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Interactions between plants and the root-colonizing fungus Fusarium oxysporum (Fo) can
be neutral, beneficial, or detrimental for the host. Fo is infamous for its ability to cause wilt,
root-, and foot-rot in many plant species, including many agronomically important crops.
However, Fo also has another face; as a root endophyte, it can reduce disease caused by
vascular pathogens such as Verticillium dahliae and pathogenic Fo strains. Fo also confers
protection to root pathogens like Pythium ultimum, but typically not to pathogens
attacking above-ground tissues such as Botrytis cinerea or Phytophthora capsici.
Endophytes confer biocontrol either directly by interacting with pathogens via
mycoparasitism, antibiosis, or by competition for nutrients or root niches, or indirectly
by inducing resistance mechanisms in the host. Fo endophytes such as Fo47 and CS-20
differ from Fo pathogens in their effector gene content, host colonization mechanism,
location in the plant, and induced host-responses. Whereas endophytic strains trigger
localized cell death in the root cortex, and transiently induce immune signaling and papilla
formation, these responses are largely suppressed by pathogenic Fo strains. The ability of
pathogenic strains to compromise immune signaling and cell death is likely attributable to
their host-specific effector repertoire. The lower number of effector genes in endophytes
as compared to pathogens provides a means to distinguish them from each other. Co-
inoculation of a biocontrol-conferring Fo and a pathogenic Fo strain on tomato reduces
disease, and although the pathogen still colonizes the xylem vessels this has surprisingly
little effect on the xylem sap proteome composition. In this tripartite interaction the
accumulation of just two PR proteins, NP24 (a PR-5) and a b-glucanase, was affected.
The Fo-induced resistance response in tomato appears to be distinct from induced
systemic resistance (ISR) or systemic acquired resistance (SAR), as the phytohormones
jasmonate, ethylene, and salicylic acid are not required. In this review, we summarize our
molecular understanding of Fo-induced resistance in a model and identify caveats in
our knowledge.
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INTRODUCTION

The Fusarium oxysporum species complex embraces a variety of
strains ubiquitously present in soils. Most of these strains are
saprotrophs and despite their ability to colonize plant roots the
majority represents commensal endophytes not affecting plant
fitness (Bao et al., 2004). Some F. oxysporum (Fo) strains, such as
Fo47 and CS-20, are actually beneficial to the host and can
provide protection against root pathogens (Table 1). Biocontrol-
conferring Fo strains, such as Fo47, have been identified in
vascular wilt-disease suppressive soils (Alabouvette, 1986).
Identification of the causal microbes in wilt suppressive soils is
typically done by sterilizing the soil following subsequent re-
inoculation with the original microbes and screening for isolates
that restore the suppressive effect against Fusarium wilt
(Tamietti et al., 1993).

Fusarium wilt is one of the major diseases caused by
pathogenic Fo strains. Wilts are a major threat for agriculture
(Fisher et al., 2012) and Fo ranks among the 10 most devastating
fungal plant pathogens worldwide (Dean et al., 2012). Besides
wilt disease some strains can also cause foot- or root-rot resulting
in serious yield losses in affected crops (Michielse and Rep, 2009).
Fo produces micro- and macroconidia and chlamydospores that
can remain viable in infected soils for decades, thereby
frustrating crop rotation schemes (Nelson, 1981). Pathogenicity
of Fo is host-specific, as typically strains infecting one plant
species do not cause disease in others. Based on this host-
specificity, pathogenic strains have been classified into so-
called formae speciales (ff.spp.), of which over 100 have
currently been described (Armstrong and Armstrong, 1981).
An explanation for the emergence of host-specific pathogenic
strains may be the extensive use of monocultures with limited
crop rotation serving as breeding grounds for pathogens (Xiong
et al., 2016). The evolved Fo pathogens can give rise to
devastating crop losses, Fusarium wilt disease of banana,
caused by Fo f.sp. cubense, being a prime example (García-
Bastidas et al., 2014; Ordoñez et al., 2016).

To control wilt diseases different strategies are currently being
employed in agriculture. One of these is chemical control, which
includes broad-spectrum biocides like methyl bromide, benomyl,
or carbendazim applied before planting. These chemicals can
prevent infection, but do not cure a plant once infected. A caveat
of these compounds is that they also affect beneficial soil
microbiota and some accumulate in the food chain and for this
reason many of these products are, or will be, banned (Lopez-
Aranda et al., 2016). Heat sterilization of soils overcomes some of
these drawbacks, but has the disadvantage that it is non-selective
and it can have undesired effects on soil quality (Mahmood et al.,
2014). Use of resistant plant varieties, e.g. plants carrying
resistance genes is currently the most effective in terms of
economy, ecology, and disease control. However, genetically
encoded resistance is seldom durable and sooner or later new
races emerge that overcome resistance in a never-ending arms
race between Fo and its host (Takken and Rep, 2010; de Sain and
Rep, 2015). Furthermore, Fo resistance genes are not available in
the germplasm of all crops or they cannot be introgressed by
breeding (Ploetz, 2015).
Frontiers in Plant Science | www.frontiersin.org 2
The limitations of the current approaches of wilt disease
control urges the need to develop alternatives. An interesting
alternative strategy is the use of beneficial Fo strains that confer
biocontrol and thereby reduce disease incidence. A major
advantage of biocontrol is the relatively broad-spectrum- and
non-race specific protection conferred by endophytic strains
(Table 1). A limitation is that the protection provided by these
biological agents is highly variable and not consistent between
seasons, crops, or fields. As illustration, even in greenhouse trials
using tomato plants artificially co-inoculated with a pathogenic
and a biocontrol Fo strain significantly different degrees of
protection where observed in subsequent years (Fuchs et al.,
1999). Furthermore, biocontrol observed under controlled lab
conditions is not necessarily scalable to field conditions. For
example, controlled soil co-inoculation of asparagus with Fo47
and Fo f.sp. asparagi (Foa) resulted in partial disease protection
under lab conditions, but application of Fo47 in Foa-infested
greenhouses did not reduce wilt disease (Blok et al., 1997).

