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Introduction: Ribosomal DNA (rDNA) loci have been widely used for identification of
allopolyploids and hybrids, although few of these studies employed high-throughput
sequencing data. Here we use graph clustering implemented in the RepeatExplorer (RE)
pipeline to analyze homoeologous 5S rDNA arrays at the genomic level searching for
hybridogenic origin of species. Data were obtained from more than 80 plant species,
including several well-defined allopolyploids and homoploid hybrids of different
evolutionary ages and from widely dispersed taxonomic groups.

Results: (i) Diploids show simple circular-shaped graphs of their 5S rDNA clusters. In
contrast, most allopolyploids and other interspecific hybrids exhibit more complex graphs
composed of two or more interconnected loops representing intergenic spacers (IGS). (ii)
There was a relationship between graph complexity and locus numbers. (iii) The
sequences and lengths of the 5S rDNA units reconstituted in silico from k-mers were
congruent with those experimentally determined. (iv) Three-genomic comparative cluster
analysis of reads from allopolyploids and progenitor diploids allowed identification of
homoeologous 5S rRNA gene families even in relatively ancient (c. 1 Myr) Gossypium and
Brachypodium allopolyploids which already exhibit uniparental partial loss of rDNA
repeats. (v) Finally, species harboring introgressed genomes exhibit exceptionally
complex graph structures.

Conclusion: We found that the cluster graph shapes and graph parameters (k-mer
coverage scores and connected component index) well-reflect the organization and
intragenomic homogeneity of 5S rDNA repeats. We propose that the analysis of 5S rDNA
cluster graphs computed by the RE pipeline together with the cytogenetic analysis might
be a reliable approach for the determination of the hybrid or allopolyploid plant species
parentage and may also be useful for detecting historical introgression events.

Keywords: 5S rRNA genes, allopolyploidy, hybridization, evolution, graph structure clustering, high-throughput
sequencing, repeatome
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INTRODUCTION

It is well-established that all modern plant species have
experienced at least one whole genome duplication and that
many also have interspecific hybridization and recurrent
introgression in their recent history (Wendel, 2015; Alix et al.,
2017; Nieto Feliner et al., 2017; Van De Peer et al., 2017).
Documenting recent allopolyploidy is relatively straightforward
using cytogenetic analysis and genome size measurements, since
allopolyploids have twice as many chromosomes (or more) as the
parental species. Identification of homoploid hybrids is more
difficult since the chromosome number and genome size are
often similar to that of the parental species (Nieto Feliner et al.,
2017). Evolutionary young allopolyploids and other hybrids tend
to retain fixed polymorphisms at protein-coding and non-coding
loci. These duplicated loci are called homoeologs (Glover et al.,
2016) and are useful for documenting parentage as well as
understanding the dynamics of polyploid genomes (Yoo et al.,
2014; Wendel, 2015; Bourke et al., 2018). Older allopolyploids
can have experienced episodes of intergenomic translocation,
dysploidy, gene conversion, localized deletions, and other genetic
events, leading eventually to diploidization of the genome
(Wendel, 2015; Wendel et al., 2018).

Ribosomal RNA genes encoding 5S, 5.8S, 18S, and 26S
ribosomal RNA are ubiquitous in plants and are organized
into arrays containing hundreds to thousands of tandem
repeats at one or more genomic loci (Hemleben and Zentgraf,
1994; Nieto Feliner and Rosselló, 2007; Roa and Guerra, 2012;
Garcia et al., 2017). Due to their rapidly diverging intergenic
(IGS) and internally transcribed spacers (ITS), rDNA loci have
become popular taxonomic markers revealing allopolyploidy and
other interspecific hybridization in many plant and animal
systems (Alvarez and Wendel, 2003; Poczai and Hyvonen,
2010; Nieto Feliner and Rossello, 2012). The internet searches
using *ITS* and *allopolyploidy* resulted in more than 650 hits
in Web of Science for just 2019. Most studies have used classical
single clone sequencing approaches whereas high-throughput
data have only rarely been employed and are limited to the 35S
(45S) rDNA (Matyasek et al., 2012; West et al., 2014; Boutte et al.,
2016). The analysis of 5S rDNA is also informative and has been
successfully used in many phylogenetic studies (Cronn et al.,
1996; Fulnecek et al., 2002; Baum et al., 2004; Besendorfer et al.,
2005; Volkov et al., 2007; Baum et al., 2012; Jang et al., 2016). Its
analysis is complementary to that of 35S since both loci usually
occur separately on chromosomes (Roa and Guerra, 2012; Garcia
et al., 2017). The 5S rDNA is usually located in one chromosome
pair in most angiosperms and can occupy variable chromosome
positions. It is organized in tandemly arranged units comprising
hundreds to tens of thousands of copies. Each unit is composed
of a conserved c. 120 bp coding region separated by a variable
intergenic spacer (Sastri et al., 1992). Similar to 35S loci, 5S
rDNA loci undergo concerted evolution, a process maintaining
high homogeneity within and often between arrays (Dover, 1982;
Elder and Turner, 1995; Parks et al., 2019). Such a process may
rapidly homogenize rDNA sequences and induce copy number
variation (Bughio and Maggert, 2019) blurring their
hybridogenic signatures in allopolyploids (Wendel et al., 1995a;
Frontiers in Plant Science | www.frontiersin.org 2
Volkov et al., 1999; Muir et al., 2001; Matyasek et al., 2003). In
contrast to 35S rDNA, the 5S rDNA loci appear to be less
sensitive to homogenization in some allopolyploids (Fulnecek
et al., 2002; Pedrosa-Harand et al., 2006; Weiss-Schneeweiss
et al., 2008; Garcia et al., 2017), retaining diagnostic capacity
with respect to their parental origin.

