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TARGET OF RAPAMYCIN (TOR) kinase has been recognised as a key developmental
regulator in both plants and animals. Despite their distinct developmental programmes, all
eukaryotes studied possess a functional TOR kinase, which integrates environmental and
nutrient signals to direct growth and development. This is particularly important in plants,
as they are sessile and must sense and respond to external signals to coordinate
multicellular growth appropriately. Thus, the investigation of TOR is essential for plant
developmental studies in the context of the resources available for growth. Recently, links
have been shown between TOR and plant development from embryogenesis through to
senescence, however more investigation is crucial to fully elucidate TOR function in each
developmental process.
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TOR IS A KEY PLANT DEVELOPMENTAL REGULATOR

Mounting evidence suggests that integrated signaling and metabolic networks play an instructive
role in developmental programs and responses to environmental changes and stresses (Li and
Sheen, 2016; Krejci and Tennessen, 2017). Remarkably, the TARGET OF RAPAMYCIN (TOR)
protein kinase has been identified as a “master regulator” of such networks in all eukaryotes, from
single-celled yeast and algae, to complex multicellular organisms such as plants, animals and
humans (Dobrenel et al., 2016). Nutrients and growth factors activate TOR, whilst energy
deprivation, starvation and stresses are responsible for its inactivation (Dobrenel et al., 2016).

Since the discovery of the TOR inhibitor rapamycin from the soil bacterium Streptomyces
hygroscopicus (Sehgal et al., 1975), and its use to identify and isolate TOR in yeast (Heitman et al.,
1991; Kunz et al., 1993), mammals (Sabatini et al., 1994) and plants (Menand et al., 2002), our
knowledge and understanding of TOR signaling mechanisms and function has progressed
immensely. Nevertheless, the study of plant TOR has been largely limited to the model plant
Arabidopsis thaliana (and select few other plant species, see: Nanjareddy et al., 2016; De
Vleesschauwer et al., 2018) and further investigation is crucial if we are to fully elucidate TOR
function in diverse developmental processes across the plant kingdom.
THE PLANT TOR KINASE COMPLEX

A single large TOR gene exists in Arabidopsis, Chlamydomonas reinhardtii, most animals
and humans (Xiong and Sheen, 2014). TOR encodes a highly conserved Ser/Thr kinase
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(Menand et al., 2002; Zoncu et al., 2011), belonging to the
phosphatidylinositol 3-kinase-related kinase family (Heitman
et al., 1991). In plants, TOR functions as a complex [TARGET
OF RAPAMYCYIN COMPLEX1 (TORC1)] with the core
components REGULATORY-ASSOCIATED PROTEIN OF
TOR (RAPTOR) and LETHAL WITH SEC THIRTEEN 8
(LST8) (Dobrenel et al., 2016). Whether other plant specific
components exist remains to be determined. All sequenced plant
species possess orthologs of the RAPTOR and LST8 genes
(Anderson et al., 2005; Deprost et al., 2005; Duan et al., 2006;
Mahfouz et al., 2006; Diaz-Troya et al., 2008; Moreau
et al., 2012).

Two homologs of the mammalian RAPTOR gene exist in
Arabidopsis, RAPTOR1 (or RAPTOR1B, AT3G08850) and
RAPTOR2 (or RAPTOR1A, AT5G01770) (Anderson et al.,
2005; Deprost et al., 2005). In silico analyses reveal that
RAPTOR1 is highly expressed throughout development,
whereas RAPTOR2 expression is markedly lower. As there is
only one RAPTOR gene in algae (Diaz-Troya et al., 2008), it has
been suggested that RAPTOR2 arose by a duplication of the
ancestral RAPTOR gene in the land plant lineage and is a
redundant copy (Deprost et al., 2005), however more detailed
RAPTOR phylogenies are needed to test when this occurred. In
some reports raptor2 mutants display no obvious phenotypic
defects (Deprost et al., 2005), further supporting redundancy,
however a slight increase in autophagy was detected in
Arabidopsis seedlings and protoplasts (Pu et al., 2017). The
protein structure of RAPTOR is conserved in plants;
RAPTOR1 has three HEAT motifs followed by seven WD-40
repeats, which are important for protein interactions (Deprost
et al., 2005). The conservation of the TOR and RAPTOR1
interaction via the TOR HEAT motifs has been confirmed by
coimmunoprecipitation experiments in tobacco leaves (Mahfouz
et al., 2006), however higher resolution imaging of the complex
would be useful to compare to recent electron microscopy studies
of TORC1 and TORC2 in mammals and yeast to study structural
conservation (Adami et al., 2007; Aylett et al., 2016;
Karuppasamy et al., 2017). Future work into plant-specific
RAPTOR interactions in different tissues would also prove
informative for elucidating any direct interactions with plant
development pathways.