A better understanding of the molecular mechanisms
underlying biocontrol conferred by endophytic Fo strains may
help to unleash the full potential that these organisms harbor to
control disease conferred by their brothers in crime. In this
review we mostly focus on two endophytic Fo strains, Fo47 and
CS-20, as these are the best studied strains. We assess the
differences between pathogenic and endophytic strains at their
root colonization behavior, at the genome level and the responses
they trigger in plants. Endophyte-mediated biocontrol consists of
two components. The first is based on a direct activity on the
pathogenic strain via parasitism and antibiosis (Benhamou et al.,
2002; Le Floch et al., 2009) or by competing for nutrients or root
niches. Several excellent reviews are available describing these
non-plant mediated processes (Fravel et al., 2003; Alabouvette
et al., 2009; Vos et al., 2014; Latz et al., 2018). In this review we
focus on the other component of biocontrol, the indirect plant-
mediated resistance response triggered by Fo endophytes, called
endophyte-mediated resistance (EMR).
F. OXYSPORUM CONFERS BIOCONTROL
IN VARIOUS PLANT SPECIES AGAINST
ROOT PATHOGENS

The ability of a large variety of endophytic Fo strains to confer
biocontrol has been reported in many independent studies
implying that it is a generic feature for Fo (Table 1). This idea
is supported by a study in which over 200 different non-
pathogenic Fo strains isolated from a tomato field were able to
confer biocontrol in tomato, albeit to various degrees (Bao et al.,
2004). Another observation is that Fo-based biocontrol is
effective in a wide variety of plant species including both
monocot and dicot species. This suggests that biocontrol is an
ancient property as these families diverged over 200 million years
ago (Wolfe et al., 1989). A number of oomycete-caused diseases
can also be suppressed by Fo. For instance, Fo47 is reported to
reduce disease incidence caused by Pythium oligandrum in
tomato (Le Floch et al., 2009), Pythium ultimum in cucumber
February 2020 | Volume 11 | Article 37

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


de Lamo and Takken Fusarium Induces Root-Specific Resistance
TABLE 1 | Fusarium oxysporum (Fo)-mediated biocontrol in various plant species.

Fo Host plant Pathogen (P) Inoculation method Protected
organ

Biocontrol mechanism Publication

Fon
(60-3A)
Fon
(ATCC 18467)
Foc
(ATCC 16416)

Watermelon
(C. lanatus)

Fon ATCC
62940
C. lagenarium

Fo: root inoc
Fo f.sp. niveum: root inoc
C. lagenarium: leaf inoc

Root and
shoot

Induced resistance (Biles and Martyn,
1989)

Fo f.sp. dianthi
(WCS816)

Tomato
(S. lycopersicum)

Fol
(WCS 801)

Co-inoc
+split root system

Root Induced resistance (Kroon et al., 1991)

5a1
T
Fop2
11V
N1.5

Tomato
(S. lycopersicum)

Fol Fo: soil inoc
P: root inoc

Root Induced resistance (Tamietti et al., 1993)

Fo47 Tomato
(S. lycopersicum)

Fol8 and Fol8B Soil inoc
± split root system

Root Induced resistance (Fuchs et al., 1997)

Fo47
CWB 306
CWB 307
*

Asparagus
(A. officinalis)

Foa Soil inoc Root Competition for nutrients (Blok et al., 1997)

Fol218
Fon23M
Fon18M

Tomato
(S. lycopersicum)
Muskmelon
(C. melo)

Fol4287
Fon23M
Fon18M
Fon11-27

Fo: root (co)inoc
P: root inoc

Root Induced resistance and competition (Huertas-Gonzalez
et al., 1998)

Fo47 Tomato
(S. lycopersicum)

Fol32 Fo: soil pre-inoc
± split root system
P: soil inoc

Root Induced resistance and antagonism (Duijff et al., 1998)

Fo47 Tomato
(S. lycopersicum)

Fol8 Soil pre-inoc Root Induced resistance (Fuchs et al., 1999)

Fo47
**

Flax
(L. usitatissimum)

Foln3GUS Co-inoc Root Competition for carbon and iron (Duijff et al., 1999)

Fo47
CS-20

Tomato
(S. lycopersicum)
Watermelon
(C. lanatus)

Fol IA-7
Fob MD-1
Fon CS93-8

Fo: soil pre-inoc
± split root system
P: soil inoc

Root Induced resistance and competition (Larkin and Fravel,
1999)

Fo47 Eucalyptus
(E. viminalis)

Foeu1 Root co-inoc Root Competition for infection sites (Salerno et al., 2000)

CS-20 Basil
(O. basilicum)

Fo-B1 Fo: Drench inoc
P: present in seeds

Root Induced resistance (Fravel and Larkin,
2002)

CWB312
CWB314
CWB318

Asparagus
(A. officinalis)

Foa Fo: soil pre-inoc
± split root system
P: soil inoc

Root Induced resistance (He et al., 2002)

Fo47 Cucumber
(C. sativus)

P. ultimum
(BARR 447)

Fo: soil pre-inoc
P: root inoc

Root Antibiosis, mycoparasitism and
induced resistance

(Benhamou et al.,
2002)

Fo47 Flax
(L. usitatissimum)

Foln3 Soil co-inoc Root - (Trouvelot et al., 2002)

CS-20
CWB312
CWB314
CWB318
Fo47

Asparagus
(A. officinalis)

Foa Fo: root/soil pre-inoc
P: soil inoc

Root Induced resistance and competition (Elmer, 2004)

205 Fo from
tomato fields
in Florida
*

Tomato
(S. lycopersicum)

Fol 32SK-3 Fo: soil inoc
P: present in seeds

Root Antagonism (Bao et al., 2004)

Fol
(ATCC 48112)

Pepper
(C. annuum)

P. capsici
UDC1PC
V. dahliae
B. cinerea
B0510

Fo: root pre-inoc
V. dahliae: root inoc
P. capsici: soil inoc
B. cinerea: leaf drop-inoc

Root and
Shoot

Induced resistance (Díaz et al., 2005)

Fo47 Tomato
(S. lycopersicum)

Forl
(ZUM 2407)

Soil co-inoc Root Induced resistance and competition (Bolwerk et al., 2005)

(Continued)
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(Benhamou et al., 2002) and Phytophthora capsici in pepper
(Veloso and Díaz, 2012). A common property among these
pathogens is that they infect roots, but unlike most pathogenic
Fo strains not all colonize the vasculature, implying that EMR is
not vasculature-specific.