The clustering algorithm employed by RepeatExplorer (RE)
(Novak et al., 2010; Novak et al., 2013) has become a tool of
choice for the analysis of chromosome composition and genome
evolution (Renny-Byfield et al., 2012; Weiss-Schneeweiss et al.,
2015; Ribeiro et al., 2017; Mlinarec et al., 2019; Peska et al., 2019).
The phylogenetic signal of the repeatome has also been exploited
in phylogenetic studies (Dodsworth et al., 2015; Dodsworth et al.,
2016; Grover et al., 2019; Vitales et al., 2019). The analysis of
genomes by RE is based on an all-to-all comparison of sequence
reads revealing their similarities. Subsequently, the data are used
to build clusters of overlapping reads representing different
repetitive elements. The TAREAN tool, recently introduced
into the RepeatExplorer2 pipeline, allows repeat identification
and reconstruction of tandem repeats solely from sequence reads
(Novak et al., 2017). Graph theory and connected component
methods lying in the heart of the computation algorithm produce
graph structures reflecting genomic organization of repeats.
Typically, tandem repeats exhibit circular (ring) shape
topologies are characterized by high values of circularity
parameters. Although the RepeatExplorer2/TAREAN tool was
initially developed for identification of non-coding satellites, 5S
rDNA can also be analyzed with the program. This is because 5S
rDNA shows many features of satellite repeats: (I) its highly
homogeneous units are tandemly arranged in a head to tail
orientation, (II) it appears in high copy number, allowing
analyses even at low coverage, and (III) the size of 5S rDNA
monomers (c. 200–1,000 bp) (Sastri et al., 1992; Fulnecek et al.,
2006) falls within the range defined for satellite DNA, allowing
circularization of chains of overlapping reads.

In this study we investigated the 5S rDNA genomic
organization and homogeneity in more than 80 plant diploids
and polyploids, exploiting high-throughput reads available from
read archives in public genomic databases and also de novo
sequenced by us. Particular attention was paid on hybrid systems
with well-defined evolutionary histories, both eudicots and
monocots: (i) Brachypodium hybridum (Poaceae), Brassica
carinata (Ethiopian mustard, Brassicaceae), Chenopodium
quinoa (quinoa, Amaranthaceae), Gossypium hirsutum (cotton,
Malvaceae), and Nicotiana rustica (Aztec tobacco, Solanaceae)
allotetraploids. (ii) Spartina × townsendii (cordgrass, Poaceae)
homoploid hybrid. (iii) Species with frequent introgression
events included Gossypium gossypioides and Thinopyrum
intermedium (intermediate wheatgrass, Poaceae). We used the
RepeatExplorer2/TAREAN clustering pipeline and cluster graph
computation methods to address the following questions: (1)
What is the relationship between graph complexity and
intragenomic heterogeneity of 5S rDNA repeats? (2) Can the
full-length 5S rDNA units be assembled from short sequence
reads? (3) Can allopolyploids and other interspecific hybrids be
distinguished from their progenitors based on cluster graph
February 2020 | Volume 11 | Article 41

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Garcia et al. 5S rDNA Evolution in Plant Hybrids
topologies? We show that cluster graphs may represent a
convenient and simple-use approach for identification of
interspecific hybrids from high-throughput sequencing data.
RESULTS

Relationship Between Cluster Graph
Topology and Intragenomic Diversity of
5S rDNA
All of the 5S RNA gene families analyzed share a conserved c.
120 bp coding region while they differ in their intergenic
spacers. We tested the hypothesis that the graph topologies
of 5S rDNA clusters reflect the divergence and number of
homoeologous gene families in allopolyploid genomes. Under
this hypothesis, diploid species with a single gene family (and a
locus) would generate a simple circular graph while
allopolyploid and other hybrid genomes with multiple gene
families (and loci) would display more complex graphs. To test
this hypothesis we examined 5S rDNA cluster graph topologies
in 84 plant species (Supplementary Table S1). Examples of
Frontiers in Plant Science | www.frontiersin.org 3
cluster graph analyses in Gossypium, Brachypodium, and
Spartina hybrid systems are shown in Figure 1. We have
chosen these species because the parental genome donors,
number of 5S rDNA loci, and approximate ages are known
(Table 1). In the graphs, each vertex represents a sequence read
and nodes connecting vertices depict sequence similarity
between the reads. Simple circular 5S graphs with no or little
deviation from regular circularity (referred as type 1 graphs)
were observed in G. arboreum, G. raimondii, B. distachyon, and
B. stacei diploid species. Except for the hexaploid S. alterniflora,
the 5S graph topologies were more complex in polyploids
(Figure 1) . Specifically, two or more loops (rings)
interconnected by a junction region (composed of 5S coding
sequences) could be recognized. These complex structures are
referred as type 2 graphs. Both loops were composed of vertices
depicted in grey in Figure 1 representing variable IGS regions.
The total k-mer coverage scores (mean of cluster homogeneity)
were high in diploid species while they were lower in the
allotetraploids (Table 1). The connected component index C
(mean of graph circularity) was uniformly high across the
species. The read richness varied between the loops. For
FIGURE 1 | The 5S rDNA sequence reads organized in graph structures from the RepeatExplorer2 graphical output. Single reads are represented by vertices
(nodes) and their sequence overlaps by edges. The 5S coding sequences and intergenic spacers are highlighted in green and grey vertices, respectively. Note,
regular circular structures (referred to type 1) in most progenitors, and complex structures (referred to type 2) in derived allopolyploid and homoploid hybrids. Arrows
indicate one or several intergenic spacers.
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example, in Brachypodium hybridum, the right loop contained
far more reads than the left loop.