All of the plant genomes checked contain an LST8 gene,
however two LST8 genes (LST8-1 and LST8-2) have been found
in Arabidopsis thaliana and A. lyrata as a result of a gene
duplication event in their common ancestor (Moreau et al.,
2012). As in other eukaryotes, the Arabidopsis LST8-1
(AtLST8-1) protein contains seven WD-40 repeats. GUS
reporter expression analyses reveal that LST8-1 is expressed
throughout plant development, particularly in the aerial
tissues. Yeast and Arabidopsis LST8 proteins share 51%
sequence identity, and yeast expressing the AtLST8-1 coding
sequence were able to grow normally, demonstrating that
AtLST8-1 is a homolog of yeast LST8 with conserved function.
As with RAPTOR, the interaction of LST8 with plant-specific
components in different tissues will reveal potential pathways by
which developmental phenotypes arise.
Frontiers in Plant Science | www.frontiersin.org 2
TOR FUNCTION DURING PLANT
DEVELOPMENT

Phylogenetic studies show that TOR, RAPTOR and LST8 gene
trees are congruent with the land plant species tree (Deprost
et al., 2005; Moreau et al., 2012; Sapre et al., 2018), suggesting
that this protein complex is highly conserved and therefore likely
to be very important across the plant kingdom. However, how
TORC was recruited during the evolution of multicellularity and
plant specific processes is unclear. As well as controlling
photosynthesis, autophagy and senescence (Deprost et al.,
2007; Liu and Bassham, 2010; Moreau et al., 2012; Ren et al.,
2012; Xiong et al., 2013; Li et al., 2015), TOR is critical for
promoting different aspects of plant development under
favourable conditions throughout a plant's lifespan.

Embryogenesis
In flowering plants, seed formation is characterized by double
fertilization of the female gametophyte, giving rise to two distinct
tissues: the zygote and the endosperm (Dumas and Rogowsky,
2008). The endosperm grows as a syncytium until it reaches
around 200 nuclei, before cellularization. The Arabidopsis loss of
function KO tor mutant endosperm reaches approximately 48
(± 13) nuclei and cellularization does not occur (Menand et al.,
2002). Embryos of Arabidopsis null tor mutants arrest early at
the dermatogen stage, with cells in metaphase still present. While
cell division itself is thus not inhibited by the disruption of
AtTOR in the embryo, cell growth is supressed (Menand et al.,
2002). This is consistent with wide-scale downregulation of
translation machinery and cell wall modifying enzymes such as
CELLULASE SYNTHASE 6 (CESA6) and EXPANSIN B1
(EXPB1) after AtTOR inhibition (Xiong et al., 2013). On the
other hand, the role of RAPTOR1 in embryogenesis is unclear.
raptor1 T-DNA insertion lines had viable embryos, suggesting
that AtTOR function in embryogenesis is independent of
RAPTOR1 (Anderson et al., 2005). However, further work
found the same line (SALK_078159) to be embryo lethal
(Deprost et al., 2005), therefore varying light and temperature
growth conditions could affect the phenotypic severity.

Germination
AtTOR has been implicated as a key mediator of environmental
signals with seed germination (Xiong et al., 2013). To drive the
transition from heterotrophic to photoautotrophic growth in
Arabidopsis seedlings, glucose‐AtTOR signaling activates broad
gene sets involved in the cell cycle and anabolic processes, and
suppresses gene sets controlling catabolic processes (Xiong et al.,
2013). This in turn activates root growth via glycolysis-
mitochondria-ETC (electron transport chain) relays (Xiong
et al., 2013). Furthermore, photosynthesis-derived sugars are
necessary for hormones (auxin, brassinosteroid, cytokinin, and
gibberellin) to promote rapid root elongation and reactivate the
quiescent root during this transition to photoautotrophy (Xiong
et al., 2013).