Two studies report on Fo-induced biocontrol that is not
exclusively targeted against a root pathogen (Table 1). Pre-
inoculation of watermelon roots with Fo f.sp. cucumerinum
(Foc) (a pathogen on cucumber) reduced lesion sizes of
Colletotrichum lagenarium infected leaves (Biles and Martyn,
1989). The other example details enhanced tolerance to Botrytis
Frontiers in Plant Science | www.frontiersin.org 4
cinerea in pepper plants pre-inoculated with Fol (a tomato
pathogen) (Díaz et al., 2005). Based on our literature survey
Fo-induced EMR appears to be mostly root-confined.
THE ROOT COLONIZATION PATTERN
OF F. OXYSPORUM PATHOGENS
DIFFERS FROM THAT OF ENDOPHYTES

Root colonization by Fo endophytes and pathogens has been
extensively studied. In this chapter, we compare the root
TABLE 1 | Continued

Fo Host plant Pathogen (P) Inoculation method Protected
organ

Biocontrol mechanism Publication

CAV 255
CAV 241
Fo47
*

Banana
(M. acuminata)

Fo f.sp.
cubense
(CAV 045)

Fo: soil pre-inoc
P: soil inoc

Root – (Nel et al., 2006)

Fo47 Tomato
(S. lycopersicum)

Fol8 Soil co-inoc Root Competition for nutrients (Olivain et al., 2006)

Fo52
Fo47
Fo47b10

Chickpea
(C. arietinum)

Fo f.sp. ciceri Fo: soil pre-inoc
± split root system
P: soil inoc

Root Induced resistance (Kaur and Singh, 2007)

Fo47 Tomato
(S. lycopersicum)

Fol8 Root co-inoc Root competition (Nahalkova et al., 2008)

Fo47
***

Tomato
(S. lycopersicum)

P. oligandrum
B. cinerea

Root co-inoc Root and
Shoot

Antibiosis, mycoparasitism and
induced resistance

(Le Floch et al., 2009)

Fo (F2) Eggplant
(S. melongena)

V. dahliae Fo: root pre-inoc
± split root system
P: root inoc

Root competition (Pantelides et al., 2009)

Fo47 Pepper
(C. annuum)

V. dahliae
UDC53Vd
P. caspici
PC450
B. cinerea
B0510

Fo: root pre-inoc V. dahliae:
root inoc
P. capsici: soil/leaf inoc
B. cinerea: leaf drop-inoc

Root induced resistance and antagonism/
competition

(Veloso and Díaz, 2012)

Fo47 Tomato
(S. lycopersicum)

Fol8 Fo: root pre-inoc
P: root inoc

Root Induced resistance (Aimé et al., 2013)

CS-20 Cucumber
(C. sativus)

Foc Fo: root pre-inoc P: root
inoc

Root Induced resistance (Pu et al., 2014)

Fo47 Tomato
(S. lycopersicum)

Forl12 Fo: soil pre-inoc
± split root system
P: soil inoc

Root Induced resistance and competition (Aï cha et al., 2014)

Fo47 Pepper
(C. annuum)

V. dahliae
(UDC53Vd)

Fo: root pre-inoc
P: root-inoc

Root Induced resistance and competition (Veloso et al., 2016)

Fo47 Tomato
(S. lycopersicum)

Fol007 Root co-inoc Root Induced resistance and competition (de Lamo et al., 2018)

Fo47
****

Watermelon
(C. lanatus)
Cotton
(Gossypium sp.)
Eggplant
(S. melongena)

Fon
Fo f.sp.
vasinfectum
V. dahliae

Soil inoc Root Competition (Zhang et al., 2018)

Fo47 Tomato
(S. lycopersicum)

Fol4287 Root co-inoc Root Induced resistance and competition (Constantin et al., 2019)
February 2020
Fo endophytes are depicted in the first column; root or soil inoculation is abbreviated as root- or soil inoc; when endophytes and pathogen have been inoculated separately they are
abbreviated as “Fo” and “P” respectively; otherwise as co-inoc, ± split root system indicate that both setups have been used in the study. Inoculations are typically performed by incubating
roots in a spore suspension or by adding spores to the soil as indicated.
*Screening including several Fo strains.
**Fo47 inoculum also tested in combination with Pseudomonas sp.
***Fo47 inoculum mixed with Trichoderma harzianum.
****Fo47 inoculum also tested in combination with different actinomycete bacteria.
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colonization process of Fo endophytes with that of pathogens. In
our comparison we include colonization of ‘incompatible
interactions’ in which a pathogenic Fo strain colonizes a
resistant host, which does not result in disease emergence.

Spore Germination
The first stage of the colonization process starts with Fo spores or
hyphae that grow in the vicinity of a root. Addition of sugar to
the soil induces chlamydospore germination of pathogenic Fol
and Fo f.sp. basilici (Larkin and Fravel, 1999). In natural settings
root exudates presumably provide these carbohydrates as
exudates from different crops enhance germination of
microconidia of Fol and Fo f.sp. radicis-lycopersici (Forl)
pathogens (Steinkellner et al., 2005). Hyphal exudations may
also play a role in conidia germination as Fo uses autocrine
pheromone signaling to control germination in a conidial-
density dependent manner (Vitale et al., 2019). Some root
pathogens effectively grow towards roots using chemotropism
(Yao and Allen, 2006). While earlier studies found no evidence of
chemotaxis toward tomato roots by Fo47 or the pathogens Fol or
Forl (Steinberg et al., 1999; Olivain et al., 2006) a recent study
showed that peroxidases secreted by tomato roots elicit Fol
chemotropism towards roots (Turrà et al., 2015; Nordzieke
et al., 2019). Altogether, it seems that root exudations trigger
spore germination and induces directional mycelial growth. At
this pre-colonization stage, no differences are noticeable between
endophytic and pathogenic Fo strains.

Host Colonization
Upon germination, both Fo endophytes and pathogens colonize
the root surfaces of host and non-host plants. Contact with the
root triggers hyphal branching, after which Fo produces hyphal
swellings to invade the root. The fungal hyphae enter plant roots
via wounds, cracks in the epidermis, lateral root emergence
points, or by direct penetration of the root tip depending on
the Fo strain and plant species involved. Hyphae reach the
vascular stele via the apoplast of the root cortex. In some
cases, intracellular growth is noticeable along with local host
cell-death, a phenomenon observed more often among non-
pathogenic strains (He et al., 2002; Olivain et al., 2003; Humbert
et al., 2015; Gordon, 2017). Both pathogenic and non-pathogenic
strains colonize the root cortex (Gordon, 2017), but although the
initial colonization pattern is similar, the extent and pattern of
colonization differs during later stages. The amount of biomass
of a pathogenic strain in the root is typically higher than that of
an endophyte. This difference is already apparent at early stages.
At 48 h post-inoculation (hpi) higher amounts of fungal biomass
for the Fo40 pathogen were detected in roots of soybean plants
than for the endophytic Fo36 (Lanubile et al., 2015). A similar
difference was reported for other systems, like the interaction
between tomato and Fo47 or Forl. Two weeks post-inoculation
Fo47 biomass was 10-fold less than that of the pathogen (Validov
et al., 2011). These observations imply that in early stages of the
interaction Fo endophytes are less efficient root colonizers
than pathogens.
Frontiers in Plant Science | www.frontiersin.org 5
Besides the amount of fungal biomass also the root
colonization pattern differs between Fo pathogens and
endophytes. Typically, only pathogenic strains are able to reach
the xylem vessels from where they colonize above-ground
tissues. The induced occlusions of the xylem vessels, aimed to
restrict pathogen progress, results in the classical wilting
symptoms of infected plants (Gordon, 2017). A well-studied
example is the interaction between pea roots, Fo47, and the
pathogen Fo f.sp. pisi. Whereas Fo47 colonization is restricted to
the root surface and outermost cell layers of the cortex, the
pathogen massively invades the deeper root tissues including the
vasculature (Benhamou and Garand, 2001). A similar pattern is
seen upon Fo colonization of tomato. When grew in
hydroponics, Fo47 and Fol8 both efficiently colonized the
surface of tomato tap roots following attachment of the
microconidia to the root hair zone. Subsequently, both strains
grew towards the elongation zone until they reached the root
apex. Whereas Fol8 intensively colonized the deeper root tissues
and eventually reached the vasculature, the endophyte was
confined to the epidermis and cortex (Nahalkova et al., 2008).
In line with these observations, Fo47 proteins were not identified
in xylem sap of Fo47-inoculated soil-grown tomato plants,
whereas Fol proteins were detected in sap of Fol-infected
plants (de Lamo et al., 2018). This difference indicates that
even at later stages of root colonization Fo47 does not reach
the vasculature. Contrarily, Fo47 was reported to colonize xylem
vessels of eucalyptus (Salerno et al., 2000) and the Fo endophyte
CS-20 was found to colonize xylem vessels of cucumber (Pu
et al., 2014). An explanation for the vascular presence of the latter
two endophytic strains could be the clipping of the roots prior to
inoculation, providing direct vascular access to the endophyte.

