
Frontiers in Plant Science | www.frontiersin

Edited by:
Rafal Archacki,

University of Warsaw, Poland

Reviewed by:
Marco Betti,

University of Seville, Spain
Serena Varotto,

University of Padova, Italy

*Correspondence:
Bao Liu

baoliu@nenu.edu.cn
Zheng-Yi Xu

xuzy100@nenu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to Plant Cell

Biology, a section of the journal
Frontiers in Plant Science

Received: 08 August 2019
Accepted: 15 January 2020

Published: 13 February 2020

Citation:
Meng X, Yu X, Wu Y, Kim DH, Nan N,
Cong W, Wang S, Liu B and Xu Z-Y

(2020) Chromatin Remodeling
Protein ZmCHB101 Regulates

Nitrate-Responsive Gene
Expression in Maize.

Front. Plant Sci. 11:52.
doi: 10.3389/fpls.2020.00052

ORIGINAL RESEARCH
published: 13 February 2020
doi: 10.3389/fpls.2020.00052
Chromatin Remodeling Protein
ZmCHB101 Regulates Nitrate-
Responsive Gene Expression in Maize
Xinchao Meng1†, Xiaoming Yu1,2†, Yifan Wu1, Dae Heon Kim3, Nan Nan1, Weixuan Cong1,
Shucai Wang1,4, Bao Liu1* and Zheng-Yi Xu1*

1 Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun,
China, 2 School of Agronomy, Jilin Agricultural Science and Technology University, Jilin, China, 3 Department of Biology,
Sunchon National University, Sunchon, South Korea, 4 College of Life Sciences, Linyi University, Linyi, China

Nitrate is the main source of nitrogen for plants and an essential component of fertilizers.
Rapid transcriptional activation of genes encoding the high-affinity nitrate transport
system (HATS) is an important strategy that plants use to cope with nitrogen
deficiency. However, the specific transcriptional machineries involved in this process
and the detailed transcriptional regulatory mechanism of the core HATS remain poorly
understood. ZmCHB101 is the core subunit of the SWI/SNF-type ATP-dependent
chromatin remodeling complex in maize. RNA-interference transgenic plants
(ZmCHB101-RNAi) display abaxially curling leaves and impaired tassel and cob
development. Here, we demonstrate that ZmCHB101 plays a pivotal regulatory role in
nitrate-responsive gene expression. ZmCHB101-RNAi lines showed accelerated root
growth and increased biomass under low nitrate conditions. An RNA sequencing analysis
revealed that ZmCHB101 regulates the expression of genes involved in nitrate transport,
including ZmNRT2.1 and ZmNRT2.2. The NIN-like protein (NLP) of maize, ZmNLP3.1,
recognized the consensus nitrate-responsive cis-elements (NREs) in the promoter regions
of ZmNRT2.1 and ZmNRT2.2, and activated the transcription of these genes in response
to nitrate. Intriguingly, well-positioned nucleosomes were detected at NREs in the
ZmNRT2.1 and ZmNRT2.2 gene promoters, and nucleosome densities were lower in
ZmCHB101-RNAi lines than in wild-type plants, both in the absence and presence of
nitrate. The ZmCHB101 protein bound to NREs and was involved in the maintenance of
nucleosome occupancies at these sites, which may impact the binding of ZmNLP3.1 to
NREs in the absence of nitrate. However, in the presence of nitrate, the binding affinity of
ZmCHB101 for NREs decreased dramatically, leading to reduced nucleosome density at
NREs and consequently increased ZmNLP3.1 binding. Our results provide novel insights
into the role of chromatin remodeling proteins in the regulation of nitrate-responsive gene
expression in plants.
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INTRODUCTION

Maize (Zea mays) is one of the most important crops in the
world. Approximately 70% of the kernel weight in maize is
composed of starch, which is the main source of energy in the
human and animal diet. To maximize the yield of maize crop in
the field, large quantities of nitrogenous fertilizers are added to
the soil during cultivation. Over the past several decades,
application of nitrogen (N) fertilizer has significantly increased
maize production (Zhang et al., 2011; Sun and Zheng, 2015;
Alvarez et al., 2019). As one of the most important
macronutrients for plants, N is required for the biosynthesis of
proteins, nucleic acids, chlorophyll, ATP, alkaloids, and
hormones (Tills and Alloway, 1981; Shadchina and Dmitrieva,
1995; Lam et al., 1996). Therefore, N deficiency limits plant
growth and development, thereby reducing crop yield (Chen
et al., 2016). However, crops utilize only approximately 30% of
the applied N fertilizer (Raun and Johnson, 1999; Sultan, 2003),
while the remaining N causes environmental pollution via
gaseous emission, fertilizer leaching, surface runoff, and
denitrification (Good et al., 2004).

In the soil, N is present in two main forms, nitrate and
ammonia, both of which are crucial for plant growth and root
development (Stitt and Feil, 1999; Zhang et al., 1999). The local
stimulatory effect of nitrate on lateral root elongation results
from its function as a signal rather than a nutrient (Zhang et al.,
1999). Plant nitrate uptake is mediated by low- and high-affinity
transport systems that function at high and low external nitrate
concentrations, respectively (Huang et al., 1999). In the model
plant Arabidopsis thaliana, AtNPF6.3 acts as a unique nitrate
transporter that mediates both low- and high-affinity nitrate
uptake (Ho et al., 2009; Parker and Newstead, 2014). The
AtNRT2.1 protein plays a major role in high-affinity nitrate
uptake, whereas AtNRT2.2 makes a relatively small contribution
(Li et al., 2007). In addition, the nitrate transporter, AtNRT2.5,
facilitates nitrate uptake and remobilization in N-starved A.
thaliana (Lezhneva et al., 2014). Under nitrate-deficient
conditions, the activities of high-affinity nitrate transporters
and the transcript levels of AtNRT2.1 and AtNRT2.2 increase
rapidly with nitrate supply (Zhuo et al., 1999; Okamoto et al.,
2003); however, both of these genes are subsequently repressed
upon prolonged exposure to sufficient nitrate. Restoring nitrate
supply stimulates the nitrate uptake capacity of plants; however,
accumulation of nitrate and its assimilatory products, including
amino acids, in plant cells reduces the expression of NRT2 genes,
and consequently the nitrate uptake capacity of plants (Zhuo
et al., 1999; Vidmar et al., 2000). These data suggest the existence
of an underlying mechanism that regulates nitrate uptake in
accordance with the N demand (Forde, 2002). In maize, an
increase in ZmNRT2.1 and ZmNRT2.2 transcript levels activates
the nitrate uptake capacity (Sabermanesh et al., 2017); however,
the mechanism of ZmNRT gene transcription regulation
remains unclear.