Two independent raptor1 mutants (SALK_101990 and
SALK_022096) had seeds with delayed germination and
February 2020 | Volume 11 | Article 16
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reduced stress resistance, resulting in reduced viability (Salem
et al., 2017). Furthermore, seed-coat pigmentation and mucilage
production was reduced, accompanied by changes in metabolic
content, such as increased free amino acids, and decreased
protective secondary metabolites and storage proteins. This is
consistent with the transcriptional reprogramming of gene sets
involved in central and secondary metabolism in response to
glucose-AtTOR signaling in seedlings (Xiong et al., 2013). There
were also increases in abscisic acid, auxin and jasmonic acid, all
known to inhibit germination.

Seedling Development
The transition from dark-grown (etiolated) to light-grown (de-
etiolated) seedlings is accompanied by several morphological
changes; elongation rate is reduced, the apical hook opens, true
leaves undergo expansion and mature chloroplasts develop. The
inhibition of AtTOR in seedlings, via either asTORis (active site
ATP-competitive TOR inhibitors) or genetic suppression,
reduces cotyledon greening, chloroplast development and
seedling growth (Deprost et al., 2007; Dong et al., 2015; Li
et al., 2015; Xiong et al., 2017). 40S ribosomal protein S6
KINASE (S6K) is a phosphorylation target of TOR, and
promotes chloroplast development and seedling growth via the
regulation of BR INSENSITIVE 2 (BIN2) (See review: Shi
et al., 2018).

An exciting link has been made between light and the
activation of AtTOR-RPS6 (RIBOSOMAL PROTEIN S6)
in de-etiolating seedlings. Light is first perceived by
photoreceptors such as phytochrome A and cryptochromes,
leading to the inactivation of the negative regulator
CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1),
which triggers the activation of the auxin pathway and thus
AtTOR-dependent phosphorylation of RPS6 (Figure 1).
Accordingly, mutant seedlings lacking functional AtTOR,
RPS6A or RPS6B displayed delayed cotyledon opening (Chen
et al., 2018). It has also been shown that auxin can activate TOR
via Rho-like small GTPase 2 (ROP2) (Schepetilnikov et al.,
2013; Schepetilnikov et al., 2017). TOR may therefore
coordinate light and auxin levels to ensure a timely switch in
the development of de-etiolating seedlings.

Meristem Development
The Shoot Apical Meristem (SAM) and the Root Apical Meristem
(RAM) maintain undifferentiated stem cells responsible for the
formation of the above- and below-ground organs, and AtTOR is
known to be expressed in these tissues (Menand et al., 2002).
Consistently, delayed shoot growth has been observed in tor
knockdown and raptor1 mutant lines (Menand et al., 2002;
Xiong et al., 2013; Pfeiffer et al., 2016). Recent data showed that
in 4-5 day old Arabidopsis seedlings, AtTOR-E2FA
phosphorylation activates the RAM by activating S phase, whilst
AtTOR, activated by light-Auxin-ROP2 signaling, phosphorylates
both E2FA and E2FB to activate S phase in the SAM (Figure 1;
Xiong et al., 2013; Li et al., 2017). AtTOR is thus a likely candidate
for the integrator of environmental signals from distant organs to
direct meristem activity in both roots and shoots.
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YET ANOTHER KINASE 1 (YAK1) has recently been
reported as a downstream target of the AtTOR pathway and a
major regulator of RAM activity (Barrada et al., 2019). YAK1 was
discovered through a pharmaco-genetic screen; yak1 loss-of-
function mutants are resistant to the asTORis AZD-8055,
whilst Arabidopsis overexpressing YAK1 are hypersensitive.
Treatment of WT plants with AZD-8055 reduces the number
of dividing cells in the meristematic zone (MZ) inducing early
differentiation. In yak1 mutants MZ size was not reduced in the
presence of the inhibitor. Furthermore, when treated with
pINDY, an ATP-competitive inhibitor of the animal AtYAK1
homolog DYRK1A (DUAL SPECIFICITY TYROSINE
PHOSPHORYLATION REGULATED KINASE 1A), MZ size
was restored in WT plants treated with AZD-8055. These results
indicate that YAK1 controls cell proliferation in the MZ in a
TOR-dependent manner.