In incompatible interactions, the first stages of the root
colonization pattern are similar to that of a compatible
interaction. The pathogen colonizes the root cortex, but in
contrast to a purely endophytic strain, the pathogen frequently
reaches the vasculature of a resistant host. Examples of vascular
colonization of a resistant host are chickpea and tomato roots
inoculated by either avirulent Fo f.sp. ciceris or Fol (Mes et al.,
2000; Jimenez-Fernandez et al., 2013; van der Does et al., 2018).
Recently vascular colonization of tomato plants carrying three
different classes of resistance (R) gene types by Fol was
compared. Although the plasma membrane-localized immune
receptors (I and I-3) restricted colonization to a larger extent
than the intracellular receptor (I-2), vascular colonization was
observed in all cases (van der Does et al., 2018). The amount of
fungal biomass in a resistant plant, however, is low and fungal
proteins cannot be detected in the xylem sap of infected plants
(de Lamo et al., 2018). These findings are in line with the low
number of hyphae observed in vessels of a resistant tomato
variety (Mes et al., 2000). Inoculation of resistant cabbage roots
with Fo f.sp. conglutinans also resulted in marginal colonization
of the vasculature and fungal proteins were not identified in the
xylem sap either (Pu et al., 2016).

The general pattern is that Fo endophytes, similar to
endophytes such as Serendita indica (Jacobs et al., 2011) and
arbuscular mycorrhizal fungi (Gadkar et al., 2001), are mostly
February 2020 | Volume 11 | Article 37
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root surface- and cortex-colonizers. Extensive colonization of the
root cortex and vasculature is typically restricted to pathogens, a
property that correlates with enhanced secretion of cell wall-
degrading enzymes by these strains (Jonkers et al., 2009).
Pathogenic strains are also able to enter and, to a limited
extent, colonize the vasculature of a resistant host. Upon (co-)
inoculation of an endophyte and a pathogen both strains
coincide at the same root tissues during the early stages of the
interaction, but become spatially separated when the pathogen
invades the vascular bundle. Therefore, disease protection
induced by Fo endophytes at these later stages is likely
plant-mediated.
F. OXYSPORUM ENDOPHYTISM AND
PATHOGENICITY ARE GENETICALLY
DETERMINED BY THE FUNGUS–HOST
COMBINATION

Bioassays can reveal whether a strain is pathogenic on a specific
host, or on a specific variety of that host, but these assays cannot
establish whether a strain is non-pathogenic. Given the narrow
host-range of pathogenic Fo strains (mostly restricted to single
plant species) it would be necessary to inoculate a particular
strain on all possible plant species and varieties to conclude that
it is likely a non-pathogen in case of a negative outcome. Giving
the impracticality of such an approach, and the limitation of
classical taxonomic features, there has been ample focus on
identifying molecular features that could be used to distinguish
ff.spp. and to diagnose pathogenic isolates and discriminate them
from non-pathogenic strains.

Phylogenetic analyses of the Fo species complex using
conserved gene sequences such as those encoding elongation
factor 1a typically result in phylogenetic trees in which Fo
pathogens and endophytes are distributed together over
different clades (Wong and Jeffries, 2006; Ellis et al., 2014;
Pinaria et al., 2015). Likewise, trees based on genomic markers
such as restriction fragment length polymorphism of the
ribosomal intergenic spacer regions, or on mating type results
in trees in which the ff. spp. are polyphyletic and cluster together
with Fo endophytes in various clades (Alves-Santos et al., 1999;
Abo et al., 2005; Ellis et al., 2014; Nirmaladevi et al., 2016). Even a
multiple-sequence alignment of 441 conserved core genes from
various Fo genomes did not result in a tree that enabled
differentiating ff. spp. or allowed unambiguous identification of
non-pathogenic strains (van Dam et al., 2018).