Chromatin remodeling complexes (CRCs) play pivotal roles
in nucleosome sliding and occupancy by controlling ATP-
dependent alterations in histone-DNA contacts (Peterson and
Workman, 2000; Gangaraju and Bartholomew, 2007; Clapier and
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Cairns, 2009; Narlikar, 2010). The SWITCH (SWI)/SUCROSE
NONFERMENTING (SNF) complexes are multi-subunit
complexes that contain more than eight proteins (Sarnowska
et al., 2016). Based on the type of SNF2 family ATPase subunits,
the ATP-dependent CRCs are divided into four subfamilies:
SWI2/SNF2, IMITATION SWITCH (ISWI) , Mi-2/
Chromodomain-Helicase-DNA (CHD)-binding protein (Mi-2/
CHD), and INO80 (Sarnowska et al., 2016). Previous studies
revealed that SWI3 proteins, the core components of the SWI/
SNF CRCs, play essential roles in plant growth and development
(Sarnowski et al., 2005; Yu et al., 2016). The AtSWI3 genes
regulate root elongation and leaf and reproductive organ
development (Sarnowski et al., 2005). Mutations in either
AtSWI3A or AtSWI3B cause developmental arrest of the
embryo at the globular stage, and mutation of AtSWI3B leads
to the death of macrospores and microspores (Sarnowski et al.,
2005; Hurtado et al., 2006). Furthermore, mutations in AtSWI3D
lead to severe dwarfism and alterations in the number and
development of flower organs (Zhou et al., 2003; Sarnowski
et al., 2005). The maize SWI3 protein, ZmCHB101, plays an
essential role in leaf development and dehydration and abscisic
acid responses (Yu et al., 2016; Yu et al., 2018; Yu et al., 2019);
however, it is unknown whether SWI/SNF complexes participate
in nitrate responses.

In this study, we found that knockdown of ZmCHB101
expression in maize accelerated root growth and increased
biomass under low nitrate conditions. In addition, we found
that ZmCHB101 regulates the expression of genes involved in
nitrate transport, including ZmNRT2.1 and ZmNRT2.2. Our
results also demonstrate that the NIN-like protein (NLP) in
maize, ZmNLP3.1, recognizes nitrate-responsive cis-elements
(NREs) in the promoters of the ZmNRT2.1 and ZmNRT2.2
genes, and it activates the expression of these genes in response
to nitrate. Intriguingly, well-positioned nucleosomes were
detected at NREs, and nucleosome densities were lower in
ZmCHB101-RNAi transgenic maize lines than in wild-type
(WT) plants, both in the absence and presence of nitrate. In
the absence of nitrate, ZmCHB101 bound to the NREs and
maintained the nucleosome occupancies at these sites, which
may impact the binding of ZmNLP3.1. However, in the presence
of nitrate, the binding affinity of ZmCHB101 for NREs decreased
dramatically, thus reducing the nucleosome density at NREs and
consequently increasing the binding of ZmNLP3.1 to these sites.
MATERIALS AND METHODS

Plant Material and Growth Conditions
ZmCHB101-RNAi lines, RS1 and R101, have been described
previously (Yu et al., 2016), in which ZmCHB101 transcript
levels were approximately 7% and 16% of that in the WT,
respectively. Seeds of the WT and ZmCHB101-RNAi lines were
sterilized using 1% sodium hypochlorite and incubated on moist
filter paper at 28°C for 3 days for germination. Uniform seedlings
were chosen and transferred to hydroponic culture in an
environmentally controlled chamber with continuous
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ventilation for 4 days to deplete the nutrients in seeds.
Subsequently, seedlings were removed from endosperms and
incubated in modified Hoagland's nutrient solution (Li et al.,
2015) containing 0 mM nitrate for 1 day under constant aeration.
To determine the effect of nitrate induction, seedlings were
grown in Hoagland's nutrient solution containing 0, 0.5, 1, 5,
or 15 mM nitrate at 23°C day/18°C night temperature under 16 h
light/8 h dark conditions for 5 days. The nutrient solution was
renewed daily. Morphological parameters of lateral roots were
analyzed using the WinRHIZO software (Regent Instruments
Canada Inc., Canada). The experiments were repeated three
times, and each experiment was performed using 20 plants per
genotype. To perform long-term low nitrate induction,
germinated seeds were planted in sand and watered with
Hoagland's nutrient solution containing 0.5 or 15 mM nitrate
for 6 weeks. To conduct RNA sequencing (RNA-Seq) analysis,
total RNA was extracted from the roots of seedlings cultured in
nitrate-free nutrient solution for 7 days and then treated with
Hoagland's nutrient solution containing 0.5 mM nitrate for 0 or
2 h. Three independent replicates were performed for each
sample. The same conditions were used for preparing samples
for chromatin immunoprecipitation (ChIP) assay, followed by
quantitative PCR (qPCR).

Metabolite Analyses and Enzymatic
Assays
ZmCHB101-RNAi lines and WT grown in Hoagland's nutrient
solution containing 0.5 or 15 mM nitrate were used for
metabolite and enzymatic assays. The amount of total N was
measured using Elementar Isoprime 100 vario EL cube
(Elementar, German). The amount of nitrate was estimated
us ing Smartchem450 automat ic chemical analyzer
(Unityscientific, USA). The chlorophyll content of plants was
measured as described previously (Yang et al., 2014). Soluble
protein content was determined using the Plant Soluble Protein
ELISA Kit (Jonln, China). The activity of nitrate reductase (NR),
nitrite reductase (NIR), and glutamine synthetase (GS) was
analyzed using the NR, NIR, and GS ELISA kits (Plant),
respectively (Jonln, China).

Bioinformatics Analyses of RNA-Seq Data
Total RNA was isolated from seedling roots using TRIzol
Reagent (Invitrogen, USA), according tothe manufacturer's
protocol. Three biological replicates of each sample were used
for RNA-Seqlibrary construction and sequenced on the
HiSeq2000 platform (Illumina, USA). The raw data
werecleaned by removing adaptor sequences and low-quality
reads us ing FASTX-Toolk i t ver s ion 0 .0 .13(ht tp : / /
hannonlab.cshl.edu/fastx_toolkit/).At least 110 million clean
reads were obtained per library (Supplementary Table S1).
The clean reads were mapped onto the maizereference
genome, B73 RefGen_v3, using Hisat2 (http://ccb.jhu.edu/
software/hisat2/index.shtml)with default parameters. The
number of Fragments Per Kilobase of transcript per Million
mapped reads(FPKM) was used to determine the transcription
level of each gene using Cuffdiffv2.0.1. Genes with|log2fold-
Frontiers in Plant Science | www.frontiersin.org 3
change (FC)| > 1 and false discovery rate (FDR) < 0.05 were
identified asdifferentially expressed genes (DEGs). Gene
Ontology (GO) analysis of all DEGs was performed using the
web-based agriGO tool (http://systemsbiology.cau.edu.cn/
agriGOv2/). Singular enrichment analysis (SEA) was used for
GO enrichment analysis on agriGO. The R package was used to
manage, integrate, and visualize the RNA-Seq data.

