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The transition from the vegetative to sexually reproductive phase is the most dynamic
change to occur during a plant's life cycle. In the present study, we showed that the
ethylene precursor 1-aminocylopropane-1-carboxylic acid (ACC) induces sexual
reproduction in the marine red alga Pyropia yezoensis independently from ethylene.
Exogenous application of ACC, which contains a three membered carbocyclic ring,
promoted the formation of spermatia and carporspores in gametophytes, whereas
ethephon, an ethylene-releasing compound, did not stimulate sexual reproduction. In
addition, an ACC analog, 1-aminocyclobutane-1-carboxylic acid (ACBC), which contains
a four membered carbocyclic ring, promoted sexual reproduction and enhanced
tolerance to oxidative stress in the same manner as ACC, but 1-aminocyclopentane-1-
carboxylic acid (cycloleucine; which contains a cyclopentane ring) did not. The application
of ACC increased the generation of reactive oxygen species (ROS) and induced the
expression of PyRboh gene encoding NADPH oxidase. ACC also stimulated the synthesis
of ascorbate (AsA) by inducing transcripts of PyGalLDH, which encodes galactono-1,4-
lactone dehydrogenase, the catalyst for the final enzymatic step of the AsA biosynthetic
pathway. Conversely, ACC caused a decrease in the synthesis of glutathione (GSH) by
repressing transcripts of PyGCL, which encodes glutamate cysteine ligase, the catalyst for
the rate-limiting step in the formation of GSH. These results suggest a possible role played
by ACC as a signaling molecule independent from ethylene in the regulation of sexual
reproduction through alterations to the redox state in P. yezoensis.
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INTRODUCTION

Ethylene is a gaseous plant hormone with a plethora of effects on
plant growth, development, and stress responses during events
such as fruit ripening, senescence, flower development, sex
determination, and pathogen attack (Lin et al., 2009; Van De
Poel et al., 2015). Ethylene is synthesized through the conversion
of methionine to 1-aminocylopropane-1-carboxylic acid (ACC)
by ACC synthase (ACS), which acts as the enzyme for the rate-
limiting step in the ethylene biosynthetic pathway. In the
subsequent step, ACC is catalyzed by ACC oxidase in a
reaction that converts ACC to ethylene (Yang and Hoffman,
1984). ACC has been widely used to replace ethylene treatment,
because exogenous application of ACC can greatly increase
ethylene production in plants (Elías et al., 2018; Sun et al., 2019).

In addition to ACC's function as the immediate precursor of
ethylene, recent studies have suggested that it acts as a signaling
molecule in Arabidopsis thaliana to regulate plant development
and growth independently from ethylene (Yoon and Kieber,
2013; Van De Poel and Van Der Straeten, 2014; Vanderstraeten
and Van Der Straeten, 2017). For example, Xu et al. (2008)
showed that the mutant of two leucine-rich repeat receptor
kinases, fei1 fei2, which displays a severe defect in anisotropic
root growth due to decreased cellulose microfiber content in the
cell wall at the root tip, was not affected by ethylene signaling, but
could be restored by ethylene biosynthesis inhibitors. Similarly,
Tsang et al. (2011) reported that reduced root cell elongation
induced by isoxaben, a cellulose biosynthesis inhibitor, was
suppressed by ethylene biosynthesis inhibitors, but not by
inhibiting the ethylene response pathway. Further evidence of
a role for ACC as a signaling molecule came from analyzing the
loss of function of the ACS gene family in A. thaliana
(Tsuchisaka et al., 2009). The null ACS mutant displayed
embryo lethality, in contrast to the viability observed in null
mutations of key components in ethylene signaling (Alonso et al.,
1999; Tsuchisaka et al., 2009). These phenotypic differences
between ethylene biosynthesis and signaling mutants suggest
that an ACC signal is required for embryo development in
Arabidopsis independently of ethylene signaling. Further
investigation revealed that ACC, but not ethylene, positively
modulates the terminal division of guard mother cells in A.
thaliana (Yin et al., 2019). These results demonstrate that an
ACC-dependent pathway is responsible for development in
higher plants.