A decade ago, however, it was reported that the presence of a
lineage-specific chromosome determines pathogenicity of Fol
toward tomato (Ma et al., 2010). Horizontal transfer of a
pathogenicity chromosome from Fol to Fo47 turned the
endophyte into a tomato pathogen (Ma et al., 2010).
Subsequent studies revealed that chromosome transfer from a
cucurbit-infecting Fo strain could transform Fo47 into a cucurbit
pathogen (van Dam et al., 2017). Vice versa, loss of a dispensable
pathogenicity chromosome from a Fol strain resulted in loss of
Frontiers in Plant Science | www.frontiersin.org 6
pathogenicity (Vlaardingerbroek et al., 2016). Hence,
pathogenicity appears to correlate with the presence of a
pathogenicity chromosome. These pathogenicity chromosomes
differ from core chromosomes by a high content of transposable
elements and a low gene density (Ma et al., 2010). Genetic
analysis of Fol revealed that its pathogenicity chromosome
carries the genes encoding the putative host-specific virulence
proteins (effectors) that the fungus secretes in the tomato xylem
sap following infection (Schmidt et al., 2013). Some of these
Secreted In Xylem, or SIX, proteins such as SIX1 (Avr3) (Rep
et al., 2004), SIX3 (Avr2) (Di et al., 2017b), SIX4 (Avr1)
(Houterman et al., 2008) and SIX6 (Gawehns et al., 2014) are
genuine effectors and contribute to fungal virulence on tomato.
Many of these effectors were found to be specific for the tomato-
infecting strain, providing the means to identify this pathogen
based on its effector profile. Based on the features of these Fol SIX
effector genes an effector prediction pipeline could be
constructed in which putative effector genes in Fo can be
identified based on: 1) a relatively small size (>25 aa and <300
bp), 2) presence of a signal peptide for secretion, and 3)
proximity to a “miniature impala” transposable element (van
Dam et al., 2016). Analyses of predicted Fo effectoromes revealed
that these are shared between strains from a f.sp. infecting the
same host, while they are divergent for those infecting other
plant species, thereby allowing distinction of ff.spp. based on
their effector profiles (Lievens et al., 2009; van Dam et al., 2016;
van Dam et al., 2018). Hence, in contrast to phylogenetic
analyses, Fo effectorome exploration proves a powerful tool to
predict pathogenicity and the potential plant host for a given
strain. Whether a potential pathogen is indeed able to cause
disease ultimately depends on the corresponding genotype of the
host. If the host carries a resistance gene recognizing a specific
effector of the pathogen this may result in activation of gene-for-
gene-based resistance response restricting host colonization
(Flor, 1956; Jones and Dangl, 2006). For instance, the Fol
effector proteins Avr1, Avr2, or Avr3 are recognized by the
tomato resistance proteins I, I-2, or I-3 (Simons et al., 1998;
Catanzariti et al., 2015; Catanzariti et al., 2017) resulting in the
activation of a resistance response in plants carrying these genes
(Houterman et al., 2008). Similarly, the effector protein AvrFom2
from the melon pathogen Fo f.sp. melonis can be recognized by
the melon resistance protein Fom2 thereby conferring avirulence
to the fungus (Risser et al., 1976; Schmidt et al., 2016).

Non-pathogenic strains share a set of conserved putative
effector genes with pathogenic strains, but typically carry much
fewer effector candidates and no or few host-specific effectors
(van Dam et al., 2016). This notable difference provides a means
to distinguish potential pathogens from non-pathogens by the
number of candidate effectors they carry. It is tempting to
speculate that the candidate effectorome of non-pathogens
determines their capacity to colonize roots and confer EMR.
Unfortunately, little is known of the role of effectors for Fo
endophytes. One putative effector, CS20EP, of the EMR-
conferring CS-20 strain was reported to trigger a defense
response in tomato against Fol when applied prior to
inoculation with the pathogen (Shcherbakova et al., 2015). The
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protein was identified in the culture filtrate of in vitro-grown
fungus. However, whether the CS20EP gene is actually expressed
during host root colonization awaits future study, as does its role
in EMR, for which a knockout strain should be assessed.
Altogether, the predicted effector profile from a Fo strain
allows its classification as a likely endophyte or as a putative
(a)virulent pathogen on a given host. The increasing number of
Fo genomes becoming available allows f.sp.-specific effector
candidates to be identified and to more precisely predict host-
specific pathogenicity of a given strain. Functional analysis of
these effectors, and identification of their host targets, could
provide new leads to combat pathogens (Gawehns et al., 2013).
THE TIMING AND AMPLITUDE OF ROOT
RESPONSES UPON COLONIZATION
BY ENDOPHYTIC OR PATHOGENIC
F. OXYSPORUM DIFFER

Plant roots are typically exposed to a highly diverse soil
microbiota (Hacquard et al., 2017). Plants recognize
microorganisms via microbe-associated molecular patterns
(MAMPs) that are present in both pathogens and non-
pathogens (Henry et al., 2012). Well-known fungal MAMPs
are chitin (Kaku et al., 2006) and ß-glucan (Cheong and Hahn,
1991). MAMP recognition is mediated by pattern recognition
receptors (PRRs) located at the cell surface (Macho and Zipfel,
2014) such as the CERK1 chitin receptor of Arabidopsis (Miya
Frontiers in Plant Science | www.frontiersin.org 7
et al., 2007). Forward genetics in Arabidopsis identified the
receptor-like kinase MIK2 as a potential PRR and as a crucial
component to recognize and respond to MAMPs from Fo
(Coleman et al., 2019). PRRs are mainly expressed in root
zones vulnerable to pathogen entry resulting in a heterogenic
and tissue-specific responsiveness to different MAMPs
(Chuberre et al., 2018). Responsiveness to chitin, for instance,
is mostly confined to the mature zone and other parts of the root
system are relatively insensitive to this MAMP and do not mount
immune responses upon exposure to chitin (Millet et al., 2010;
Coleman et al., 2019). This heterogeneity could explain why Fol
typically does not penetrate mature root zones (Mes et al., 2000).
In the responsive zones MAMP recognition results in activation
of pattern-triggered immunity (PTI), which confers resistance to
a wide variety of potential pathogens (Jones and Dangl, 2006;
Bigeard et al., 2015).

Activation of PTI induces a variety of early signaling responses,
such as a cellular Ca2+ and H+ influx resulting in extracellular
alkalinization, production of reactive oxygen species (ROS), and
phosphorylation of mitogen-associated protein kinases (MAPKs)
(Bigeard et al., 2015; Chuberre et al., 2018). A number of PTI-
associated signaling responses that have been monitored in cell
cultures upon Fo treatment are depicted in Figure 1. Cell cultures
have been instrumental to study early plant responses to Fo
(Olivain et al., 2003; Humbert et al., 2015). Flax cell cultures
exposed to germinated microconidia of Fo47 show a stronger
extracellular alkalinization response than cells treated with
pathogenic Fo f.sp. lini (Foln) (Figure 1) (Olivain et al., 2003).
Also the Ca2+ influx was higher upon Fo47 exposure than to Foln
FIGURE 1 | Schematic representation of plant responses upon Fusarium oxysporum (Fo) inoculation. Responses of plants following exposure to a Fo endophyte (A)
or a pathogen (B). Pictures on the left show representative phenotypes of tomato plants upon inoculation with either an endophytic or a pathogenic Fo strain. Middle
panels show root colonization by GFP-labeled Fo strains visualised by fluorescence microscopy. The right panel summarizes early signaling responses upon Fo
exposure to plant cell cultures (Olivain et al., 2003; Humbert et al., 2015). The response amplitudes are color-coded from green (lowest) to red (highest).
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application (Olivain et al., 2003). Ca2+ influx activates calmodulin
(CaM), and in cucumber roots the CaM signal transduction
pathway was more strongly induced upon CS-20 colonization
than when treated with pathogenic Foc (Pu et al., 2014),
implying a weaker PTI induction by pathogenic strains.

