 2014), thus
avoiding tedious and expensive cloning and multi-clone
sequencing for mutation analysis.

Of the 361 T0 plants, 245 were found to have modifications at
the target site(s) within 63 genes (Table 1; Table S3). Most of the
lines had only one CRISPR-induced mutation in one gene per
plant, while a few had mutations in two or even three genes (the
latter cases occurred when using Agrobacterium pooling – see
below). We identified only one mutant event for some of the
targeted genes while for others up to 20 independent mutant
events were generated (Table 1). Overall, the average editing
efficiency (the number of edited plants/the number of transgenic
plants) by CRISPR/Cas9 in tomato in our experiments was 68%
(Figure 2A), although the mutation rate varied over a wide range
from 14% to 100% from target gene to target gene in different
mutant lines (Table 1). All four mutation types (homozygous,
biallelic, heterozygous, or chimeric) were observed in several
mutant lines that had sufficient independent mutant events,
while there was a bias of mutation types in some mutant lines,
probably due to the limited number of transgenic events
generated (Table 1).

We analyzed the distribution of the four mutation types in all
the 245 T0 plants at the 267 mutated target sites (some plants had
more than one target site) and found that the percentage of
homozygous, biallelic, heterozygous, or chimeric mutation was
20%, 32%, 30%, and 18%, respectively (Figure 2B). In particular,
plants having homozygous or biallelic mutations accounted for
52% of the total. These mutants and their progenies can be used
directly for phenotype screening because no wild-type alleles are
present, thus speeding the research process by saving time for
further genotyping in the next generation. The most common
mutation alterations induced by CRISPR/Cas9 were deletions or
insertions, with 87% of these modifications at the target sites being
less than 10 bp (Figure 2C). The proportion of deletion mutations
was 77%, and the deletion length spanned a wide range from 1 bp
to over 400 bp. Of all the mutations, the most abundant
modification was 1-bp deletion or insertion (Figure 2C). For
these, A- and T-insertions accounted for 79.5%, while G-
insertions accounted for only 4.5% (Figure 2D). Base
substitutions in combination with indels were also detected, but
at a much lower frequency. Only three independent mutant events
(two were the same mutation type) harbored a nucleotide
TABLE 1 | Continued

Target genes Solyc # # of transgenic plants # of edited plants Mutation rate (%)a Mutation typesb

STP13 Solyc09g075820 2 1 50 1 homo
TFT1 Solyc11g010470 3 3 100 1 biallelic; 2 hetero
TFT10 Solyc04g076060 4 2 50 2 chimeric
TFT7 Solyc04g074230 2 2 100 2 hetero
Wak1 Solyc09g014720 5 5 100 2 homo; 2 biallelic; 1 chimeric
WRKY11 Solyc08g006320 2 2 100 2 chimeric
WRKY9b Solyc08g067360 4 1 25 1 biallelic
aMutation rate (%) = number of plants with mutations/number of total transgenic plants. Mutations were analyzed by Geneious R11 and TIDE. bHomo, homozygous mutation; hetero,
heterozygous mutation. cThree gRNA cassettes were cloned into one p201N:Cas9 plasmid. dTomato genotype Hawaii 7981 was used for transformation. eTomato genotype RG-pto11
was used for transformation. fSpecific gRNA for each gene was independently cloned into the p201:Cas9 vector and the two or three gRNA/Cas9 constructs were pooled together for
tomato transformation.
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substitution in one copy of the target genes at the positions 5-bp
preceding the PAM, along with a short insertion or deletion at the
target site (Figure S2).