Although the signal transduction pathways for ACC remain
obscure, the majority of plant hormones are highly integrated with
redox or reactive oxygen species (ROS)—mediated signaling,
thereby allowing plants to regulate developmental process and
adaptive responses to environmental cues through modulation of
protein activity or gene expression (Schmidt and Schippers, 2015;
Xia et al., 2015). ROS are produced by different enzymatic systems,
some of which involve NADPH oxidases, also known as
respiratory burst oxidase homologs (Rbohs) in plants (Marino
et al., 2012). In addition, the control of ROS is accomplished
through the ascorbate-glutathione (AsA-GSH) pathway, which
comprises two antioxidants, AsA and GSH, and four enzymes,
ascorbate peroxidase (APX), monodehydroascorbate reductase
Frontiers in Plant Science | www.frontiersin.org 2
(MDHAR), dehydroascorbate reductase (DHAR), and
glutathione reductase (GR) (Pandey et al., 2015). The AsA-GSH
cycle not only regulates the redox balance to protect against
oxidative stress, but also plays an important role in plant
developmental processes (Foyer and Noctor, 2011).

The red alga Pyropia (formerly Porphyra) belongs to the order
Bangiales (Bangiophyceae), which represents an ancient lineage
with fossil records that provide evidence for sexual reproduction
dating back 1.2 billion years (Butterfield, 2000). Thus, elucidating
the regulatory mechanisms involved in the sexual reproduction of
Pyropia appears to be important to the understanding of eukaryotic
evolution. During the sexual life cycle of Pyropia, the blade
gametophytes bear nonflagellated male (spermatia) and female
(carpogonia) gametes on the gametophytes. Fertilization occurs
when the female gametes are retained on the gametophytes and
successive cell divisions produce clones of the zygote, called
carpospores, that grow into filamentous sporophytes (Blouin
et al., 2011). A recent study on the monoecious species Pyropia
yezoensis demonstrated that the application of ACC-induced
gametogenesis and enhanced both the antioxidant capacity and
the production of ethylene (Uji et al., 2016). Similarly, exogenous
ACC dramatically promoted spermatogenesis and parthenogenesis
in males and females, respectively, in the dioecious species P.
pseudolinearis (Yanagisawa et al., 2019).

In the present study, to clarify whether ACC acts as a
signaling substance during sexual reproduction in red algae, we
investigated the effect of ethephon, ACC, and two ACC analogs,
1-aminocyclobutane-1-carboxylic acid (ACBC) and 1-
aminocyclopentane-1-carboxylic acid (cycloleucine; Figure 1)
on growth, gametogenesis, and tolerance to oxidative stress in
P. yezoensis. In addition, we examined the correlation between
ACC and redox signaling during sexual reproduction. These
findings will open up the possibility of revealing a role for ACC-
ROS crosstalk, which acts independently from ethylene, in the
regulation of sexual reproduction in red algae.
MATERIALS AND METHODS

Algal Materials and Chemical Treatments
The leafy gametophytes of P. yezoensis strain TU-1 were cultured in
a medium of sterile vitamin-free Provasoli's enriched seawater (PES;
Provasoli, 1968) under conditions described previously (Uji et al.,
2016). For the comparative experiment on the effects of ethephon
and ACC, five individual vegetative gametophytes (ca. 20-mm blade
FIGURE 1 | Structural formulas of 1-aminocylopropane-1-carboxylic acid
(ACC) and the analogs used in this study.
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length) were cultured in airtight glass flasks (200-ml volume) with
silicone rubber stoppers and 100-ml media containing 0-, 50-, or
500-mM ACC (Tokyo Chemical Industry, Tokyo, Japan), or 500-
mM ethephon (FUJIFILM Wako Pure Chemical Corporation,
Osaka, Japan) without aeration at 15°C under a photoperiod
regime of 10-h light:14-h dark using cool-white fluorescent lamps
at 60-mmol photons m−2s−1. After treatment with ACC or ethephon
for 7 days without aeration, thalli were transferred into glass flasks
containing 100-mlmedia without ACC or ethephon under the same
culture conditions but with aeration. After 7 days of culturing with
aeration, the ratio of gametophytes forming clusters of spermatangia
to total gametophytes was determined by counting the number of
under a Leica DM 5000 B microscope, because carpogonium from
P. yezoensis are almost indistinguishable from vegetative cells, which
is in contrast to the colorless spermatangia. The numbers of
discharged carpospores attached to two pieces of glass (20 mm ×
25 mm) placed on the bottom of the culture flask were counted
under a microscope. The growth rate was calculated as the mean
percentage of length increase per day using the following formula:
Growth rate = [100(BLt − BL0)/BL0]/t, BL0 = initial blade length,
BLt = blade length at culture time, t = culture time.