In the whole dataset (Supplementary Table S1) typical
circular graph shapes of 5S rDNA clusters (type 1) were
obtained in 81 (96%) species. The connected component index
C parameter values (reported by a TAREAN) were high, ranging
from 0.684 to 1.00 (average 0.959, s.d. 0.0599). In three species
(4%), no circularization of 5S graphs clusters was obtained.
Figure 2A shows the frequency of individual cluster types in
allopolyploid and diploid species. The majority (87%) of diploid
species showed type 1 structures while most (79%) allopolyploids
displayed type 2 graphs (one-way ANOVA, F = 75.507, p < 0.001,
Supplementary Table S2). About 95% single locus karyotypes
displayed type 1 graphs while most (94%) karyotypes with two or
more loci had type 2 structures (Figure 2B). There was a
relationship between locus number and graph complexity
(one-way ANOVA, F = 24.259, p < 0.001) with type 1
structures showing significantly lower locus numbers. The
sequence homogeneity within each 5S rDNA cluster was
estimated based on total k-mer coverage score reported by
TAREAN and ranged 0.416–1.00 (average 0.760, s.d. 0.1392).
The k-mer coverage values were significantly higher (one-way
ANOVA, F = 200.363, p < 0.001, Supplementary Table S2) in
the diploids compared to the allotetraploids and other hybrids
(Supplementary Figure S1).

Tracking the Origin of 5S rDNA Families in
Gossypium, Brachypodium, and Spartina
Allopolyploids and Homoploid Hybrids by
Comparative Cluster Analysis
Next, we investigated whether the homoeologous 5S genes can be
visualized in cluster graph layouts and whether homoeologous
gene families occur in assembled contigs. To address these
questions we carried out a comparative three-genomic analysis
(Figure 3) where inputs for clustering include reads from
hybrids (allopolyploids) and their putative progenitor species.
The overall cluster shapes were similar as in single genome
analyses (Figure 1) indicating that the progenitor 5S rDNA
sequences overlap with those of the derived hybrids and
Frontiers in Plant Science | www.frontiersin.org 4
allopolyploids confirming, thus, their putative origin. Reads
derived from 5S coding sequences (in green) were found in the
junction region connecting both loops (Figures 3A, D, G). In
Figures 3B, E, H reads originating from each progenitor (red
and yellow) and hybrid (blue) genomes are labeled by different
colors showing the 5S rDNA variants origin:

1. Figure 3B shows three-genomic cluster graph structures in
Gossypium hirsutum and its progenitors. G. hirsutum is a 1–2
M years-old allotetraploid composed of subgenomes close to
G. arboreum (A genome species) and G. raimondii (D
genome species) (Wendel, 1989). The blue colored reads
from the G. hirsutum allopolyploid were found in all parts
of the graph—both in the junction region and loops; the red
color reads from the G. arboreum diploid progenitor were
located in the right loop and the junction region; the yellow
colored reads originating from the other parental species, G.
raimondii, were located in the left loop and the junction
region. Similar cluster graph shapes were observed in
remaining four Gossypium allotetraploids (G. barbandense,
G. mustelinum, G. darwinii, and G. tomentosum, see
Supplementary Figure S2), all having a similar AADD
composition of the genome. In order to determine the
identity of loop structures in the graphs we carried out a
phylogenetic analysis of assembled 5S rDNA contigs (Figure
3C and Supplementary Figure S2). On the trees, sequences
of both progenitors were well resolved forming separate
branches, consistent with sequence divergence. The contigs
from the G. hirsutum cluster grouped within the G. arboreum
and G. raimondii branches, respectively.

2. Figure 3E shows three-genomic cluster graph structures in
Brachypodium hybridum and its progenitors. B. hybridum is a
c. 1 M years-old allotetraploid composed of subgenomes
close to B. distachyon and B. stacei (Catalán et al., 2012).
The comparative cluster graph displayed two loops composed
of reads either from the B. distachyon (in red) or B. stacei
(yellow). In contrast, reads from B. hybridum (blue) were
shared between both loops. However, there were much less B.
hybridum reads in the B. stacei loop compared to that of the
TABLE 1 | Cytogenetic characteristics of 5S rDNA loci and cluster graph parameters in allopolyploid and homoploid species and their progenitors.

Ploidy
level

N. loci/
1C

N. reads in the
cluster

Genome proportion
(%)

Repeat size
(bp)

k-mer
coverage

Connected
component index

C

Graph shape
(type)

G. hirsutum
1

4x 2 351 0.170 297 0.660 0.997 2
G. arboreum 2x 1 418 0.210 303 1.000 1.000 1
G. raimondii 2x 1 386 0.190 298 0.974 0.974 1
B. hybridum

2

4x 2 109 0.054 303 0.680 0.982 2
B. distachyon 2x 1 266 0.130 370 0.810 0.981 1
B. stacei 2x 1 239 0.120 270 0.950 1.000 1
S. × townsendii

3

6x n.d. 225 0.044 286 0.593 0.947 2
S. alterniflora 6x n.d. 123 0.031 348 0.871 0.976 1
S. maritima 6x n.d. 210 0.053 286 0.628 0.943 2
February 2020 | Vo
1G. hirsutum (2n = 4x = 52, AADD genome composition) is thought to originate from hybridization of species similar to modern G. raimondii (2n = 2x = 26, D genome donor) and
G. arboreum (2n = 2x = 26, A genome donor).
2B. hybridum (2n = 4x = 30) is a natural allotetraploid with divergent subgenomes derived from diploid species similar to modern B. distachyon (2n = 2x = 10) and B. stacei (2n = 2x = 20).
3S. × townsendii (2n = 6x = 62) is a natural homoploid hybrid derived from S. alterniflora (2n = 6x = 62) and S. maritima (2n = 6x = 60).
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B. distachyon. No B. stacei homoeologs were found among
the contigs (Figure 3F).