Plasmid Construction
The coding sequence (CDS) of ZmNLP3.1 was amplified from a
cDNA library by PCR using ZmNLP3.1-F/R gene-specific
primers. The CDS of ZmCHB101 was amplified, as described
previously (Yu et al., 2018). To generate a fusion construct of
ZmNLP3.1 with glutathione S-transferase (GST-ZmNLP3.1), the
full-length CDS of ZmNLP3.1 was cloned into the pGEX-4T-1
vector using SmaI and NotI restriction sites. To generate the
ZmNLP3.1 overexpression construct, the ZmNLP3.1 CDS was
cloned downstream of the Cauliflower mosaic virus 35S
promoter in the pCsV1300 vector using XbaI and ClaI sites,
thus generating the pro35S:ZmNLP3.1 construct. To generate
dual FLAG epitope tagged ZmNLP3.1 and ZmCHB101
overexpression constructs (pro35S:ZmNLP3.1-2×FLAG and
pro35S:ZmCHB101-2×FLAG), the CDSs of ZmNLP3.1 and
ZmCHB101 were cloned into the pCsV1300 vector separately
using XbaI and ClaI sites. To generate luciferase reporter (LUC)
constructs of ZmNRT2.1 and ZmNRT2.2 (proZmNRT2.1:LUC
and proZmNRT2.2:LUC), a mutant copy of ZmNRT2.1 or
ZmNRT2.2 promoter (1 kb) carrying AAAAAACCN10CCAAA
or GAAAAAAGN10GAAAG substitution, respectively, was
amplified using the ZmNRT2.1-MPro-F/R or ZmNRT2.2-MPro-
F/R primer pair and inserted upstream of the LUC reporter gene;
constructs containing an intact copy of each promoter upstream
of the LUC gene were also generated using the ZmNRT2.1-Pro-F/
R or ZmNRT2.2-Pro-F/R primer pair. To generate proZmUBQ2:
GUS construct, ZmUBQ2 (GRMZM2G419891) promoter
sequence was amplified using a sequence-specific primer pair
(ZmUBQ-Pro-F/R) and cloned in the pCAMBIA3301 vector
upstream of the b-glucuronidase (GUS) gene using NcoI and
PstI sites. The sequences of these primers are listed in
Supplementary Table S2.

Quantitative Real-Time PCR (qRT-PCR)
Total RNA (2 µg) was used to synthesize cDNA with TransScript
One-Step gDNA Removal and cDNA Synthesis SuperMix
(Transgen Biotech). The qRT-PCR assay was performed using
THUNDERBIRD SYBR qPCR Mix (TOYOBO) on the ABI real-
time PCR detection system, according to the manufacturer's
instructions (ABI StepOnePlus, USA). Three biological replicates
in qRT-PCR analysis were performed and each biological
replicate was conducted using three technical replicates. The
maize Actin 1 (ZmACT1) gene was used as an internal reference.
Primers used for qRT-PCR are listed in Supplementary
Table S2.

Transient Expression in Protoplasts
Plasmid DNA (20 mg) was used to transfect 200 ml of maize
protoplasts (2 × 105 cells ml-1), as described previously (Yoo
February 2020 | Volume 11 | Article 52

http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://ccb.jhu.edu/software/hisat2/index.shtml
http://ccb.jhu.edu/software/hisat2/index.shtml
http://systemsbiology.cau.edu.cn/agriGOv2/
http://systemsbiology.cau.edu.cn/agriGOv2/
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Meng et al. ZmCHB101 Regulates Nitrate-Responsive Genes
et al., 2007; Yu et al., 2018). To obtain nitrate-free protoplasts,
maize seedlings were watered with nitrate-free Hoagland's
nutrient solution (pH 6) containing 0.1% MES, 1% sucrose, 2.5
mM ammonium succinate, and 0.5 mM glutamine and
incubated in the dark at 23°C for 15–20 days. To examine the
expression levels of nitrate-responsive genes, the isolated maize
protoplasts were incubated in W5 solution (0.2 mM MES, 154
mM NaCl, 125 mM CaCl2, and 5 mM KCl) for 12 h and then
transferred into W5 solution supplemented with 0.5 mM nitrate
for 2 h. The protoplasts were collected by centrifugation at 100 ×
g for 1 min and then used for qRT-PCR or ChIP assay, as
described previously (Yu et al., 2018).

ChIP Assay
For H3, H3K4me3 and H3K27me3 ChIP-qPCR assays, root
tissues of maize seedlings treated with 0.5 mM nitrate for 0 or
2 h were collected and crosslinked in 1% formaldeyde. ChIP-
qPCR was performed as described previously (Huang et al., 2012;
Yu et al., 2018). Briefly, chromatin was isolated and sheared to
200–800 bp with the M220 Focused-ultrasonicator (Covaris).
And soluble protein was incubated with H3 (Abcam, ab1791),
H3K4me3 (Abcam, ab8580), or H3K27me3 (Millipore, 17622)
antibody at 4°C. To perform ZmNLP3.1 and ZmCHB101 ChIP-
qPCR assays, protoplasts isolated from 15-day-old nitrate-free
seedlings were used, as described previously (Huang et al., 2012),
with some modifications. The isolated maize protoplasts were
transfected with the pro35S:ZmNLP3.1-2×FLAG or pro35S:
ZmCHB101-2×FLAG construct, incubated in W5 solution for
12 h, and then treated with or without 0.5 mM nitrate for 2 h.
The protoplasts were collected and subjected to crosslinking in
1% formaldehyde. The isolated chromatin was sheared to 200–
800 bp fragments using an M220 Focused-ultrasonicator
(Covaris, USA). The soluble chromatin was incubated with
anti-FLAG antibody (MBL, D153-8) or serum overnight at 4°C.
The immunoprecipitates were reverse crosslinked by heating the
sample at 65°C for 8 h, and DNA was extracted using the phenol-
chloroform extraction method. The ZmNRT2.1 and ZmNRT2.2
gene promoter fragments were amplified by qPCR using
sequence-specific primers (Supplementary Table S2). The
ZmACT1 gene was used as a negative control.