ROS, besides being signaling molecules, have direct toxic
effects on microbes (O'Brien et al., 2012) and can induce cell
death thereby limiting progression of biotrophic pathogens (Mur
et al., 2008). Within minutes Fo47 and Foln induce a similar
early ROS burst in flax cells (Olivain et al., 2003). Fo47, however,
also triggers a second more vigorous burst 3 h post-exposure,
which is absent upon Foln treatment. Fo47 also induced more
cell death than Foln especially at 14 hpi. A similar observation
was made using tomato cell cultures incubated with germinated
microconidia of Fo47 or Fol (Humbert et al., 2015). Analogously,
inoculation of non-pathogenic Fo that triggers EMR against
pathogenic Foa in asparagus induced a cell death response
(≈10% cell death) in roots while no cell death was detected
when Foa alone was inoculated (He et al., 2002). Transcriptome
analysis of soybean roots infected by pathogenic Fo pathogen
revealed upregulation of several MAPKs at a relative late stage
(72 hpi) of infection, while none was induced by an endophytic
strain (Lanubile et al., 2015). Whether MAPKs are differentially
phosphorylated in an interaction between roots and Fo
endophytes or pathogens remains a question for future study.
Taken together, whereas both endophytes and pathogenic Fo
strains trigger early PTI signaling, these responses are typically
less pronounced in the presence of the latter, suggestive of
stronger immune suppression by pathogenic strains.

An effective PTI response results in a transient, local and systemic
transcriptional reprogramming of the host (Boller and Felix, 2009;
Millet et al., 2010; Bigeard et al., 2015; Chuberre et al., 2018). For
instance, in Fo47-inoculated pepper roots a transient expression of a
PR-1 protein, a chitinase and a sesquiterpene cyclase (involved in
capsidiol synthesis) was observed at 48 hpi, after which expression
returned to basal levels at 120 hpi (Veloso and Díaz, 2012). In tomato
roots, Fo47 and Fol did not differentially affect expression of a set of
PR marker genes when monitored at 48, 72, or 96 hpi: two chitinases
(CHI9 and CHI3), two glucanases (GLUB and GLUA), a
lypoxygenase (LOXD) and PR-1a (Aimé et al., 2013). However,
during later stages of infection at 6 to 22 days post-inoculation
(dpi), Fo47, unlike Fol, did not trigger accumulation of PR transcripts
(Aimé et al., 2008). In contrast, in cucumber roots CS-20 did induce
major transcriptional changes, and at 72 hpi there was a strong
induction of PR3, LOX1, PAL1, andNPR1 and of CaMs,CsCam7 and
CsCam12 being the strongest induced. At the same time point
pathogenic Foc induced NPR1 and to a lesser extent PR3 and
PAL1 expression (Pu et al., 2014). RNA-seq analysis of soybean
roots inoculated with endophytic or pathogenic Fo revealed that the
latter induced more, and stronger, transcriptional changes at 72 and
96 hpi (Lanubile et al., 2015). The literature is ambiguous regarding
transcriptional reprogramming in plant–Fo interactions, whichmight
originate from dissimilarities in experimental setup, sampling time,
and/or plant-endophyte combination (Table 1). Together the data
shows that transcriptional reprogramming following Fo endophyte
colonization varies depending on the strain, but typically is transient
Frontiers in Plant Science | www.frontiersin.org 8
and returns to basal levels within days. The observation that CS-20
affects transcriptional responses more strongly than Fo47 correlates
with CS-20 being a more potent EMR-inducer (Larkin and Fravel,
1999). Xylem sap proteome analysis of susceptible tomato plants
showed a significant change in abundance of up to 92% of the
identified proteins at 2 weeks post-inoculation of Fol (Gawehns et al.,
2015; de Lamo et al., 2018). Among the proteins showing the highest
induction are the PR proteins PR-1 and PR-10. Contrarily, at the
same time point no significant changes were detected in the proteome
of Fo47-inoculated plants as compared to mock treatment (de Lamo
et al., 2018). In summary, the transcriptional reprogramming in
response to Fo endophytes is confined to the first days of the
interaction, while pathogenic strains induce changes mostly during
later stages when disease symptoms emerge. At these later stages,
major changes are also detected in the xylem sap proteome of
diseased tomato plants.

PTI is hypothesized to result in establishment of
physicochemical barriers such as callose depositions at the cell
walls and exudation of phytoalexins aimed at restricting microbial
invasion (Millet et al., 2010). In Fo47-inoculated pea roots, host cell-
wall penetration attempts by the endophyte appear constrained by
callose-containing papillae depositions (Benhamou and Garand,
2001). Similar observations have been made in Fo–cucumber
(Benhamou et al., 2002), Fo–flax (Olivain et al., 2003), and Fo–
tomato interactions (Le Floch et al., 2009). Fo47 also induced
accumulation of the phenolic compound caffeic acid in pepper
roots at 48 hpi (Veloso et al., 2016), whereas in tomato roots CS-20
induced accumulation of ferulic acid at 72 hpi (Panina et al., 2007).
Both compounds have in vitro antimicrobial activity to Verticillium
dahliae (Veloso et al., 2016). Pea roots colonized by Fo47 respond
by formation of an osmiophilic compound coating the secondary
wall and the pit membranes of the vessel lumen (Benhamou and
Garand, 2001). Inoculation with pathogenic Fo f.sp. pisi did not
trigger these types of responses in pea (Benhamou and
Garand, 2001).

Taken together, both Fo endophytes and pathogens trigger
local PTI responses but these appear suppressed/evaded by the
latter, likely by the secretion of host-specific effectors. Indeed, Fo
effectors have been identified that suppress PTI, a prime example
being Fol Avr2 that suppresses ROS production, callose
deposition, MAPK phosphorylation, and growth-inhibition
upon MAMP application (Di et al., 2017b). Recently, a chitin
deacetylase (PDA1) has been found to be required for
pathogenicity of Fo f.sp. vasinfectum to cotton (Gao et al.,
2019). This provides evidence of a PTI avoidance strategy as
de-acetylation of chitin converts it into chitosan, which is a poor
inducer of PTI (Gao et al., 2019). Another strategy to evade PTI
activation is masking fungal MAMPs. LysM-containing effectors
in Cladosporium fulvum are involved in chitin-binding, thereby
preventing their perception by the host (Bolton et al., 2008).
LysM domain-containing effector genes are also present in Fo
genomes (de Jonge et al., 2010; de Sain and Rep, 2015) and a
LysM-containing protein secreted by Fol has been identified in
tomato xylem sap (Gawehns et al., 2015; de Lamo et al., 2018).
However, further research should clarify whether its role in
pathogenicity is similar to that of C. fulvum. In summary,
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successful suppression of PTI by Fo pathogens seems required to
cause disease and strains unable to do so, e.g. because they lack
the proper host-specific effectors, do not cause disease and exert
endophytic lifestyles.
EMR INVOLVES LOCALIZED CELL DEATH
AND ACCUMULATION OF SPECIFIC PR
PROTEINS IN THE XYLEM SAP