3. Figure 3H shows three-genomic cluster graph structures in
Spartina × townsendii and its progenitors. Spartina ×
townsendii is a less than 150 years-old homoploid hybrid
composed of subgenomes inherited from S. alterniflora and
S. martima hexaploids (Ainouche et al., 2004). The bottom
read-rich circle contained sequences from the S. maritima
(yellow) parent and S. × townsendii (blue); the upper read-
poor circle was mostly formed by reads from S. alterniflora
(red) parent and a few reads from S. × townsendii (blue). The
junction region contained 5S genic sequences plus part of
the IGS (grey) indicating short conserved sequences flanking
the genic region. Another region of homoeologous genes
similarity seems to exist in the middle of IGS indicated by
interconnected reads from all three genomes (arrow). On the
tree (Figure 3I), sequences from both progenitors were well
resolved forming separate branches. However, all the
Frontiers in Plant Science | www.frontiersin.org 5
assembled contigs grouped exclusively with the S.
maritima branch.

Additional examples of 5S rDNA cluster analyses are shown
in the Supplementary Figure S3 comprising the well-known
allopolyploids, Brassica carinata (4x), Chenopodium quinoa (4x),
and Nicotiana rustica (4x). All these species harbored complex
type 2 graphs, in which at least one (Chenopodium) or both
progenitors (Brassica and Nicotiana) could be identified.

Comparative Analysis Reveals Genetic
Complexity in Species With Cryptic
Introgression Histories

1. Gossypium gossypioides is a new world (D-genome) diploid
species known to have experienced several rounds of
introgressive hybridization from old world species (A
genome) (Cronn et al., 2003). Its comparative cluster 5S
rDNA graph of the three Gossypium species analyzed
(Figures 4A, B) showed three loops where the G.
gossipioides reads formed a unique loop (blue) that did not
overlap with either A (red) or D (yellow) genome loops.
Except for the genic junction region no significant
interconnecting edges between the three genomes were
visualized.

2. The intermediate wheatgrass Thinopyrum intermedium
(Poaceae) is a hexaploid species experiencing multiple
introgression events, potentially including genome parts
from several species. We therefore included candidate
Aegilops tauschii and Hordeum vulgare progenitor species
in our comparative analysis of 5S rDNA (Figures 4C, D)
which had been suggested as potent ia l genome
contributors for T. intermedium (Tang et al., 2000;
Mahelka et al., 2011). At least four loops could be
recognized on the cluster graph. Two loops contained
shared reads from T. intermedium (blue) and A. tauschii
(yellow). In addition, there was a prominent read-rich
Thinopyrum-specific loop (Figure 4D, all-blue loop) that
did not contain reads from other genomes and may
originate from Dasypirium (Mahelka et al., 2013) for
which read archives were unavailable. No T. intermedium
reads were present in the H. vulgare loop (red).
Quantification of 5S and 35S rDNA
Homoeologs in Gossypium and
Brachypodium Allotetraploids From High-
Throughput Sequencing Data
In the cluster graphs of the hybrid species (Figures 1 and 3) we
often observed differences in read-richness between both loops
suggesting a skewed representation of homoeologous 5S
rDNA variants. To validate this assumption we quantified
homoeologous 5S rDNAs by mapping of Illumina reads to the
reference sequences of 5S rDNA units (Supplementary Figure
S4 ) . I n fiv e Go s s y p i um a l l o po l yp l o i d s an a l y z ed
(Supplementary Figure S4A), the 5S rDNA homoeologs
were slightly skewed toward the A genome units. This
FIGURE 2 | (A) Distribution of 5S rDNA type 1 and type 2 cluster graph
structures between diploid (N = 50) and allopolyploid (including homoploid
hybrids) (N = 32) species from the 84 species data set in this study. (B)
Occurrence of type 1 and type 2 cluster graph structures in karyotypes with
single (N = 38) and multiple (N = 30) 5S rDNA loci (data on 5S rDNA loci
number only available for 68 species analyzed). The source data and the
basic statistics are in Supplementary Table S2.
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clearly contrasts with 35S rDNA (Supplementary Figure
S4B), where all but one allotetraploids contained far fewer
A-genome than D-genome ITS1 types, except of Gossypium
mustelinum in which the homoelogous ratio was inversed. A
similar analysis carried out in Brachypodium hybridum
showed a higher representation of B. distachyon homoeologs
(in this case, both 35S and 5S rDNA) than those of B. stacei
(Supplementary Figure S4C).