Multiplex editing of threeAquaporin transporter (AquaT) genes
by using one Cas9/gRNA construct was also tested. Three
individual promoter-gRNA expression cassettes (in the order
Aqua1-Aqua2-Aqua3) were assembled into the p201N:Cas9
vector (Figure S3A) as previously reported (Jacobs et al., 2017).
Ten of the 12 regenerated transgenic plants were edited, including
Frontiers in Plant Science | www.frontiersin.org 6
three single mutants, four double mutants, and three triple mutants
(having mutations in all three genes). Interestingly, all the three
single mutants knocked out AquaT1, while three double mutants
modified AquaT1 and AquaT2 and one edited AquaT1 and
AquaT3 simultaneously. Three plants had mutations in all the
threeAquaT genes together (Figure S3B). These data suggested the
position of the gRNA cassette in the vector may affect its mutation
rate, considering that all gRNAs were efficient enough to induce
mutations once transformed into plants.
FIGURE 1 | Evaluation of gRNA-mediated mutation efficiency by agroinfiltration in tomato leaves. See also Figure S1 and Table S1. (A) Schematic showing the
workflow of guide RNA (gRNA) evaluation by agroinfiltration. (B) Summary of gRNA efficiency tested by agroinfiltration. (C) The distribution of mutation efficiencies of
the 195 gRNAs. Inset on the top right shows the number of gRNAs in each mutation efficiency range. TIDE (https://tide.deskgen.com) was used to calculate mutation
efficiency by identifying the predominant types of insertions and deletions (indels) in the DNA of a targeted cell pool.
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Heritability of the Mutations
To evaluate the heritability of mutations in T0 plants, a large
number of T1 and some T2 plants were generated and examined
for their genotypes at the target sites. Most of the same genotypes
from T0 plants were transmitted to plants in later generations,
although we did not record segregation ratios in the progenies.
Frontiers in Plant Science | www.frontiersin.org 7
Of note, no new mutations or reversions to wild-type were found
in the progeny of any homozygous T0 plants, indicating all the
homozygous mutations occurred in the transformed
embryogenic cells before the first division. However, we did
observe novel genotypes in a small percentage of T1 or T2 plants
whose progenitor (T0 plants) harbored biallelic, heterozygous or
FIGURE 2 | CRISPR/Cas9-induced gene mutations in T0 transgenic plants. See also Table S3. (A) The average mutation rate induced by CRISPR/Cas9 in T0
plants. (B) Summary of CRISPR-induced mutation types and their frequency in T0 plants. Left: Number of genes modified with the corresponding mutation type;
Right: Percentage of genes harboring the corresponding mutation type. a Some plants have multiple target genes in one plant. (C) Frequency of each insertion or
deletion mutation. x-axis: number of base pairs (bp) deleted (−) or inserted (+) into target sites. Inset on the left top shows the percentage of mutations ≤10 bp or
>10 bp. bAll “possible > ± 50 bp” in the figure are included in >10 bp. TIDE only calculates mutation length ≤50 bp. (D) Percentage of different bases in the 1-bp
insertion mutations. Inset at the right top shows the number of mutations with each type of inserted base.
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chimeric mutations (Table 2). In particular, a homozygous
mutation (−265 bp) was detected in the progeny of a NRC2
primary transgenic plant with a “+1 bp/+2 bp” biallelic mutation.
It is possible that the new −265 bp modification at the target site
was created by further modification of the existing +1 bp or +2
bp mutations in the progenitor as has been reported in rice and
carrot (Klimek-Chodacka et al., 2018; Tang et al., 2018). It is also
possible that the biallelic T0 plant (+1 bp/+2 bp) was a chimera
and the new mutation derives from chimeric tissue of the T0
plant (Zhang et al., 2014).

We also observed new genotypes in the progeny of some T0
plants harboring heterozygous or chimeric mutations (Table 2)
even though most of the progeny still possessed the same
genotypes as the progenitor line. In some of these cases,
CRISPR/Cas9 continued to modify the wild-type allele of the
target gene in the progeny if the parent plants still contained a
wild-type allele and the Cas9/gRNA expression cassette
(Table 2). In other cases, unexpected genotypes were detected
in some mutant lines including Mai1-E10, CathepsinB2-E8,
Min7-E6, and ADE-E2 (Table 2). For instance, although the
ADE-E2 T0 plant was chimeric (−4 bp/−5 bp/−13 bp) without a
wild-type allele, we identified one T1 plant that was azygous (two
copies of wild-type allele) and another one with a novel biallelic
mutation (−4bp/−9 bp). Another example is the CathepsinB2-E8
Frontiers in Plant Science | www.frontiersin.org 8
T0 plant which had a heterozygous (−4 bp/WT) mutation.
However, −2 bp homozygous and −1 bp/WT heterozygous
mutations were detected in later generations. The unexpected
new genotypes discussed above revealed that the one leaf/
cotyledon sample may not reveal all the genotypes in the whole
plant if the mutant is chimeric. Therefore, for T0 edited plants
without any wild-type allele, it will still be useful to perform
genotyping in subsequent generations to obtain homozygous
mutants without the presence of Cas9/gRNA.
Specificity of CRISPR-Induced Gene
Modifications in Tomato
Mutations in unintended sequences (off-target mutations) is a
possible concern in both functional genomics studies and plant
breeding. To evaluate potential off-target effects by CRISPR/Cas9
in our tomato lines, we first evaluated the specificity of 12 gRNAs
of Cas9 by Geneious R11 (https://www.geneious.com; Kearse
et al., 2012) and Cas-OFFinder (Bae et al., 2014). The putative
off-target sites predicted by Cas-OFFinder were then manually
checked using JBrowse (https://solgenomics.net/jbrowse_
solgenomics/) to confirm their locations in the tomato genome.
The presence of a PAM was required for the site to be considered
a candidate site. These gRNAs were selected for off-target
TABLE 2 | New genotypes detected in T1 or T2 plants.