Electrophoretic Mobility Shift Assay
(EMSA)
The fusion construct GST-ZmNLP3.1 or the plasmid expressing
GST alone was transformed into Escherichia coli BL21 (DE3)
cells. The GST-ZmNLP3.1 and GST proteins were purified with
glutathione beads (Xu et al., 2013), according to the
manufacturer's protocol. Briefly, 5'-biotinylated probes were
synthesized and labeled with biotin by Sangon Biotechnology.
Double-stranded probe (50 fmol) was mixed with each purified
protein separately in binding buffer and incubated for 10 min.
The reaction mixtures were subjected to electrophoresis on a
native 6% polyacrylamide gel in 0.5× TBE buffer. DNA in the gel
was transferred to a positive charged nylon membrane and
detected using the EMSA kit (Beyotime Company), according
to the manufacturer's instructions (Ahmad et al., 2019).
Frontiers in Plant Science | www.frontiersin.org 4
Dual-Luciferase Transient Expression
System
To examine the expression of the LUC or GUS reporter gene,
dual-luciferase transient expression experiments were carried out
as described previously (Ahmad et al., 2019). Briefly, the
proZmNRT2.1:LUC or proZmNRT2.2:LUC construct was
cotransformed with the effector construct pro35S:ZmNLP3.1 as
well as proZmUBQ2:GUS into nitrate-free protoplasts. The
transformed protoplasts were incubated in nitrate-free solution
for 12 h and then treated with 0.5 mM nitrate for 0 or 2 h. After
nitrate induction, LUC and GUS activities were measured using a
Fluoroskan Finstruments microplate reader (MTX Lab Systems)
(Ahmad et al., 2019).

Identification of Putative Cis-Regulatory
NREs in ZmNRT2.1 and ZmNRT2.2
Promoters
To identify cis-acting NREs in the promoter regions of
ZmNRT2.1and ZmNRT2.2, 1 kb sequence upstream of the
transcription start site (TSS) of bothgenes was searched using
EditSeq (https://www.dnastar.com/). Additionally, MEME
(http://meme-suite.org/) was run on -303 to -345 bp and -438
to -480 bp of the ZmNRT2.1 and ZmNRT2.2 promoters,
respectively. Putative NREs were also identified in the
promoters of NIR genes of Arabidopsis (Arabidopsis thaliana),
rice (Oryza sativa), spinach (Spinacia oleracea), silver birch
(Betula pendula), common bean (Phaseolus vulgaris), and
sorghum (Sorghum bicolor) using default parameters.
RESULTS

ZmCHB101 Regulates Nitrate-Induced
Lateral Root Formation and Biomass
Accumulation
Previously, we reported that ZmCHB101 may regulate the
expression of genes involved in nitrogen compound metabolic
process (Yu et al., 2016). To investigate this possibility, the seeds
of WT plants and ZmCHB101-RNAi lines were incubated on
moist filter paper at 28°C for 3 days to allow germination. The
seedlings were then transplanted in pure water and grown for 4
days. To obtain nitrate-free seedlings, after removing the
endosperm, the seedlings were transferred to Hoagland's
nutrient solution without nitrate for 1 day. Subsequently, 0,
0.5, 1, 5, or 15 mMKNO3 was added to the nutrient solution, and
lateral root emergence was observed after 5 days. Both
ZmCHB101-RNAi lines produced a higher number of and
longer lateral roots than the WT plants following treatment
with 0.1 or 0.5 mM KNO3 (Figures 1A–D). Notably, these
differences between WT plants and ZmCHB101-RNAi lines
gradually diminished in the presence of 5 or 15 mM KNO3

(Figures 1A–D).
Next, we planted the seeds of WT and ZmCHB101-RNAi lines

in sand without N and watered them with nutrient solution
containing 0.5 or 15 mM nitrate for 6 weeks. Measurement of the
dry weight biomass revealed that the two independent
February 2020 | Volume 11 | Article 52
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ZmCHB101-RNAi lines accumulated a higher biomass than WT
plants following the 0.5 mM KNO3 treatment (Figures 1E, F).
Moreover, leaf senescence due to N deprivation was accelerated
in WT plants compared with ZmCHB101-RNAi lines under the
low nitrate conditions (Figure 1E). By contrast, there were no
Frontiers in Plant Science | www.frontiersin.org 5
discernable phenotypic differences between the WT and
ZmCHB101-RNAi lines treated with 15 mM KNO3 (Figures
1E, F). Collectively, these results suggest that ZmCHB101
controls lateral root formation, biomass accumulation, and leaf
senescence under low nitrate conditions.
FIGURE 1 | ZmCHB101 plays a negative role in low nitrate response. (A) Representative images of seeds at day 5 of nitrate treatment. The germinated seeds were
grown in water for 7 days and then transferred to Hoagland's nutrient solution containing 0, 0.5, 1, 5, or 15 mM KNO3 for 5 days. (B–D) Analysis of the phenotypic
traits including the dry weight (B), lateral root number (C), and lateral root length (D) of wild-type (WT) and ZmCHB101-RNAi plants after 5 days nitrate treatment.
Data represent mean ± standard deviation (SD) of three biological replicates. 20 seedlings for each genotype for each biological replicate were used to analysis (n =
20). Significant differences are indicated with asterisks (*, p < 0.05; **, p < 0.01; Student's t-test). (E) Images of plants after 6 week nitrate treatment. Seedlings were
planted in sand without N for 7 days and then watered with nutrient solution containing 0.5 or 15 mM KNO3 for 6 weeks. Arrows indicate senescent leaves. (F) Dry
weight of WT and ZmCHB101-RNAi plants measured after 6 weeks nitrate treatment. Data represent mean ± SD of three biological replicates (n = 20). Significant
differences are indicated with asterisks (**, p < 0.01; Student's t-test). Data in (A–D) demonstrate the short-term effect of different nitrate treatments on plant growth,
whereas data in (E, F) represent the long-term effects.
February 2020 | Volume 11 | Article 52

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Meng et al. ZmCHB101 Regulates Nitrate-Responsive Genes
ZmCHB101 Impacts N Metabolic
Processes
Nitrate is an important source of N for amino acid and
chlorophyll biosynthesis (Jeuffroy et al., 2002; Hirel et al.,
2005). Therefore, we compared various physiological
parameters of the WT and ZmCHB101-RNAi lines, including
the contents of N, nitrate, soluble protein, and chlorophyll, as
well as the biochemical activities of the nitrate reductase (NR),
nitrite reductase (NiR), and glutamine synthetase (GS) enzymes.
Following 0.5 mM nitrate treatment, the total N, nitrate, soluble
protein, and chlorophyll contents were significantly higher in the
ZmCHB101-RNAi lines than in the WT plants (Figure 2A). In
addition, the activities of NR, NIR, and GS enzymes were also
significantly higher in the ZmCHB101-RNAi lines than in the
WT plants (Figure 2B). However, following 15 mM nitrate
treatment, these physiological features were similar between
the WT and ZmCHB101-RNAi lines. These results indicate
that ZmCHB101 regulates N metabolic processes under low
nitrate conditions.