Reconstitution of 5S rDNA Units and Gene
Copy Number in Gossypium
Allotetraploids
The unit length is an important characteristic of rDNA arrays.
We compared the lengths of in silico assembled Gossypium units
with those previously determined by conventional cloning and
Sanger sequencing (Table 2). RepeatExplorer2/TAREAN
generates consensus sequences of 5S rDNA units from the
decomposition of read sequences into k-mers (Novak et al.,
2017). The lengths of 5S rDNA units determined by cloning
ranged from 295–303 bp while those calculated from sequence
data by bioinformatics tools ranged from 265–303 bp. In general,
there was congruence between both methods. In contrast, the
copy number variation between species was extremely high (up
Frontiers in Plant Science | www.frontiersin.org 6
to 10 fold), confirming previous findings (Cronn et al., 1996). In
some cases, copy numbers determined by computation methods
differed by more than five-fold from those of slot blot
hybridization experiments (Cronn et al., 1996).

Southern Blot Hybridization Analysis of 5S
rDNA in Spartina
Previous in silico analyses showed highly skewed 5S rDNA
homoeologs in Spartina × townsendii hexaploid toward the S.
maritima genome. In order to confirm this result, we carried
out southern blot hybridization using genomic DNA from S. ×
townsendii (6x), the derived S. anglica allododecaploid (12x),
and the progenitors of both species, S. maritima and S.
alterniflora (Figure 5). Genomic DNA was digested with
BamHI which has a conserved site in the angiosperm 5S
rDNA units (Röser et al., 2001) (Figure 5A). The 5S rDNA
probe generated ladders of bands, expected from a tandemly
arranged sequence as the 5S rRNA genes. The probe
hybridized strongly to the S. maritima DNA while the
hybridization to S. alterniflora was relatively weak (Figure
5B). The S. maritima oligomers were slightly shorter than
those of S. alterniflora consistent with shorter length of the S.
maritima units (Figure 1). In both S. × townsendii and
FIGURE 3 | RepeatExplorer2 graphical output of the three-genomic comparative 5S rDNA analyses involving progenitor species and derived hybrids. (A, D, G)
Graphs with highlighted 5S rDNA genic regions in green. (B, E, H) Cluster graphs with annotated reads origin: yellow vertices represent reads of one of the parental
species (G. raimondii in B, B. stacei in E, and S. maritima in H); red vertices represent reads of the other putative parental species (G. arboreum in B, B. distachyon
in E, and S. alterniflora in H); blue vertices represent reads from the hybrids and allotetraploids (G. hirsutum in B, B. hybridum in E, and S. × townsendii in H).
(C, F, I) Neighbor joining phylogenetic trees constructed from aligned contigs from hybrids and progenitor 5S rDNA sequences.
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S. anglica oligomeric bands derived from both parents were
visible indicating additivity.
DISCUSSION

Here we studied the organization and evolution of 5S rDNA in
84 plant genomes. We found that the clustering analysis of high-
throughput Illumina reads by RepeatExplorer2/TAREAN
provides a comprehensive view about 5S rDNA origin and
organization, corroborating classical cytogenetic and molecular
studies. The 5S rDNA cluster graphs are typically circular,
showing high values of circularity parameters underlining
regular tandem arrangement of these genes. Graphs displayed
no or little node irregularities (discussed further below)
consistent with a high homogeneity of arrays and confirming
the model of concerted evolution (Dover, 1982; Kellogg and
Appels, 1995). The sequence and size of in silico reconstituted 5S
rDNA units were congruent with those obtained from cloning
and Sanger sequencing. Below we discuss a value-added
information obtained from cluster analyses that is not
Frontiers in Plant Science | www.frontiersin.org 7
obtainable (or with difficulty) by conventional molecular and
cytogenetic analyses.

Dynamism of rDNA Loci in Hybrid
Genomes
We investigated rDNAs in two relatively ancient (c.1 Myr)
allopolyploid systems (Gossypium and Brachypodium) which
already show substantial loss of 35S rDNA homoeologous units
(Wendel et al., 1995a; Borowska-Zuchowska and Hasterok,
2017). Gossypium allotetraploids were represented by five
species with a typical AADD genome composit ion
originating from common diploid ancestors closely related to
G. arboreum (A genome) and G. raimondii (D genome). In
these allotetraploids, previous cloning analyses identified both
homoeologous 5S rDNA sequences in G. hirsutum and G.
mustelinum but not in G. barbadense and G. tomentosum,
where only the A genome sequences were recovered (Cronn
et al., 1996). However, comparative graph clustering of the 5S
rDNA revealed both A and D genome homoeologs in these
species, with a dominance of the A-genome units. Also, with
respect to the 35S rDNA, the D-genome type of ITS in
FIGURE 4 | RepeatExplorer2 graphical output of the comparative analysis of the 5S rDNA clustering in species of hybrid origin and with complex evolutionary
histories, in which introgressive hybridization may have been involved. Cluster graphs with highlighted 5S rDNA genic region in green (A, C) and annotated reads
origin in (B, D) in Gossypium gossypioides and Thinopyrum intermedium, respectively. The comparative analysis in (B) mixing reads of the putative parental genome
donors, G. arboreum as the A genome donor (red), G. raimondii as the D genome donor (yellow), and G. gossypioides as the hybrid (blue) shows that only few
reads of the putative hybrid are placed in the A or D genome loops. The comparative analysis in (D) shows that the reads corresponding to the hexaploid
Thinopyrum intermedium (blue) are partially shared with the reads of one of the putative parental genome donors, Aegilops tauschii (yellow) while there are no
coincidences with the reads of the other putative parental genome donor, Hordeum vulgare (red). Arrows indicate two spacers of different sizes stemming from the
Aegilops parental genome donor.
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G. mustelinum sequence was barely detectable using Southern
blot hybridization (Wendel et al., 1995a), but high-throughput
sequencing recovers similar sequences at a frequency of about
15% (Supplementary Figure S4B). A similar example of
skewed homoelog ratios is represented by B. hybridum and S.
× townsendii, where one loop contained far more reads than
the other in the 5S rDNA cluster graphs. Indeed, Southern blot
analysis confirmed one strong and one weak 5S rDNA family
in the S. × townsendii homoploid hybrid and S. anglica. Skewed
gene ratios exist already in the progenitor genomes based on
read abundance in the graph loops and differential intensity of
Southern hybridization signals. A strong repeat-rich locus
likely occurs in the S. maritima parent while a weaker locus
may be present in the S. alterniflora parent. These examples
demonstrate a higher sensitivity of a cluster graph-based
approach over the de novo assembly or PCR-cloning
approaches, where various technical biases may occur
(Lunerova et al., 2017).