T0 mutation typea Generation Plants Gene Solyc# Mutationb Is T-DNA present?

Bialleleic T0 NRC2-E4 Solyc10g047320 +1 bp/+2 bp Yes
T1 NRC2-E4-P2 Solyc10g047320 +1 bp/large deletionc No
T2 NRC2-E4-P2-2 Solyc10g047320 -265 bp/-265 bp No
T2 NRC2-E4-P2-4 Solyc10g047320 +1 bp/+1bp No

Heterozygous T0 Mai1-E10 Solyc04g082260 -4 bp/WT Yes
T1 Mai1-E10-P20 Solyc04g082260 +1 bp/WT Yes

Heterozygous T0 CathepsinB2-E8 Solyc02g077040 -4 bp/WT Yes
T1 CathepsinB2-E8-P2 Solyc02g077040 -2 bp/-2 bp No
T1 CathepsinB2-E8-P10 Solyc02g077040 -1 bp/WT No

Heterozygous T0 Min7-E6 Solyc12g017830 +1 bp/WT Yes
T1 Min7-E6-P4 Solyc12g017830 +1 bp/-3 bp Yes
T1 Min7-E6-P8 Solyc12g017830 -1 bp/WT No

Heterozygous T0 NRC2-E1 Solyc10g047320 -3 bp/WT Yes
T1 NRC2-E1-P6 Solyc10g047320 -3 bp/-5 bp Yes
T1 NRC2-E1-P15 Solyc10g047320 -3 bp (58%); -6 bp (32%) +1 bp (3.6%) No

Chimeric T0 MKKK15-E2 Solyc02g065110 -1 bp (10.4%); +1 bp (2.1%); WT (85%) Yes
T1 MKKK15-E2-P2 Solyc02g065110 -5 bp(60%); -1 bp (31%); +1 bp (4.7%) Yes
T1 MKKK15-E2-P3 Solyc02g065110 -5 bp (20%); WT (74%) No
T1 MKKK15-E2-P7 Solyc02g065110 +1 bp (77.6%); -5 bp (4.7%); WT (9.5%) Yes

Chimeric T0 MKK1-E1 Solyc12g009020 -7 bp (8.1%); -2 bp (33.3%); WT (48.5%) Yes
T1 MKK1-E1-P3 Solyc12g009020 -2 bp/-4 bp No

Chimeric T0 Min7-E5 Solyc12g017830 -1 bp (35.9%); +1 bp (9%); WT (49.4%) Yes
T1 Min7-E5-P1 Solyc12g017830 -1 bp/-3 bp Yes
T1 Min7-E5-P2 Solyc12g017830 -6 bp (64.5%); +1 bp (19%); -1 bp (8.8%);

-7 bp (3.4%) Yes
T1 Min7-E5-P3 Solyc12g017830 -5 bp/-6 bp Yes
T1 Min7-E5-P7 Solyc12g017830 -9 bp (71.3%); +1 bp (18.2%); -1 bp (3.6%) Yes