Cell proliferation is controlled by CYCLIN DEPENDENT
KINASES (CDKs), which are regulated by the periodic activation
of cyclins (CYC). CDK-CYC activity is regulated by plant-
specific CDK inhibitors such as SIAMESE (SIM) and
SIAMESE-RELATED (SMR) (See review: Inagaki and Umeda,
2011). Various promoter-driven GUS reporter lines tracking the
expression of SIM, SMR, and CYC genes revealed that, in the
absence of AtTOR activity, YAK1 induces the expression of SMR
genes, which in turn repress CDKs to promote differentiation
(Barrada et al., 2019). Contrarily, YAK1 inhibition by AtTOR
kinase promotes growth, by lifting the repression of CDKs and
CYC, to maintain proliferation (Figure 1). Furthermore, physical
interaction between AtYAK1 and RAPTOR1 has been confirmed
by both yeast two-hybrid assay and biomolecular fluorescence
complementation (BiFC) assays in plant cells (Forzani et al.,
2019). A phosphoproteomics analysis in growth-induced
Arabidopsis cell culture further demonstrated TOR-dependent
phosphorylation of two conserved Ser residues of AtYAK1 (Van
Leene et al., 2019). It has thus been suggested that TORC1 binds
to AtYAK1 through the component RAPTOR and inactivates it
by phosphorylation (Forzani et al., 2019), perhaps revealing how
the TOR-YAK1-SMR-CYC/CDK interaction functions to
regulate RAM activity and maintenance.

Patterning of the SAM byWUSCHEL (WUS) and CLAVATA
(CLV) genes has also been connected to AtTOR activity (See
review: Somssich et al., 2016). Interestingly, when three day old
Arabidopsis seedlings were grown in AZD-8055, the activity of
the WUS promoter in pWUS::3xVENUS-NLS lines decreased
(Pfeiffer et al., 2016). AtTOR may therefore activate WUS
expression, promoting meristem activity in favourable
conditions. However, these seedlings were grown for three days
in AZD-8055 liquid culture, so it is unclear to what extent long
term metabolic changes are controlling WUS expression.
Conversely, no expression changes of the root meristem
patterning gene, WUSCHEL RELATED HOMEOBOX 5
(WOX5) were observed when treated with asTORis, suggesting
that AtTOR may not regulate meristem patterning in the RAM
(Xiong et al., 2013). Further determining the exact role of AtTOR
in the SAM and RAM will prove critical for understanding
environment dependent meristem activity.
February 2020 | Volume 11 | Article 16
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Plant and Leaf Size
AtTOR is also involved in size regulation. ß-estradiol inducible and
ethanol inducible AtTOR silencing plants show a reduction in plant
biomass, including reduced cell size and ultimately reduced leaf size
(Deprost et al., 2007; Xiong and Sheen, 2012), consistent with a T-
Frontiers in Plant Science | www.frontiersin.org 4
DNA raptor1 SALK line (Anderson et al., 2005). Accordingly, lst8-1
mutants have reduced size, as well as increased shoot branching
(Moreau et al., 2012). Ser-Thr PROTEIN PHOSPHATASE 2A
(PP2A) contains a conserved regulatory subunit TAP46 (TYPE 2A-
PHOSPHATASE-ASSOCIATED PROTEIN 46KD) (TAP42 in
FIGURE 1 | Upstream and downstream targets of the TOR Complex (TORC) in plants. Upstream regulators of plant TORC1: Light, glucose and nutrients are known
activators of the TOR pathway. Light activates the TOR pathway via the inactivation of the negative regulator COP1, triggering the activation of the auxin pathway,
leading to TOR activation during seedling de-etiolation. Light is also known to trigger GTP-ROP2/auxin activation of TOR signaling in the shoot apex. Light and
glucose coordinate to inactivate the TOR antagonist SnRK1, leading to the indirect activation of TORC. The TORC kinase also senses sulfur availability indirectly
through glucose signaling; sulfur deficiency induces low glucose levels, leading to the negative regulation of TOR signaling. Stress signals trigger ABA binding of PYL
receptors, which activate SnRK2s. SnRK2s directly phosphorylate RAPTOR1, inhibiting TORC signaling to promote stress responses. Downstream targets of plant
TORC1: Direct phosphorylation targets of TORC1 include PP2A (via the subunit TAP46), E2FA/B and S6K, leading to the activation of cellular processes throughout
development. elF3H and RPS6 are direct phosphorylation targets of S6K-P. The YAK1 kinase is inhibited by active TOR, relieving the inhibition of CYC/CDKs by
SMRs to allow cell proliferation in the meristem. Solid arrows indicate direct interaction, dashed arrows indicate indirect interaction.
February 2020 | Volume 11 | Article 16
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yeast), which is directly phosphorylated by AtTOR (Figure 1; Ahn
et al., 2011). Disruption of TAP46 expression results in global
translation defects, decreased polysome accumulation and
methionine incorporation, and in turn smaller plants as above
(Ahn et al., 2015). Furthermore, a recent study has confirmed that
TOR inhibition with asTORis prevents leaf primordia initiation in
10 day old Arabidopsis plants, causing a reduction in leaf number
(Mohammed et al., 2018).