Evaluation of the Graph-Based Method for
Identification of Allopolyploids and Hybrids
Diploid genomes show simple circular structures of 5S rDNA
cluster graphs referred to type 1 (Figure 2A). In contrast,
allopolyploids and homoploid hybrids display more complex
graph structures (type 2) in which divergent gene families are
visualized as distinct loops. In addition, there was a good
correlation between cluster graph complexity and number of
5S rDNA loci (Figure 2B). These observations are consistent
with a general view that most diploids carry a single 5S rDNA
locus (and a single gene family) while allopolyploids tend to
maintain multiple loci (and multiple 5S rDNA families)
(Table 1) and (Roa and Guerra, 2015; Garcia et al., 2017).
Thus, a simple visual inspection of the 5S rDNA cluster
topology appears to be informative with respect to the
putative hybridogenic origin of a species. Among the
Frontiers in Plant Science | www.frontiersin.org 8
computation parameters, the k-mer coverage seems to reflect
the intragenomic homogeneity—low k-mer scores associate
with complex graph shapes and multiple gene families, while
high k-mer scores associate with simple circular structures and
single gene families. Thus, the k-mer coverage may be taken as a
semi-quantitative parameter of 5S rDNA intragenomic
homogeneity, although more studies are needed to validate
the relationship.

One of the advantages of the clustering-based method is
that it may provide initial information about the 5S rDNA
homoeologs without prior knowledge of progenitor genomes
based on the graph complexity. Certainly, the origin of 5S
rDNA families in a hybrid is indicated by comparative
clustering requiring sequences from candidate progenitor
genomes. We observed similar graph complexities for
the 35S rDNA encoding 18S-5 .8S-26 rRNA genes
(Supplementary Figure S5) suggesting that these clusters
(particularly, 3' 26S region and the IGS) may be equally
informative as that of 5S rDNA. These cases pose additional
opportunities for studying the recombination dynamics of
dispersed 5S and ITS arrays, which may be subject to complex
and incomplete concerted evolutionary forces. Despite the
apparent good correlation between cluster complexity and a
hybrid character of the genome there were several notable
exceptions from the rule:

1. About 21% of allopolyploids and homoploids showed
simple type 1 graphs. These simple graphs can be
explained by high similarity of progenitor units ,
preventing separation of reads. However, it can also be
explained by locus loss and/or homogenization of 5S rDNA
in allopolyploids over longer evolutionary times. Indeed,
ancient (c.5 Myr) Nicotiana allotetraploids from section
Repandae showed simple circular type 1 graphs (not shown)
and a diploid character of 5S rDNA loci (Lim et al., 2007).
TABLE 2 | 5S rDNA unit lengths and copy number in Gossypium allotetraploids and diploids.

SRA Identification Unit length
1

Copy number
2

High-throughput data
4

Cloning High-throughput data
5

Slot blot hybridization

Gossypium mustelinum SRR769542 265 301–303 14,015 21,845
Gossypium hirsutum

3

SRR768357 297 295–279 18,412 11,190
ERR1449079 265 295–279 14,903 11,190

Gossypium barbadense SRR8624709 265 296–298 18,157 23,515
Gosspium raimondii ERR1449077 303 301–303 11,061 4,730
Gossypium arboreum SRR1216970 298 297–298 23,691 7,550
Gossypium thurberi SRR8076131 302 301–302 10,607 2,070
Gossypium darwinii SRX5347640 273 n.d.

6

24,276 n.d.
Gossypium tomentosum SRR8815512 259 296–297 38,691 22,290
Gossypium gossypioidies SRR8136267 297 301–303 3,292 1,145
Gossypium herbaceum SRR617255 265 297–298 7,819 3,415
Gossypium davidsonii SRR8136261 302 301–303 19,909 10,280
February 2020
1Genic and intergenic region (bp). Data from sequencing of clones are from Cronn et al. (1996).
2Copy number in the somatic cell genome (2C). Slot blot hybridization results are from Cronn et al. (1996).
3Data are from two different accessions.
4K-mer assembly.
5Calculated from the genome proportion.
6n.d.—not determined.
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Interestingly, Triticum turgidum (0.5 Myr) and Spartina
alterniflora (3 Myr) (both Poaceae) polyploids also show
simple cluster graphs despite their relatively young age,
suggesting that the process of rDNA homogenization and
diploidization may proceed at different rates in different
systems. Frequent losses of 5S rDNA loci inTriticum (Baum
et al., 2008), rice (Zhu et al., 2008) and Spartina (this work)
polyploids may also suggest certain instability of 5S rDNA
in Poaceae. Nevertheless, the Thinopyrum hybrid (Poaceae)
displayed a highly complex cluster graph (Figures 4C, D)
consistent with the retention of progenitor 5S rDNA
Frontiers in Plant Science | www.frontiersin.org 9
families (Mahelka et al., 2013) and therefore arguing
against generalization of these observations.