Chimeric T0 ADE-E2 Solyc05g005700 -4 bp (20%); -5 bp (40.4%); -13 bp (13.9%) Yes
T1 ADE-E2-P1 Solyc05g005700 WT/WT No
T1 ADE-E2-P20 Solyc05g005700 -4 bp/-9 bp No
February 2020 | Vo
aFor each mutant event, only the plants harboring different genotypes from their T0 progenitors are listed. Unlisted T1 or T2 progeny have the same genotypes as those in T0 plants.
bNumber of base pairs (bp) deleted (-) or inserted (+) into target sites; WT, wild-type. If no percentage is shown, the two genotypes are around 50%:50%.
cTIDE only detects indels ≤50 bp.
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analysis because morphological defects were observed in one or
more mutant lines induced by these gRNAs (Figure S4; Table S4).
A total of 18 possible off-target sites of the 12 gRNAswere identified
and off-target mutations were examined in 12 T0 plants, 68 T1
plants and 44 T2 plants by PCR and Sanger sequencing (Table 3).
No off-target modifications were discovered in the tested plants
with orwithoutCas9, indicating our gRNAs andCRISPR-mediated
mutations are highly specific.

Another way to evaluate the specificity of CRISPR/Cas9 is to
test the efficiency of gRNAs with a few mismatches against the
target sequence in the protospacer. One of our gRNAs targeted
two tomato homologs,Mai5 and PBL-T1 (bothMai5/PBL-T1; 5’-
gTAGATCGTAATGGATTGCA-3’; the first nucleotide “C” was
converted to “G” to accommodate the transcription initiation
requirement of the U6 promoter). The designed 20-bp
protospacer sequence exactly matched the target site in Mai5
but had one mismatch in PBL-T1 at the third nucleotide from the
Frontiers in Plant Science | www.frontiersin.org 9
5’ end (5’-gTCGATCGTAATGGATTGCA-3’). We generated
five T0 plants that contained the bothMai5/PBL-T1 gRNA
construct, all of which had edits in Mai5 but not in PBL-T1,
indicating the one mismatch (along with the first nucleotide at
the 5’ end) in PBL-T1 appeared to significantly affect Cas9
binding and cleavage activity at the target site. Another gRNA,
targeting the tomato FLS2.2 gene, did not induce targeted
modifications in any of the 10 transgenic plants, possibly due
to a 1-bp mismatch in the seed region of the gRNA in the Heinz
1706 reference genome (GTCATCAACATCTCGCTTGT) as
compared to Rio Grande-PtoR (GTCATCAACATT
TCGCTTGT). The reference genome was used for gRNA
design and RG-PtoR was used for tomato transformation as it
contains the resistance gene Pto for investigating Pto-mediated
immunity in our mutants. This further indicates that CRISPR/
Cas9 is highly specific, with even one mismatch in the gRNA
rendering the site uncleavable to the Cas9/gRNA complex.
TABLE 3 | Examination of possible off-target mutations caused by 12 selected gRNAs in multiple generations. See also Tables S4 and S7.

gRNAs Putative off-target locus Sequence of the putative off-
target sitesa

Predicted by No. of mis-
matches

No. of plants
tested

No. of plants with
mutations

CathepsinB1
-1

#1 SL3.0ch00: 19,581,605 -
19,581,626

gGAATCTGACTTACAACTTATGG Geneious 2 30 (10 T1 + 20
T2)

0

#2 SL3.0ch08: 52,560,219 -
52,560,240

gAAATCTTTCTTCCAAGTTAGGG Geneious 3 20 (10 T1 + 10
T2)

0

ERF5-1 #1 SL3.0ch03: 56,335,989 -
56,336,010 (CDS)

gGTATCGCAATGTTCAGAGATGG Geneious/
CasOFFinder

3 2 (T0) 0

#2 SL3.0ch03: 56,356,193 -
56,356,214 (CDS)

gGTATCGCAATGTTCAGAGATGG Geneious/
CasOFFinder

3 2 (T0) 0

Fen-1 #1 SL3.0ch11: 22,381,618 -
22,381,638

gATGC-TATAACTTGAGTTAGGG Geneious 2 17 (10 T1 + 7
T2)

0

Mai5-2 #1 SL3.0ch05: 66,181,295 -
66,181,316 (CDS)

gTCTACGAATATATGCCAATGGG Geneious/
CasOFFinder

1 1 (T0) 0

Mai5-3 #1b SL3.0ch09: 795,322 - 795,343
(CDS)

gTCGATCGTAATGGATTGCAAGG Geneious/
CasOFFinder

1 3 (1 T0 + 2 T1) 0

#2 SL3.0ch12: 67,901,371 -
67,901,392 (CDS)

gTATCTCATAATGGATTGCAAGG Geneious 3 3 (1 T0 + 2 T1) 0

#3 SL3.0ch12: 67,814,680 -
67,814,701 (CDS)

gTATCTCATAATGGATTGCAAGG Geneious 3 3 (1 T0 + 2 T1) 0

MKK2-1 #1 SL3.0ch02: 16,695,145 -
16,695,165

gAATACG-ACAGAATCCTAGGGG Geneious 3 17 (2 T0 + 15
T1)