The vegetative gametophytes were also exposed to ACC
analogs, ACBC, and cycloleucine. Five individual vegetative
gametophytes were cultured in glass flasks (150-ml volume)
with 100-ml media containing 0-, 50-, or 500-mM ACBC
(Sigma-Aldrich Co. LLC., USA.), 50- or 500-mM cycloleucine
(Tokyo Chemical Industry), with aeration under the culture
conditions described above. After 10 days of treatment with
ACC analogs, the number of gametophytes that formed clusters
of spermatangia was counted under a microscope and the growth
rate was calculated. Data are expressed as means ± SD of four
independent experiments with five thalli for each condition.

Oxidative Stress Treatment
To examine the effect of ACC analogs on oxidative stress
tolerance, vegetative gametophytes that had been grown to 20–
40-mm blade length were cultured in glass flasks with 100-ml
PES media containing 0- or 500-mM ACC, ACBC, or
cycloleucine for 7 days under the culture conditions described
above. For the oxidative stress treatments, thalli treated with or
without ACC or ACC analogs were transferred into a Petri dish
with PES medium containing 2-mM hydrogen peroxide (H2O2,
Kanto Chemical Co., Inc., Japan) for 1 week. Cell mortality was
measured by counting the living cells (brownish red color) and
dead cells (yellowish white color) using six photographs which
were taken of the upper, middle, and basal parts of each
gametophyte. Data are expressed as means ± SD of three
independent experiments with five thalli for each condition.

ROS Quantification
The vegetative gametophytes (0.03-g fresh weight; FW) cultured in
100-ml medium containing 500-mM ACC were incubated at 15°C
in a Petri dish with 10-ml PES medium containing 5-mM 2',7'-
dichlorofluorescein diacetate (DCFH-DA, FUJIFILM Wako Pure
Chemical Corporation) for 1 h. After incubation, algal thalli were
rinsed in seawater, blotted dry, and ground in a mortar with a pestle
under liquid nitrogen and extracted in 1 ml of 40-mM Tris-HCl
Frontiers in Plant Science | www.frontiersin.org 3
buffer at pH 7.0. The homogenate was centrifuged at 10,000 ×g for
10 min and 500 ml of the supernatant was diluted to 2.5 ml with
Tris-HCl buffer and used to measure fluorescence at 488 nm
(excitation wavelength) and 525 nm (emission wavelength) with a
spectrofluorometer (FB-750, Jasco, Tokyo, Japan). The data are
presented as means ± SD of three independent experiments.

Measurements of Glutathione and
Ascorbate Levels
The ascorbate (AsA) and glutathione (GSH) contents were assayed
according to the methods described by Ratkevicius et al. (2003). For
the assay of AsA and dehydroascorbate (DHA), 0.05-g samples
(FW) were ground in liquid nitrogen with a pestle and mortar. The
homogenates were added to 500 ml of 5% (w/v) trichloroacetic acid
and centrifuged at 4°C for 10 min at 15,000 ×g. AsA was detected by
adding 100 µl of the supernatant to a reaction mixture containing
2% (w/v) trichloroacetic acid, 8.8% ortho‐phosphoric acid, 0.5% a,
a′‐dipyridyl, and 10 mM ferric chloride in a final volume of 1 ml.
The reaction mixture was incubated for 1 h at 40°C and the
absorbance was determined at 525 nm. Total ascorbate was
measured following the same procedure described above, except
that the 100 ml of the homogenate were previously incubated with
5 ml of 100mMdithiotreitol (DTT) for 30min at room temperature.
DTT was subsequently inactivated by addition of 5-ml 5% (w/v) N-
ethylmaleimide and the absorbancewas determined at 525nmwith a
spectrophotometer (U-1800, HITACHI, Tokyo, Japan). The
concentration of DHA was estimated from the differences in total
ascorbate. The calibration curve was prepared with 0.02–0.1 mmoles
of AsA and the same reaction mixture.