2. About 13% of diploids showed complex type 2 graphs,
indicating intragenomic heterogeneity of 5S rDNA loci in
these genomes. In at least some cases, the intragenomic
heterogeneity of 5S rDNA in these diploids can be
explained by homoploid hybridization and introgression
events. This is probably the explanation for the complex
graphs in Gossypium gossypioides (Figure 4A) which has a
complex evolutionary history entailing at least two
temporally widely separated divergence events (Wendel
et al., 1995b; Cronn et al., 2003). Although introgression
and hybridization is also relatively frequent in the banana
genus (Němečková et al., 2018) a more likely explanation for
complex graph structures in Musa acuminata (Figure 6C) is
an exceptionally high number of 5S rDNA loci in this species
(six per diploid genome) (Valarik et al., 2002; Garcia et al.,
2012a) and probably inefficient interlocus recombination
(Schlot terer and Tautz , 1994) leading to poor
homogenization. Actually, the mechanisms of amplification
of 5S rDNA loci across the chromosomes are still poorly
understood (Schubert and Wobus, 1985; Symonova et al.,
2017; Joachimiak et al., 2018; Souza et al., 2019).

3. The occurrence of non-rDNA sequences within the 5S rDNA
clusters may potentially distort graph shapes. In Tragopogon
porrifolius and Senecio campestris (both Asteraceae) the 5S
rDNA clusters apparently contain traces of Cassandra
transposable elements. These LTR elements are widespread
in angiosperm genomes and carry a 5S rDNA related
sequence (Kalendar et al., 2008). In cluster graphs the
Cassandra element can be identified by divergent reads
connected by only a few nodes to the 5S rDNA genic
region (Figures 6A, B). The known high mobility of 5S
rDNA in the Musa genus (Valarik et al., 2002) could be
related to the activity of transposable elements whose
remnants (TY1 copia/Tork family) are apparently found in
some M. acuminata 5S rDNA units (Figure 6C). In general,
the frequency of non-rDNA sequences was low (<4%
analyses) in the major 5S rDNA clusters and likely does
not represent significant source of artefacts.
Concluding Remarks
To summarize, we infer that the visual inspection of rDNA
cluster graph topologies coupled with calculation of graph
parameters is highly informative for the assessment of rDNA
genomic organization, number of rRNA gene families, and loci.
The method may provide clues for testable hypotheses about
evolutionary histories of interspecific hybrids and allopolyploids,
especially in biological systems with unknown or not well defined
genome donors (Mahelka et al., 2011; Kaplan et al., 2013;
Fredotovic et al., 2014; Belyayev et al., 2018). It is necessary to
stress that a robust evaluation of hybridization and polyploidy
cannot be solely based on read clustering, but should involve a
combination of various cytogenetic, molecular and
genomic methods.
FIGURE 5 | Southern blot analysis of 5S rDNA in Spartina hybrids and their
progenitors. (A) Restriction maps of progenitor S. maritima and S. alterniflora
of 5S rDNA. (B) The 5S rDNA probe hybridization to S. maritima (S. mar.), S.
alterniflora (S. alt.), S. × townsendii homoploid hybrid (S. tow.), and S. anglica
dodecaploid (S. ang.) DNAs. In S. × townsendii and S. anglica, hybridization
fragments inherited from progenitors are marked as “A” (from S. alterniflora)
and “M” (from S. maritima), respectively.
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MATERIALS AND METHODS

DNA Isolation, High-Throughput
Sequencing, and Read Archive Accessions
Most sequences used in this study were downloaded from
sequence read archives at the EBI server (Supplementary
Table S1). Six genomes were sequenced de novo as follows:
genomic DNA from leaf tissue was isolated by a modified CTAB
method and sequenced by Illumina technology at BGI. The
Spartina DNAs originated from natural samples collected in
Southampton area, UK: S. maritima (Isle of Wight), S.×
townsendii (Hythe), S. alterniflora, and S. anglica (both from
Eling Marchwood) (Huska et al., 2016); Cardamine × insueta
and C. amara were from natural populations in Urnerboden,
Switzerland (Zozomova-Lihova et al., 2014); C. flexuosa was
from Zelezne, Slovakia, and C. hirsuta from Gehausen,
Germany (Mandakova et al., 2014). Details of sequencing are
provided in Supplementary Table S3.

In Silico Identification of 5S rDNA Repeats
The fastq reads were initially filtered for quality and trimmed to a
uniform length by pre-processing and QC tools by
RepeatExplorer2 (Novak et al., 2013). The pipeline is
implemented in the Galaxy environment (https://galaxy-elixir.
cerit-sc.cz/). For computation, resources at the international
ELIXIR infrastructure (European research infrastructure for
biological information) were used. Read length ranged 100–
150 bp depending on sequencing library and platform. After the
fastq > fasta conversion reads were analyzed with RepeatExplorer2
using default parameters. The RepeatExplorer2 pipeline runs a
graph-based clustering algorithm (Novak et al., 2013) to assemble
the groups of frequently overlapping reads into clusters of reads,
representinga repetitive element, orpart of a repetitive elementwith
a higher order genome structure. It uses a BLAST threshold of 90%
similarity across 55% of the read to identify reads to each cluster by
default (minimum overlap = 55, cluster threshold = 0.01%,
minimum overlap for assembly = 40), and the clusters are
identified based on a principle of maximum modularity.
Typically, 200,000 of pair-end reads were used as input for
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clustering. This number typically yields a cluster comprising
several hundreds of 5S rDNA specific reads. Analysis of larger (>2
Gb/1C) genomes requires an increase of the number of input reads
(up to 2million), as the 5S rDNA coverage decreases. Although this
prolongs computation times (typically 5–6 hours on the
MetaCentrum ELIXIR computer clusters) we were able to
reconstruct 5S rDNA units in the large (50 GB) Fritillaria
imperialis genome (Zonneveld, 2010) although, in this case, the
number of reads in the cluster was too low, preventing graph
analysis. High coverages may also help to reveal rare 5S rDNA
variants andpseudogenes that are frequent ingymnosperms (Wang
et al., 2016; Wang et al., 2019) while they rarely occur in
angiosperms. In interspecific comparisons, the usage of a standard
fraction of genome (0.1–1.0%) is recommended to prevent biases in
interspecific comparisons.