The molecular and physiological changes in roots during EMR
have been studied in some detail and were mostly focused on
changes in transcriptome, metabolome, and xylem sap proteome.
Whereas Fo endophytes typically trigger an early, minor, and
transient change in gene expression, pathogenic strains induce a
major and later (days) transcriptional reprogramming during the
onset and development of disease (see The Timing and
Amplitude of Root Responses Upon Colonization by Endophytic
or Pathogenic F. oxysporum Differ). In tri-partite interactions
surprisingly little changes in gene expression have been reported.
One study of Fo47-inoculated tomato roots challenged with Fol
revealed induction of transcripts encoding an acidic extracellular
chitinase (CHI3), an acidic extracellular ß-1,3-glucanase
(GLUA), and PR-1a 48 h after inoculation (Aimé et al., 2013).

Metabolomic studies revealed that pre-treatment of pepper
plants with Fo47 2 days prior to V. dahliae inoculation enhanced
the accumulation (at 8 and 24 hpi) of a phenolic acid, chlorogenic
acid, in the roots in response to the latter (Veloso et al., 2016).
Phenolic acids are involved in fortification of cell walls when cross-
linked to cell wall polymers by a ROS-catalyzed process (McLusky
et al., 1999; Bubna et al., 2011; O'Brien et al., 2012). Phenolics,
together with callose, ROS, peroxidases, and structural proteins
form the major constituents of the papillae depositions that are
proposed to block cell entry of Fo (Underwood, 2012). In
agreement, pre-treatment of cucumber roots with Fo47 resulted
in more papillae depositions preventing P. ultimum to penetrate
host cells (Benhamou et al., 2002). Another physiological aspect of
EMR is the endophyte-induced host cell death during early stages
of colonization. This phenomenon seems to be common among
non-pathogenic strains as Fo endophytes typically induce host cell
death in the root cortex to a larger extent than Fo pathogens
during early stages of infection (He et al., 2002; Olivain et al., 2003;
Humbert et al., 2015; Gordon, 2017). Noteworthy, in a
mutagenesis screen of different Fo endophytes, those losing their
ability to trigger biocontrol also showed a reduced induction of
host cell death in cell cultures despite retaining its host
colonization capabilities (Trouvelot et al., 2002; L'Haridon et al.,
2007; Alabouvette et al., 2009).

Pathogenic Fo strains show reduced vasculature colonization
upon EMR induction, which might be caused by a change in the
xylem sap proteome. To address this hypothesis the xylem sap
proteome of tomato plants inoculated with Fo47 and/or Fol was
compared (de Lamo et al., 2018). Of the 388 quantifiable proteins,
the abundance of only two proteins was strongly increased in the
tri-partite interaction as compared to the mock controls.
Accumulation of these two proteins, a b-glucanase and NP24,
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was induced 45- and 33-fold respectively as compared to the
control. b-Glucanases exert its antimicrobial activity by
hydrolyzing glucan molecules, one of the most abundant
polysaccharides in fungal cell walls (Stintzi et al., 1993).
Furthermore, the released ß-1,6-glucans act as fungus- and
oomycete-specific MAMPs triggering host immune responses
(Fesel and Zuccaro, 2016). NP24 is a member of the PR-5 family
that includes osmotin and thaumatin-like proteins (Stintzi et al.,
1993; Liu et al., 2010). PR-5 proteins exert in planta antimicrobial
activity against the pathogens Phytophthora infestans (Woloshuk
et al., 1991), P. capsici, and Fo (Mani et al., 2012) by disrupting
their plasma membrane integrity via the formation of pores
(Vigers et al., 1992). In addition, some PR-5 proteins exert ß-
1,3-glucanase activity that could contribute to their antimicrobial
activity (Grenier et al., 1999; Menu-Bouaouiche et al., 2003).
Besides a direct effect on the pathogen, overexpression of a plum
PR-5 in Arabidopsis activated the production of the phytoalexin
camalexin (El-kereamy et al., 2011). The correlation between EMR
and NP24 abundance is intriguing, as the only differentially
accumulated protein in the xylem sap of resistant tomato plants
inoculated with an avirulent Fol strain is also a PR-5 family
member. Accumulation of this xylem sap-specific PR-5x protein
was induced 158-fold upon inoculation of the avirulent pathogen.
In a compatible interaction the abundance of the protein also
increased, but to a much lower extent (de Lamo et al., 2018). The
finding that PR-5 isoforms also specifically accumulate in xylem
sap of susceptible and resistant Brassica oleracea infected with Fo
f.sp. conglutinans (Pu et al., 2016) further indicates a role for these
proteins in controlling the proliferation of pathogenic Fo strains in
the vasculature. The observation that pathogenicity-compromised
Fol strains in which specific effectors are deleted trigger an >200-
fold induction of NP24 in the xylem sap provides additional
support for this hypothesis (Gawehns et al., 2015). How these
Fol effectors affect accumulation of PR-5 isoforms in tomato is
unknown, but various plant pathogens, including V. dahliae
(Zhang et al., 2019), Blumeria graminis (Pennington et al., 2016),
and B. cinerea (Gonzalez et al., 2017), secrete effectors that directly
target PR-5 proteins, stressing their importance in plant
fungal interactions.

Altogether, Fo-based EMR seems to be a root-mediated response
that triggers, among other responses, specific accumulation of xylem
sap-localized PR-5 and ß-glucanase proteins and secretion of
phenolic compounds that together with ROS are involved in cell
wall lignification and callose depositions. Furthermore, host cell
death induced by Fo endophytes correlates with the induction of an
effective EMR response.
EMR IS DISTINCT FROM INDUCED
SYSTEMIC RESISTANCE AND SYSTEMIC
ACQUIRED RESISTANCE RESPONSES