Conversely, overexpression of both TAP46 and AtTOR results
in larger seeds and plants (Deprost et al., 2007; Ahn et al., 2015),
with bigger leaves due to larger epidermal cells and longer
petioles. AtTOR domain overexpression lines possess twisted
leaves and siliques (Deprost et al., 2007; Ahn et al., 2011).
Together these studies clearly indicate the involvement of
AtTOR in leaf development, however it is unclear whether
AtTOR only directly controls global cell cycle regulators and
cell growth machinery (Xiong et al., 2013; Li et al., 2017), or
affects leaf development genes such as the OVATE FAMILY
PROTEINS (OFPs) (Wang et al., 2011) to target specific leaf
development pathways.

Nutrients such as nitrogen (N), phosphate (Pi), and sulfur
(S) play crucial roles in the promotion of plant growth and
recent studies suggest that AtTOR functions in these processes.
For example, S availability coordinates glucose signaling to
activate AtTOR (Figure 1; Dong et al., 2015). Furthermore,
nitrate, a major N source, behaves as a nutrient signal to
promote system-wide shoot and root growth in Arabidopsis
(Liu et al., 2017). Notably, Arabidopsis seedlings modified to
overexpress AtTOR show hypersensitivity to high nitrate
inhibition of roots (Deprost et al., 2007). By sensing the
nutrient content in the cell, AtTOR kinase is able to initiate
growth at a time when sufficient resources are available for
healthy plant development.

Abscisic acid (ABA) signaling has been implicated as a critical
player in the inhibition of plant growth under stress and recent
studies propose TOR is the key mediator of this process (Wang
et al., 2018). Upon stress induction, ABA binds PYR1/PYL/
RCAR (PYL) receptors, triggering the activation of SnRK2s (SUC
NON-FERMENTING 1-RELATED KINASE 2). SnRK2s
phosphorylate RAPTOR, thereby inhibiting TORC signaling
and promoting stress-induced growth inhibition. When
favourable conditions return, TOR phosphorylates PYL
receptors, preventing ABA binding, and, critically, inhibiting
the activity of ABA-independent PYLs. This interaction between
ABA core signaling components and TORC represents a
conserved regulatory mechanism to maximise fitness under
stress and promote growth recovery in its absence.