ZmCHB101 Regulates the Expression of
Nitrate-Responsive Genes
To gain insight into the potential role of ZmCHB101 in nitrate-
responsive gene expression, we conducted an RNA-Seq analysis
of WT and R101 plants treated with 0.5 mM KNO3 for 0 (mock)
or 2 h (nitrate condition). RNA-Seq data were mapped onto the
maize B73 reference genome, and genes that were differentially
expressed between WT and R101 plants were identified based on
the following criteria: |log2FC| > 1 and FDR < 0.05. A total of 862
and 786 differentially expressed genes (DEGs) were identified
under the mock and nitrate conditions, respectively (Figure 3A
and Supplementary Table S3). In addition, a gene ontology
analysis revealed that a number of biological terms, including
“response to nitrogen compound”, “response to stress”, and
“response to abiotic stimulus”, were enriched among the DEGs
under the mock condition, whereas terms such as “response to
nitrate”, “response to nitrogen compound”, “nitrate metabolism
process”, and “nitrate transport” were enriched among the DEGs
under the nitrate condition (Figure 3B and Supplementary
Table S4).

Next, we categorized the DEGs identified under each
condition into two groups: nitrate-activated and nitrate-
repressed (Figure 3C). Among the nitrate-activated genes,
those encoding high-affinity nitrate transporters (categorized as
primary nitrate-responsive genes), such as ZmNRT2.1 and
ZmNRT2.2, were activated to a higher level in R101 plants
than in WT plants (Figure 3C). This result indicates that
ZmCHB101 negatively impacts the activation of genes
encoding high-affinity nitrate transporters. Similar differences
in the expression patterns of other nitrate-activated genes were
observed between the WT and R101 plants, including ZmNNR1
and ZmNNR2 (encoding the nitrate reductase enzymes; (Wang
et al., 2004), ZmGLN1 (GRMZM2G098290, encoding the
glutamine synthetase enzyme; (Scheible et al., 2004), ZmPGD4
(encoding glucose-6-phosphate 1-dehydrogenase; (Scheible
et al., 2004), and GRMZM2G076936 (encoding the ortholog of
Frontiers in Plant Science | www.frontiersin.org 6
AtCYP735A2; (Takei et al., 2004; Liu et al., 2017) (Figure 3C).
However, the expression level of ZmGDH2, encoding glutamic
dehydrogenase 2 (Turano et al., 1997), was significantly
increased under the nitrate condition in WT plants, but this
induction was dramatically impaired in R101 plants (Figure 3C).
Similar expression patterns were observed for the NRT1/PTR
family (NPF) genes GRMZM2G076313, GRMZM2G012242, and
GRMZM2G064091, as well as for the major facilitator
superfamily proteins related to nitrate/nitrite transport,
GRMZM5G826658 and GRMZM2G136523 (Sun and Zheng,
2015; Alvarez et al., 2019), all of which had lower expression
levels in R101 plants than in WT plants in the presence of nitrate
(Figure 3C). Among the genes that were down-regulated in the
presence of nitrate, repression of ZmNRT3 was greater in R101
plants than in WT plants, while the reduced expression fold
changes of GRMZM2G455124 (homolog of AtNRT2.5) and
ZmFDX5 (homolog of AtFD2) were impaired in R101 plants
(Scheible et al., 2004; Sabermanesh et al., 2017; Undurraga et al.,
2017). The expression patterns of a few selected genes were
confirmed by qRT-qPCR (Supplementary Figure S1). Overall,
these results indicate that ZmCHB101 regulates the expression of
nitrate-responsive genes.

ZmCHB101 Affects Nucleosome
Occupancy and Histone Modifications in
the Promoters of ZmNRT2.1 and
ZmNRT2.2
Based on the RNA-Seq results, we speculated that enhanced
activation of ZmNRT2.1 and ZmNRT2.2 in ZmCHB101-RNAi
lines under low nitrate conditions may lead to accelerated lateral
root formation and higher biomass accumulation. Because
ZmCHB101 impacts gene expression by controlling
nucleosome density and/or occupancy (Yu et al., 2016), we
speculated that nucleosome density and/or occupancy at the
ZmNRT2.1 and ZmNRT2.2 loci could be impacted in
ZmCHB101-RNAi lines. To test this possibility, we performed
an H3 chromatin immunoprecipitation-coupled with a
quantitative polymerase chain reaction (H3 ChIP-qPCR)
experiment. Under the mock condition, well-positioned
nucleosomes were detected upstream and downstream of the
transcription start sites (TSSs; -1 and +1 nucleosome regions) of
ZmNRT2.1 and ZmNRT2.2 in the WT line, whereas nucleosome
densities at these regions were dramatically reduced in the
ZmCHB101-RNAi lines (Figure 4A). Intriguingly, under the
nitrate condition, nucleosome densities at the -1 and +1
regions were dramatically decreased in the WT line and
remained at a low level in the ZmCHB101-RNAi lines (Figure
4A). These phenomena were not observed at the promoter
regions of ZmACT1 or ZmNRT1.1, a gene encoding a low-
affinity nitrate transporter, which was not induced under the
nitrate condition (Supplementary Figure S2A). Previous studies
revealed that well-positioned nucleosomes are also found within
the gene body and 3' (near the transcription termination site)
regions of expressed genes (Chen et al., 2017; Mueller et al.,
2017). In our experiments, the nucleosome densities within the
gene body and 3' (near transcription termination site) regions of
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ZmNRT2.1 and ZmNRT2.2 did not differ significantly between
the WT and ZmCHB101-RNAi lines in either the absence or
presence of nitrate (Supplementary Figures S2B, C). These
results indicate that ZmCHB101 affects the -1 and +1
nucleosome densities of the high-affinity nitrate transporters,
ZmNRT2.1 and ZmNRT2.2, but does not alter the nucleosome
densities at the gene body and 3' regions of these genes.
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A large number of epigenomic analyses have demonstrated
that H3K27me3 is associated with strong repression of gene
expression, while H3K4me3 is linked to activation of gene
expression (Schneider et al., 2004; Turck et al., 2007; Zhang
et al., 2007; Vermeulen and Timmers, 2010; Roudier et al., 2011;
Sequeira-Mendes et al., 2014; To and Kim, 2014; Wang et al.,
2016). Previous studies suggested that NRT2.1 promoter activity
FIGURE 2 | Effects of different concentrations of nitrate on the physiology of maize plants. (A, B) Analysis of the physiological markers of N status in maize including
the contents of N, nitrate, soluble protein, and chlorophyll (A) as well as the activities of glutamine synthetase (GS), nitrate reductase (NR), and nitrite reductase (NIR)
(B). The WT and ZmCHB101-RNAi seedlings were grown in Hoagland's nutrient solution containing 0.5 or 15 mM nitrate for 5 days and used for physiological
analysis. Data represent mean ± SD of biological replicates (n = 3). Asterisks indicate significant differences (*, p < 0.05; **, p < 0.01; Student's t-test).
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is tightly controlled by H3K27me3 and H3K4me3 in Arabidopsis
(Bellegarde et al., 2018). Thus, we performed a ChIP-qPCR
analysis using anti-H3K4me3 and anti-H3K27me3 antibodies
to examine the impact of ZmCHB101 on these two histone
modifications. The H3K27me3 levels at the 5', gene body, and 3'
regions of ZmNRT2.1 and ZmNRT2.2 were slightly lower in the
Frontiers in Plant Science | www.frontiersin.org 8
ZmCHB101-RNAi lines than in the WT line (Figures 4B, C).
Nitrate treatment reduced the H3K27me3 levels in the WT
plants, and this reduction was even more pronounced in the
ZmCHB101-RNAi lines (Figures 4B, C). By contrast, H3K4me3
levels were moderately higher at the 5', gene body and 3' regions
of ZmNRT2.1 and ZmNRT2.2 in ZmCHB101-RNAi lines than in
FIGURE 3 | ZmCHB101 regulates transcriptional networks of nitrate-responsive genes in maize roots. (A, B) Hierarchical clustering analysis (A) and Gene Ontology
(GO) enrichment analysis (B) of genes differentially expressed between 7-day-old nitrate-free WT and ZmCHB101-RNAi line R101 seedlings under the mock and
nitrate condition. A total of 862 and 786 differentially expressed genes (DEGs) were identified in the WT vs. R101 comparison under the mock and nitrate condition,
respectively. The pie charts in (B) show significantly enriched GO terms of DEGs. (C) Heatmap of DEGs involved in nitrate metabolism. The color scale indicates the
FPKM values. Mock, nitrate treatment for 0 h; nitrate, nitrate treatment for 2 h.
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WT plants (Figures 4B, D). Furthermore, the nitrate-induced
increase in H3K4me3 levels was greater at the 5' and gene body
regions in the ZmCHB101-RNAi lines than in the WT line
(Figures 4B, D).