Many studies attribute Fo-induced resistance response in plants
as the main contributor to biocontrol (Table 1). Split-root
systems, in which the Fo endophyte is spatially separated from
the pathogen, have shown that EMR can act systemically in root
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tissues (Kroon et al., 1991; Fuchs et al., 1997; Duijff et al., 1998;
Larkin and Fravel, 1999; Kaur and Singh, 2007; Pantelides et al.,
2009; Aï cha et al., 2014). The mechanism that transduce this
signal to distant root tissues is unknown. Root colonization by
endophytes such as S. indica or Trichoderma spp. triggers an
induced systemic resistance response (ISR) that relies on the
phytohormones jasmonic acid (JA) and ethylene (ET) (Shoresh
et al., 2010; Franken, 2012). Other microbes, especially avirulent
pathogens, can trigger a salicylic acid (SA)-dependent immune
response, which results in systemic acquired resistance (SAR)
(Pieterse et al., 2014). Both systemic responses prime the plant to
respond faster and stronger to subsequent pathogen attack,
thereby reducing it susceptibility to foliage-attacking pathogens
(Durrant and Dong, 2004; Fu and Dong, 2013; Pieterse et al.,
2014). The observation that Fo endophytes typically do not
confer protection to pathogens attacking above-ground tissues
(Table 1) raises the question whether EMR mechanistically
differs from ISR or SAR. Only two reports describe Fo-induced
resistance to a foliar pathogens (Biles and Martyn, 1989; Díaz
et al., 2005). It was reported that a Fol strain that is pathogenic on
tomato reduced susceptibility to B. cinerea in pepper (Díaz et al.,
2005). Pre-treatment with 1-methylcyclopropene, an inhibitor of
ET perception, compromised this Fol-induced plant protection to the
fungus. The involvement of ET in this response implies that the non-
host pathogen Fol can trigger ISR in pepper. Remarkably, Fo47
inoculation did not confer protection against B. cinerea in the same
experimental setup, although this strain triggered EMR (Veloso and
Díaz, 2012), suggesting that Fol triggers both. The other example
details the cucumber-pathogen Foc that induced systemic responses
in aerial tissues in watermelon (Biles and Martyn, 1989). It will be
interesting to investigate whether both pathogenic Fo strains carry
effectors that are recognized by these non-host plants responsible for
triggering a systemic ISR-type immune response. These examples
imply that non-host pathogenic Fo strains can induce both ISR and
EMR, while purely endophytic strains trigger only the latter response.

Whereas tomato mutants compromised in SA signaling are
hypersensitive to Fusarium wilt disease, an increased tolerance was
observed in mutants affected in ET biosynthesis or perception (Di
et al., 2017a). In contrast, susceptibility of tomato mutants deficient
in JA biosynthesis towards Fol was unaffected, showing that these
three phytohormones have distinct roles in the interaction between
tomato and pathogenic Fo (Di et al., 2017a). The interaction
between these phytohormones and Fo is complex and differs for
different pathosystems (Di et al., 2016). To elucidate the role of these
defense phytohormones in EMR, Constantin and co-workers
analyzed Fo47-induced immune responses in wild-type tomato
plants and in mutants compromised in ET, JA or SA signaling
(Constantin et al., 2019). Expression of ET marker genes (Pti4 and
ETR4) was not induced in a tri-partite tomato–Fol–Fo47 interaction
suggesting that ET is not involved in EMR (Constantin et al., 2019).
Indeed, EMR was intact in tomato lines affected in either their
ability to sense- (never-ripemutant) or produce ET (transgenic lines
constitutive expressing ACC deaminase) (Constantin et al., 2019).
Also tomato plants with a defect in JA biosynthesis (def1) were still
capable of mounting EMR upon co-inoculation with Fo47 and Fol.
These findings make involvement of ISR in EMR unlikely, as this
Frontiers in Plant Science | www.frontiersin.org 10
response requires intact ET/JA signaling pathways (Pieterse et al.,
2014). Likewise, SAR, which requires SA, appears not to be involved
as tomato lines compromised in SA accumulation (expressing
NahG) exert a functional EMR response against Fol (Constantin
et al., 2019). Together, these findings support a model in which
EMR induced by Fo47 is distinct from ISR and SAR, as these
responses require either JA/ET or SA and result in induced
resistance in shoots, unlike EMR that is mostly root confined.
DISCUSSION

Based on the data presented we propose a mechanistic model on how
Fo-induced EMR prevents disease. Figure 2 illustrates an early (≈ two
dpi) interaction between a root and Fo. Both pathogenic and non-
pathogenic Fo strains colonize the root epidermis and cortex.
Whereas pathogenic Fo strains effectively compromise immune
signaling by secreting effector proteins (Figure 2A) endophytes are
unable to do so and trigger immune activation (Figure 2B). The
transient induction of immune signaling confines the non-pathogenic
fungus to the root cortex and restricts its growth by preventing entry
into host cells by the formation of papillae and cell wall fortifications.
Together these responses prevent the fungus from reaching the
vasculature and causing disease. Localized cell death induced by Fo
endophytes (He et al., 2002; Alabouvette et al., 2009) appears to be
involved in the induction of EMR, because Fo mutants that lost their
ability to induce cell death are also unable to trigger EMR even
though they can still colonize the roots (Alabouvette et al., 2009).
Endophytes such as Harpophora oryzae or the phylogenetically
distant basidiomycete S. indica, are also known to trigger localized
cell death upon root colonization (Deshmukh et al., 2006; Su et al.,
2013). It is tempting to speculate that induction of host cell death by
endophytes may be a generic property required for EMR induction.
Possibly cell death primes, or potentiates, immune responses to an
extent that they can no longer bemitigated by the effectors secreted by
the pathogen. The potentiated immune responses restrict pathogen
development in a tri-partite interactions and results in a reduced
xylem sap colonization (Figure 2C). Although pathogenic Fo strains
colonize the vasculature in tri-partite interactions their proliferation is
reduced as are the disease symptoms. We speculate that the reduced
ability to colonize the vasculature is in part due to the increased
abundance of PR-5 protein family members and plant-produced ß-
glucanases. Assessing the biocontrol properties of Fo in plants in
which these genes are knocked-out can put this hypothesis to the test.
CONCLUSION

Although being studied for over more than three decades the
mechanism underlying EMR remains elusive. Understanding
this inducible defense mechanism, which confers protection
against root-invading vascular pathogens, holds potential for
improved control of wilt diseases without affecting the
conventional defense pathways. Future studies focusing on the
nature of the systemic signal, the role of secondary metabolites,
PR protein production, and papillae formation in tri-partite
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interactions will be instrumental to get a better understanding of
the mechanism underlying EMR. Elucidating the relation
between localized host cell death and EMR will reveal whether
damage merely amplifies, or is essential, to trigger this immune
response. Studying the potential role of host-specific and generic
effector candidates in modulating EMR will increase our
understanding of the endophytic side of the interaction,
possibly allowing selection of endophytic strains conferring
robust biocontrol in agricultural settings. A concern is that
horizontal chromosome transfer from pathogenic Fo strains to
the applied Fo endophytes could turn the latter into pathogens.
Whether chromosome transfer occurs in natural setting should
be investigated before agricultural application.
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