Other regulators of plant growth via TOR include SnRK1, a
conserved glucose/energy sensor protein kinase. Glucose can
activate AtTOR indirectly via the inactivation of SnRK1
(Figure 1; Baena-Gonzalez and Sheen, 2008). Arabidopsis
SnRK1 (AtSnRK1) forms a heterotrimeric complex with the
catalytic subunits KIN10 and KIN11 (Baena-Gonzalez and
Sheen, 2008), and KIN10 has been shown to directly interact
with and phosphorylate RAPTOR (Nukarinen et al., 2016). Thus,
Frontiers in Plant Science | www.frontiersin.org 5
TORC1 and AtSnRK1 dominate a complex network, acting
antagonistically to direct plant growth.
Flowering
Alongside altering organ size and initiation, AtTOR disruption
delays flowering time (Deprost et al., 2007), which is also evident
in raptor1 and lst8-1 mutants (Anderson et al., 2005; Moreau
et al., 2012). The transition to flowering time is controlled by
myriad external and internal factors, such as plant age, sugar
availability, photoperiod and temperature (See review: Cho et al.,
2017). These signals converge on factors such as LEAFY to
convert the SAM into an Inflorescence Meristem (IFM)
(Blazquez et al., 1997). Future work is necessary to determine
whether AtTOR interacts with these pathways directly or
indirectly, linking AtTOR delayed flowering phenotypes and
sensitivity to day length with flowering time control.

Following the establishment of the IFM, flower primordia are
initiated at its flanks, producing a Floral Meristem (FM) and
flanking floral organ primordia. Mutation of lst8-1 produces
flowers with smaller floral organs, but no changes in organ
patterning or number have been reported (Moreau et al.,
2012), suggesting that LST8 may be independent from the
ABC patterning genes (See review: Irish, 2017). Abnormal
flower phenotypes have also been recorded in raptor1 SALK
lines, but not described fully (Anderson et al., 2005).
Furthermore, tor knockdown flowers have yet to be
investigated, and are necessary to determine whether flower
development is under the control of AtTOR as well as LST8
and RAPTOR1. It is unclear whether the phenotypes are due to
direct changes to cell cycle/growth genes, and/or interactions
with genes specific to floral development, such as AUXIN
RESPONSE FACTOR 8 (ARF8) and BIGPETALp (BPEp)
(Szecsi et al., 2006; Varaud et al., 2011).

Interestingly, ectopic expression of Lily S6K (LIS6K) in A.
thaliana produces flowers with shortened petals and stamens,
due to reduced cell expansion and normal cell division (Tzeng
et al., 2009). S6K is a conserved target of TOR; it was shown that
S6K binds to RAPTOR for phosphorylation by TOR in plants
(Mahfouz et al., 2006). S6K1 in turn phosphorylates the subunit
h of eukaryotic Initiation Factor 3 (eIF3h), which promotes
loading of mRNAs that carry upstream open reading frames
(uORFs) within their 5' untranslated regions (5'UTRs) into the
ribosome for translation re-initiation (Figure 1) (Schepetilnikov
et al., 2013). Plant specific genes such as AUXIN RESPONSE
FACTORS (ARFs) and BASIC LEUCINE ZIPPER 11 (bZIP11) are
encoded by uORF-mRNAs and therefore their translation
reinititation may be under the control of TOR via S6K
(Schepetilnikov et al., 2013). It would be interesting to
investigate if ARFs with important roles in development such
as MONOPTEROS (ARF5) and ARF2 (Schruff et al., 2006;
Chapman and Estelle, 2009) are activated by S6K in different
tissue types such as the leaves and flower, and whether this S6K
activation is dependent on TOR activity under different
environmental conditions.
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CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

The TOR signaling pathway is vital to integrate information
about the nutrient and energy status of cells and tissues to direct
the appropriate developmental and physiological response
(Dobrenel et al., 2016). Our understanding of plant TOR has
boomed over the past years, with studies beginning to expand
beyond the model plant Arabidopsis. Evidence is clearly
emerging that TOR has a conserved regulatory role in
photosynthetic organisms, acting in conjunction with the
antagonist SnRK1 to adapt growth and metabolism according
to nutrient and hormone signals. Developmental pathways are
highly interconnected and it will be interesting to determine how
these interact with TOR signaling in a tissue specific manner,
particularly at later developmental stages and in novel plant
species. The synthesis of such processes will require
bioinformatic pathway analysis to build networks at the RNA
expression, protein expression, and protein modification levels,
Frontiers in Plant Science | www.frontiersin.org 6
for a complete understanding of TOR activity in each tissue.
Crucially, these signaling pathways may be even more critical in
plants than in animals and yeast, since plant immobility prevents
their escape from hostile environments or nutrient scarcity,
placing increased importance on their developmental plasticity
in response to the environment.
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