Next, we examined the binding of ZmCHB101 to the 5', gene
body, and 3' regions of ZmNRT2.1 and ZmNRT2.2. To this end,
we expressed ZmCHB101-2×FLAG in maize protoplasts and
performed a ChIP-qPCR analysis using an anti-FLAG antibody.
Frontiers in Plant Science | www.frontiersin.org 9
As shown in Supplementary Figure S3, ZmCHB101-2×FLAG,
but not FLAG, was strongly associated with the 5' region of
ZmNRT2.1 and ZmNRT2.2, but its binding ability became
weaker at the gene body and 3' regions. Taken together, these
results suggest that ZmCHB101 impacts the nucleosome
densities at regions proximal to the TSS and affects the
H3K27me3 and H3K4me3 statuses throughout the whole genic
regions of ZmNRT2.1 and ZmNRT2.2.
FIGURE 4 | ZmCHB101 affects nucleosome occupancy and histone modification status of ZmNRT2.1 and ZmNRT2.2. 7-day-old nitrate-free seedlings under the
mock and nitrate condition were used for chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) assay. (A) ChIP-qPCR using anti-H3 antibody was
performed to dissect nucleosome occupancies and densities at -1 and +1 nucleosomes in ZmNRT2.1 and ZmNRT2.2 promoters. The X-axis denotes distance from
TSS. The Y-axis denotes nucleosome occupancy normalized relative to the input DNA. (B) Schematic diagram of ZmNRT2.1 and ZmNRT2.2. The untranslated
regions are shown as open boxes and the exons as black boxes. 5', 5' untranslated region; body, gene body region; 3', 3' untranslated region. (C) H3K27me3
levels at ZmNRT2.1 and ZmNRT2.2. (D) H3K4me3 levels at ZmNRT2.1 and ZmNRT2.2. The Y-axes in (C, D) denote relative enrichment normalized to the H3. Data
represent mean ± SD of the biological replicates (n = 3). Mock, nitrate treatment for 0 h; nitrate, nitrate treatment for 2 h. Asterisks indicate significant differences
between WT and RS1 or R101 (*, p < 0.05; **, p < 0.01; Student's t-test).
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NREs Are Essential for the Expression of
ZmNRT2.1 and ZmNRT2.2
Since ZmCHB101 regulates nucleosome densities at the
promoter regions of ZmNRT2.1 and ZmNRT2.2, we performed
a bioinformatic analysis of these promoters using EditSeq
(Arnold and Clewley, 1997; Toplak et al., 2012) and detected
consensus NREs (5'-GACtCTTN10AAG-3'; (Konishi and
Yanagisawa, 2010; Konishi and Yanagisawa, 2014) in the
promoter regions of both genes (Figure 5A). Subsequently, we
examined the expression levels of nitrate-responsive genes in
nitrate-free maize protoplasts. After 2 h of nitrate induction, key
nitrate-responsive genes such as ZmNRT2.1, ZmNRT2.2,
ZmNNR1, and ZmNNR2 were significantly activated relative to
the mock condition (Supplementary Figure S4). Next, to
determine whether the consensus NRE sequence is required for
nitrate-responsive gene activation, we co-transfected nitrate-free
maize mesophyll protoplasts with proZmUBQ2:GUS and the
proZmNRT2.1:LUC or proZmNRT2.2:LUC construct
containing normal or mutant NREs in the ZmNRT2.1 or
ZmNRT2.2 gene promoter. The proZmUBQ2:GUS construct
was used as a control for evaluating transfection efficiencies. In
protoplasts transfected with the normal proZmNRT2.1:LUC or
proZmNRT2.2:LUC construct, the activity of LUC was
dramatically higher in the nitrate condition than in the mock
condition (Figures 5B, C). However, LUC activity was not
detected in protoplasts transformed with plasmids containing
the mutant form of the ZmNRT2.1 or ZmNRT2.2 gene promoter
(Figures 5B, C).