0

MKKK15-1 #1 SL3.0ch02: 48,342,685 -
48,342,706 (intron)

GCCCAC-
ATCGTGTCGACGTGGG

Geneious 3 15 (1 T0 + 7 T1
+ 7 T2)

0

PBL-T1-2 #1 SL3.0ch11: 16,102,764 -
16,102,785

gATGTCGAGGCGGGTCAAATTGG Geneious 3 4 (1 T0 + 3 T1) 0

RALF2-2 #1 SL3.0ch11: 42,841,387 -
42,841,409

GTTGAAGCTTGGAAGCTCCAAGG Geneious 3 5 (2 T1 + 3 T2) 0

SOBIR-1 #1 SL3.0ch02: 31,876,612 -
31,876,633

gTCTATACACCAGAGCTACCAGG Geneious 3 11 (4 T1 + 7 T2) 0

TFT10-1 #1 SL3.0ch11: 42,990,626 -
42,990,647 (Intron)

gATTCACTGATAGTATCAGATGG Geneious/
CasOFFinder

2 7 (1 T0 + 6 T1) 0

#2 SL3.0ch08: 34,312,506 -
34,312,527 (CDS)

gCTTCATAGTTAGTAGCAGAAGG Geneious 4 7 (1 T0 + 6 T1) 0

TFT7-2 #1 SL3.0ch11: 17,271,683 -
17,271,703 (Intron)

gAATGT-ATGGGAGCAAGAAAGG Geneious 2 14 (1 T0 + 13
T1)

0

#2 SL2.5chr03: 5,874,879-
5,874,902 (CDS)

GAATGTCATTGGTGCAAGAAGGG CasOFFinder 3 14 (1 T0 + 13
T1)

0
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aThe PAMmotif occurs at the 3’ end of each sequence (AGG, GGG, or TGG). Mismatched bases are in bold and underlined; “g” in lower case means the first nucleotide of the putative off-
target sequence is not a “G” but was converted to that nucleotide to accommodate the transcription initiation requirement of the U6 promoter.
bThis is not a true off-target as it was intentionally designed to target a Mai5 homolog PBL-T1).
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Tomato Transformation With
Agrobacterium Pools
Tomato transformation is a lengthy and labor-intensive process.
In an approach to minimize the number of transformation
experiments needed, three to four Agrobacterium culture
preparations each carrying a different gRNA construct were
pooled and used for a single transformation experiment
(Figure 3A). T0 plants were genotyped for both the presence
of T-DNA carrying the gRNAs and for possible mutations in all
the targeted genes in the pool. Of the 79 T0 plants generated, 58
plants (73%) contained precise modifications in one or more of
the target genes. In terms of the number of target sites edited by
CRISPR/Cas9 with pooled gRNAs, 48 (82.8%) of the T0 plants
had mutations in just one gene, while 9 plants (15.5%) had
mutations in two and 1 (1.7%) had mutations in three genes
(Figure 3A). Among these T0 plants, 83.5% contained one
gRNA cassette and 15.2% contained two different gRNA
cassettes, while no plants recovered contained more than two
gRNA cassettes integrated into the genome (Figure 3B).
Interestingly, one mutant plant did not show detectable
integration of the T-DNA sequence (expressing Cas9 and
gRNA) but had a mutated gene, suggesting that transient
expression of the Cas9/gRNA occurred in this plant.
Additionally, we found another type of transient mutation in 8
T0 plants at 10 different target sites (Table S5). In these plants, a
Cas9/gRNA expression cassette was integrated into the plant
genome, as confirmed by PCR and Sanger sequencing, but the
gRNA detected was not the one that induced the mutation in the
plant (Table S5), suggesting that the mutation was caused by
another transiently expressed Cas9/gRNA.
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DISCUSSION