The 5S rDNA clusters were searched among the cluster
annotation files using “rDNA” search keyword. Alternatively,
5S rDNA clusters were found in TAREAN tandem reports (a
specific tool for the analysis of tandem repeats implemented in
RepeatExplorer2). The shapes of cluster graphs were
characterized by a connected component index parameter (C)
which is calculated as the proportion of the largest strongly
connected component in graph composed of oriented reads
(Novak et al., 2017). Cluster graph topologies were visually
inspected and categorized into two groups (simple, type 1, and
complex, type 2, graphs). The k-mer score was calculated by the
RepeatExplorer2/TAREAN program as the sum of frequencies of
all k-mers used for consensus sequence reconstruction.

Identification and Quantification of
Homoeologous 5S rRNA Gene Families
5S rDNA homoeologous families were quantified by mapping
analysis using CLC Genomics Workbench (QIAGEN), CLC
onwards. Trimmed reads (typically >7 million) were mapped
to the corresponding reference with following parameters:
insertion and deletion costs = 3, lengths fraction = 0.5,
similarity fraction = 0.9, deletion cost = 2. As reference
sequences we used Gossypium arboreum (GenBank no.
GAU31855) and G. raimondii (GRU39497) clones. Since no
FIGURE 6 | Graph structures of 5S rDNA clusters from the RepeatExplorer2 graphical output containing a significant number of retroelement sequences in
Tragopogon porrifolius (A), Senecio vulgaris (B) and Musa acuminata (C). In (A, B) reads derived from a Cassandra/TRIM element. Note, the Cassandra/TRIM
elements were relatively isolated and connected to 5S rDNA with 1–2 reads only. In (C) the highly complex structure of 5S rDNA in M. acuminata containing multiple
IGS and regions of similarity to a reverse transcriptase domain of a TY-1 Copia retroelement.
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GenBank 5S rDNA clones were available for Brachypodium we
used consensus sequences of B. distachyon (370 bp) and B. stacei
(270 bp) generated by RepeatExplorer2 as a reference.

Phylogenetic analysis was carried out using assembled contigs
computed by RepeatExplorer2. Briefly, BLAST libraries of contigs
from hybrids and allopolyploids were BLASTed against the 5S
rDNA sequences: For Gossypium, these were GenBank clones
(#GAU31855 and #GRU39497); for Brachypodium and Spartina
contigs generated by RepeatExplorer were used. The IGS subregions
were extracted from BLAST outputs by a selection command in
CLC, grouped and aligned. Alignments were manually edited and
neighbor joining phylogeny trees constructed (CLC).

Because homoeologous ITS1 (internally transcribed spacer 1
of 35S rDNA) cannot be quantified by mapping procedures due
to their overall similarity, we calculated the ITS1 homoeologous
ratios from the number of nodes in genome-specific clades of
phylogeny trees: (i) ITS sequences from Gossypium and
Brachypodium allotetraploids were extracted from mapped
reads, yielding typically hundreds to thousands of sequences.
(ii) Stand-alone BLAST databases were generated from the ITS
sequences. The databases were queried with reference sequences
derived from variable 50–70 bp central subregions of ITS1. The
ITS1 consensus sequences were obtained from the alignment of
GenBank clones: B. stacei (JX665827-JX665832), B. hybridum
(JX665718-JX665731), G. arboreum (GAU12712), and G.
raimondii (GTU12711). (iii) Reads extracted from BLAST
outputs were trimmed to uniform length, sampled (100–500
reads), and NJ trees constructed using a phylogeny tool of CLC.
Homoeologous sequences in distinct clades were extracted,
counted, and expressed as a ratio.

Statistical Methods
We analyzed the data by one-way ANOVA statistical test
implemented within the MS Office package (XL-Toolbox NG).
Box-plots were constructed using an online BoxPlotR tool
(www.shiny.chmgid.org/boxplotr/).

Southern Blot Hybridization
Total genomic DNA was extracted from fresh young leaves using
a modified CTAB method following procedures described
previously (Kovarik et al., 1997). Genomic DNA was digested
with the BamHI restriction enzyme and hybridized on blots. The
DNAs were digested with BamHI and hybridized with the
radioactively labeled ([32P] dCTP, Dekaprimer labeling kit
(Thermo Fischer, USA) 5S rDNA probe. The probe was a
trimer of the 5S rRNA gene from Artemisia tridentata [S4
clone, GenBank # JX101915.1, (Garcia et al., 2012b)].
Hybridization signals were visualized using a PhosphorImager
(Fuji, FLA 9000).
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