ZmNLP3.1 plays an essential role in the regulation of nitrate
signaling and assimilation processes. It was reported previously that
ectopic expression of ZmNLP3.1 in nlp7-1 mutant Arabidopsis
plants restores the N-deficient phenotypes, including shoot
biomass, root morphology, and nitrate assimilation under nitrate-
replete conditions (Wang et al., 2018). Moreover, nitrate-mediated
induction of theNRT2.1,NIA1, andNiR1 transcripts is recovered in
the 35S::ZmNLP3.1/nlp7-1 transgenic lines (Wang et al., 2018). To
determine whether ZmNLP3.1 participates in the regulation of
ZmNRT2.1 and ZmNRT2.2 expression, we co-transfected maize
protoplasts with ZmNLP3.1, proZmUBQ2:GUS, and proZmNRT2.1:
LUC or proZmNRT2.2:LUC. The activity of LUC was greatly
induced under the nitrate condition (Figure 5D). Intriguingly,
LUC activity was higher in protoplasts expressing ZmNLP3.1 than
in those expressing empty vector (Figure 5D). These results indicate
that ZmNLP3.1 regulates the expression of ZmNRT2.1 and
ZmNRT2.2 in response to nitrate. Next, we performed
electrophoretic mobility shift assays to determine whether
ZmNLP3.1 binds directly to the NREs of ZmNRT2.1 and
ZmNRT2.2. The full-length GST-tagged ZmNLP3.1 protein (GST-
ZmNLP3.1) was capable of binding to probes containing consensus
ZmNLP3.1-binding motifs; however, mutations of the NREs in the
ZmNRT2.1 or ZmNRT2.2 gene promoter abolished the binding of
ZmNLP3.1 to these regions (Figure 5E). These results indicate that
ZmNLP3.1 binds to NREs located in the promoter regions of
ZmNRT2.1 and ZmNRT2.2, and activates the expression of these
genes in response to nitrate.
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ZmCHB101 Impacts the Binding of
ZmNLP3.1 to ZmNRT2.1 and ZmNRT2.2
Promoters
To determine the molecular interplay between ZmCHB101 and
ZmNLP3.1, we transiently expressed ZmNLP3.1-2×FLAG in
WT, RS1, and R101 protoplasts, and performed ChIP-qPCR
analyses using an anti-FLAG antibody. In the absence of nitrate
(mock), ZmNLP3.1 did not bind to NREs (P1) or non-NREs (P2)
located in the ZmNRT2.1 or ZmNRT2.2 promoter regions of WT
protoplasts (Figures 6A, B); however, in ZmCHB101-RNAi lines,
ZmNLP3.1 bound to P1 but not P2 (Figures 6A, B). In the
presence of 0.5 mM nitrate, ZmNLP3.1 bound to P1 in WT
protoplasts, although the level of binding was dramatically
higher in the ZmCHB101-RNAi lines (Figures 6A, B).
Subsequently, we performed an additional ChIP-qPCR analysis
of ZmCHB101-2×FLAG in WT protoplasts and found that
ZmCHB101 could bind to NREs in the absence of nitrate.
However, this binding activity was significantly reduced in the
presence of 0.5 mM nitrate (Figure 6C). Overall, these results
indicate that ZmCHB101 impacts the binding of ZmNLP3.1 to
NREs via an unknown mechanism (Figure 7).
DISCUSSION