Our effort to generate a large number of CRISPR/Cas9-induced
tomato mutants targeting immunity-associated genes
demonstrates that this mutation approach is efficient and robust
for gene editing in tomato. Importantly, gene modifications
mostly occurred in germline cells and were stably inherited in
subsequent generations, similar to those in rice (Zhang et al.,
2014) but not as in Arabidopsis, in which most mutations in T0
plants were somaticallymodified if a strong constitutive promoter
was used to regulate the Cas9 expression (Feng et al., 2014; Feng
et al., 2018). However, we detected a greater range of deletion and
insertion lengths than observed in rice (Zhang et al., 2014), in
which only 1-bp insertions and fewer deletion lengths were found,
possibly due to different intrinsic DNA repair mechanisms
between these two species. These differences could also be due
to other factors including different transformation methods or
culture conditions, and different sets of target genes that tolerate
different degrees of mutations.

Base substitutions induced by the CRISPR/Cas9 system in
tomato were very rare in our study. We frequently observed single
nucleotide polymorphisms (SNPs) between Rio Grande (used for
transformation)andthetomatoreferencegenome(Heinz1706),but
these SNPs were due to natural variation, not mutagenesis, as
confirmed by sequencing of the gene regions from untransformed
plants. Most of these SNPs were located outside of the protospacer
sequence of the gRNA targets, and to date we have only found one
gRNA (targeting Fls2.2) which had a mismatch in the seed region
that inhibited the Cas9 binding and cleavage at the target site.
Therefore, it is reasonable to use the tomato reference genome as
FIGURE 3 | Tomato transformation with “Agrobacterium pools.” See also Table S5. (A) An example of a tomato transformation experiment designed to target 2–4
genes by using 3–4 pooled Agrobacterium cultures with each culture carrying a different gRNA. a Number of plants with mutations in the target gene is shown in
parentheses; some plants had mutations in multiple genes. b Number of genes modified in the plants. “na” not applicable, since less than 3 genes were targeted in
the experiment. (B) Left: Number of gRNAs detected in a single mutant plant by PCR and Sanger sequencing. Right: Percentage of T0 plants harboring no, one or
two gRNAs.
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the template for gRNAdesign and subsequentmutationgenotyping
in transgenic Rio Grande and likely other tomato cultivars.

Various morphological phenotypes were detected in some
mutants compared to wild-type plants. Some of these abnormal
phenotypes were associated with all the mutation events
occurring in a specific gene, strongly supporting that the
mutation itself is responsible for the altered plant growth or
development. However, some mutant lines showed unusual
morphology associated with certain mutation events but not
all, possibly indicating that another off-target mutation occurred
in these plants. We therefore investigated a large number of these
plants but did not find any evidence of off-target mutations,
suggesting other mutations, if they exist, were either caused by
tissue culture or Agrobacterium transformation, or spontaneous
mutations during seed propagation (Tang et al., 2018). Our
observations are consistent with previous reports that CRISPR/
Cas9 causes few off-target mutations in plants including
Arabidopsis (Feng et al., 2014), rice (Zhang et al., 2014; Tang
et al., 2018), tomato (Nekrasov et al., 2017), cotton (Li et al.,
2019), and maize (Young et al., 2019). True off-targets reported
previously in plants showed high sequence homology to the
original spacer sequence of gRNAs (Tang et al., 2018), which can
be easily avoided by designing highly specific gRNAs using tools
such as Geneious and Cas-OFFinder. Based on our data we
devised a rule to avoid off-target effects of CRISPR/Cas9 by
designing gRNAs whose highest scored potential off-target sites
have at least a 1-nt mismatch in the seed sequence or 2-nt
mismatches in the full protospacer sequence.

Surprisingly, we found new mutations in the progeny of some
T0 plants that did not contain any wild-type allele. These new
mutations did not appear to be derived from existing mutations
in the T0 plants, as the Cas9-induced modifications were located
within the seed sequence of the gRNA protospacer and as little as
1-bp mismatch in the seed sequence can dramatically impair the
Cas9 binding and cleavage activity (Jinek et al., 2012). Therefore,
we believe the new mutations were derived from chimeric tissue
from the T0 plant that was not detected with the one cotyledon/
leaf sample we used for mutation genotyping. We are currently
advancing lines that have biallelic or heterozygous mutations, or
that were chimeric to develop homozygous plants without the
presence of Cas9/gRNA sequence. These plants will be used to
investigate whether the mutations affect the plant immune
response, especially to P. syringae pv. tomato.
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