Nitrate uptake is a highly regulated process. Maximizing nitrate
uptake during seedling development is important because it has a
major influence on plant growth and yield. In nature, the
concentrations of seed-derived free amino acids in root and shoot
tissues are initially high but decrease rapidly until maintaining a
constant level 8 days after imbibition. The root nitrate uptake
capacity then increases until shoot N content is stabilized
(Sabermanesh et al., 2017). One possible method to improve the
efficiency of N uptake is to enhance the nitrate uptake capacity of
plants because nitrate is the predominant form of N available in the
soil in most agricultural areas (Miller et al., 2007). Plant nitrate
uptake is mediated by low- and high-affinity transport systems,
which are thought to operate at high and low external nitrate
concentrations, respectively (Kronzucker et al., 1995; Okamoto
et al., 2003; Kotur et al., 2013). In Arabidopsis, AtNRT2.1 and
AtNRT2.2 mediate high-affinity nitrate uptake; AtNRT2.1 is
thought to be responsible for the majority of high-affinity nitrate
transport (Li et al., 2007). Following a nitrate starvation period, the
high-affinity nitrate transport activities and transcript levels of
AtNRT2.1 and AtNRT2.2 increase rapidly after replenishing the
nitrate supply but are later repressed with prolonged exposure to
sufficient nitrate. In this study, ZmCHB101-RNAi lines showed
enhanced lateral root numbers and biomass accumulation under
low nitrate conditions; however, this phenomenon disappeared
gradually under high nitrate conditions. In addition, the
expression levels of ZmNRT2.1 and ZmNRT2.2 were higher in the
ZmCHB101-RNAi lines than in the WT plants under low nitrate
conditions. These results indicate that the high-affinity nitrate
transport system is activated more strongly in the ZmCHB101-
RNAi lines than in the WT line.
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FIGURE 5 | ZmNLP3.1 binds to the promoter regions of ZmNRT2.1 and ZmNRT2.2 via the recognition of NREs and activates gene transcription. (A) Nucleotides
sequences of nitrate-responsive cis-elements (NREs) found in the flanking regions of ZmNRT2.1 and ZmNRT2.2. The NREs of NIR genes of Arabidopsis thaliana,
Spinacia oleracea, Betula pendula, Phaseolus vulgaris, Sorghum bicolor, and Oryza sativa are indicated. The consensus sequence of NRE is displayed using the
sequence logo generation program WebLogo (Crooks et al., 2004). The p-values for the prediction of NREs in ZmNRT2.1 and ZmNRT2.2 gene promoters were
2.78e-6 and 1.29e-7, respectively. (B–D) Transcriptional activation of ZmNRT2.1 and ZmNRT2.2 by ZmNLP3.1 via recognition of the consensus sequence. (B)
Schematic representation of the intact and mutant NREs in ZmNRT2.1 and ZmNRT2.2 promoters. N: normal ZmNRT2.1 or ZmNRT2.2 promoter sequence
harboring the motif CTATCCTTN10TAGAA or TGAGACTTN10AAGGA, respectively. M: variants of the ZmNRT2.1 or ZmNRT2.2 promoter harboring mutant NREs
(AAAAAACCN10CCAAA or GAAAAAAGN10GAAAG, respectively). (C) Nitrate-induced expression of ZmNRT2.1 and ZmNRT2.2 genes in protoplasts, depending on
the NRE sequences. Nitrate-free protoplasts were transformed with proZmNRT2.1 or proZmNRT2.2 and normalizer, incubated for 12 h, and then treated with 0.5
mM nitrate for 0 or 2 h. Mock, nitrate treatment for 0 h; nitrate, nitrate treatment for 2 h. N and M indicate the normal and mutant promoter sequences of ZmNRT2.1
or ZmNRT2.2, respectively, as shown in (B). The ratio of LUC activity to b-glucuronidase (GUS) activity was calculated. Data represent mean ± SD (n = 3). Asterisks
indicate significant differences between mock and nitrate conditions (**, p < 0.01; Student's t-test). (D) Transcriptional activation of ZmNRT2.1 or ZmNRT2.2 by
ZmNLP3.1 relies on NRE sequences. The proCaMV35S:ZmNLP3.1 vector was cotransformed with a reporter construct containing either ZmNRT2.1 or ZmNRT2.2
promoter and normalizing plasmids in nitrate-free protoplasts. After 12 h incubation, followed by treatment with 0.5 mM nitrate for 0 or 2 h, the LUC and GUS activity
was determined. Data represent mean ± SD (n = 3). Mock, nitrate treatment for 0 h; nitrate, nitrate treatment for 2 h. Asterisks indicate significant differences
between EV and ZmNLP3.1 (**, p < 0.01; Student's t-test). (E) Electrophoretic mobility shift assay (EMSA) for analyzing the binding of ZmNLP3.1 to ZmNRT2.1 and
ZmNRT2.2 promoters. Probe2.1 and probe2.2 denote gene-specific biotin-labeled probes of ZmNRT2.1 and ZmNRT2.2 promoters, respectively. In mutant probe
2.1 (mProbe2.1), the sequence CTATCCTTN10TAGA in the ZmNRT2.1 promoter was changed to CGACGGGGN10CCGAC. Similarly, in mprobe2.2, the sequence
TGAGACTTN10AAGGA in the ZmNRT2.2 promoter was changed to TGAGAGGGN10CCGGA.
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Nitrate sensing activates signaling pathways that impinge
upon molecular, metabolic, physiological, and developmental
responses, both locally and at the whole plant level. However,
some gaps still exist in our understanding of how nitrate
signaling affects biological processes in plants. Previous studies
demonstrated that the SWI/SNF CRC is a central regulatory
module in plants that controls biological processes such as cell
cycle progression and hormone signaling (Jerzmanowski, 2007;
Reyes, 2014; Sarnowska et al., 2016). However, whether the SWI/
SNF complex participates in nitrate signaling remains unknown.
We showed previously that the ZmCHB101 protein regulates
different biological processes in maize, including dehydration
stress responses, abscisic acid responses, and shoot and root
development (Yu et al., 2016; Yu et al., 2018). In this study, RNA-
Seq analyses revealed that ZmCHB101 functions in different
biological processes, including “response to nitrogen
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compound”, “response to stress”, and “response to abiotic
stress”. This result, together with the results of previous
studies, indicates that ZmCHB101 acts as a general SWI/SNF
CRC that participates in different physiological processes. Since
we did not have a ZmCHB101-specific antibody, we tried to
identify possible targets of ZmCHB101 using RNA-Seq. The
expression levels of ZmNRT2.1 and ZmNRT2.2, encoding high-
affinity nitrate transporters, were higher in ZmCHB101-RNAi
lines than in the WT line, identifying them as possible targets of
ZmCHB101. Furthermore, ZmCHB101 bound directly to
ZmNRT2.1 and ZmNRT2.2, and impacted the chromatin
status, indicating that it plays a key role in maintaining
nucleosome occupancies at core consensus NREs located in the
promoter regions of ZmNRT2.1 and ZmNRT2.2 to inhibit their
expression. However, upon nitrate induction, ZmCHB101 was
likely removed from these NREs, resulting in a dramatic
FIGURE 6 | Knockdown of ZmCHB101 enhances the binding of ZmNLP3.1 to the promoter regions of ZmNRT2.1 and ZmNRT2.2. (A) Schematic representation of
ZmNRT2.1 and ZmNRT2.2 promoters showing the ZmNLP3.1-binding site (P1) and non-ZmNLP3.1-binding site (P2). The NREs located at the -1 nucleosome
position are indicted in red. (B) The binding of ZmNLP3.1 to NREs in ZmNRT2.1 and ZmNRT2.2 promoters was enhanced in ZmCHB101-RNAi lines. Nitrate-free
WT and ZmCHB101-RNAi protoplasts were transformed with pro35S:ZmNLP3.1-2×FLAG and then treated with 0.5 mM nitrate for 0 or 2 h. ChIP-qPCR was
performed using anti-FLAG antibody. The binding of ZmNLP3.1 to NREs in ZmNRT2.1 and ZmNRT2.2 promoters was enhanced in ZmCHB101-RNAi protoplasts
compared with WT protoplasts. Asterisks indicate significant differences between WT and R101 or RS1 (**, p < 0.01; Student's t-test). (C) Nitrate treatment
dissociates ZmCHB101 from the -1 nucleosome position in ZmNRT2.1 and ZmNRT2.2 promoters. WT protoplasts were transformed with pro35S:ZmCHB101-
2×FLAG and then treated with 0.5 mM nitrate for 0 or 2 h. ChIP-qPCR was performed using anti-FLAG antibody. Mock, nitrate treatment for 0 h; nitrate, nitrate
treatment for 2 h. Asterisks indicate significant differences between mock and nitrate conditions (**, p < 0.01; Student's t-test).
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reduction in nucleosome densities at these loci. These results
indicate that, while ZmCHB101 maintains nucleosome
occupancies at these loci, some unknown nucleosome
remodeling factors reduce the nucleosome densities. Reduction
of nucleosome densities further facilitates the binding of
ZmNLP3.1 to NREs, which activates gene transcription. Since
ZmCHB101 and ZmNLP3.1 antibodies are not currently
available, we were unable to determine the mechanism by
which ZmCHB101 plays a negative role in ZmNLP3.1-
mediated gene expression of ZmNRT2.1 and ZmNRT2.2.
Further studies are required to elucidate the in vivo molecular
interplay between ZmCHB101 and ZmNLP3.1 in response
to nitrate.

A genome-wide nucleosome occupancy map of maize
constructed via sequencing of mononucleosomal DNA
generated by MNase digestion revealed that nucleosome
organization is associated with the plasticity of gene
transcriptional status (Chen et al., 2017). The 5' and 3'
nucleosome depleted regions become more pronounced as the
gene expression level increases (Chen et al., 2017). In addition,
the distances between the +1 and -1 nucleosomes and the TSS
show a positive correlation with the level of gene expression
(Chen et al., 2017). In our current study, the NREs in the
promoters of ZmNRT2.1 and ZmNRT2.2 were located at -1
nucleosome, indicating that ZmNLP3.1-mediated gene
expression is coupled with chromatin remodeling processes. In
Frontiers in Plant Science | www.frontiersin.org 13
addition, the in vivo binding affinity of ZmNLP3.1 for NREs was
dramatically lower in WT plants than in ZmCHB101-RNAi lines,
both in the absence and presence of nitrate. Moreover,
nucleosome densities were dramatically lower in ZmCHB101-
RNAi lines than in WT plants. Overall, these results indicate that
ZmCHB101 is responsible for the maintenance of nucleosomes
at NREs in the absence of nitrate. Previously, we proposed that
ZmCHB101 is responsible for removing the -1 and +1
nucleosomes from stress-responsive gene promoters (Yu et al.,
2018). Because CRCs perform multiple functions, including
nucleosome sliding, eviction, and replacement (Clapier and
Cairns, 2009), we deduce that ZmCHB101 also plays different
roles during transcriptional regulation.
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