For the assays of GSH and oxidized glutathione (GSSG), 0.05 g
samples (FW) were ground in liquid nitrogen with a pestle and
mortar. The homogenates were added to 500 ml of 5% (w/v)
sulfosalicylic acid and then centrifuged at 4°C for 10 min at
15,000 ×g. The homogenate was neutralized with 1.5 volumes of
0.5-M phosphate buffer at pH 7.5. Total glutathione (GSH + GSSG)
was detected by the addition of 100 ml of neutralized homogenate to
a reaction mixture containing 100-mM phosphate buffer at pH 7.5,
0.15-mM NADPH, 60-mM dithio-bis-nitrobenzoate and 0.66 U of
GR (Sigma, St. Louis, USA) in a final volume of 1 ml. The reaction
mixture was incubated for 1 h at 37°C and the absorbance was
determined at 412 nm. GSSG was detected following the same
procedure described above except that the 100 ml of the neutralized
homogenate were previously incubated with 20-ml 2-vynilpyridine
1 M for 1 h at room temperature. GSH was estimated as the
difference between total glutathione and GSSG. The calibration
curve was prepared with 0.005–0.1 mmoles of GSH in the same
reaction mixture. The data are presented as means ± SD of four
independent experiments.

Transcriptional Analysis
RNA extraction and qRT-PCR analysis were performed as
described by Uji et al. (2019). Total RNA was extracted using
the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) following
the manufacturer's instructions. The extracted RNA was purified
with the TURBO DNA-free kit (Invitrogen/Life Technologies,
Carlsbad, CA) to obtain DNA-free RNA. First-strand cDNA was
February 2020 | Volume 11 | Article 60
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synthesized from 0.5 mg of total RNA using the PrimeScript II 1st
strand cDNA Synthesis Kit (TaKaRa Bio, Shiga, Japan). For qRT-
PCR analysis, the cDNA was diluted 10-fold and 1.0 ml of the
diluted cDNA was used as a template in a 20-ml reaction volume
using SYBR® Premix Ex Taq™ GC (TaKaRa Bio) following the
manufacturer's instructions. Real-time PCR was then performed
with a LightCycler® 480 System (Roche Diagnostics, Basel,
Switzerland) under the following conditions: 30 s at 95°C
followed by 40 cycles of 5 s at 95°C and 31 s at 60°C. The mRNA
levels were calculated based on a standard curve and were
normalized to levels of the 18S ribosomal RNA (Py18SrRNA)
gene (Uji et al., 2016). The standard curve for each primer set was
prepared by plotting serial cDNA dilutions (1:10 to 1:105) against
the threshold cycle (CT). The relative expression level was
calculated as a ratio of the mRNA level to the transcription level
at 0 d after ACC treatment. All the experiments were performed in
triplicate.Table S1 lists the primers thatwere used in this study and
sequences of the analyzed genes were retrieved from P. yezoensis
genome sequence data (Nakamura et al., 2013).

Statistical Analysis
Data are expressed as the means ± standard deviation (SD) and
analyzed using Mann-Whitney's U test for treatments with and
without ACC or ACC analogs. For all analyses, p < 0.05 was
considered statistically significant.
RESULTS

Firstly, we compared the effects of ethephon and ACC on growth
and gametogenesis in P. yezoensis to examine the possible
function of ACC as a signaling molecule. ACC dramatically
repressed growth and promoted the formation of colorless
spermatangia on the upper parts of thalli, whereas there were
no significant differences between thalli treated with or without
ethephon (Figures 2A, B). In addition, carpospores were
released from the upper parts of the gametophytes treated with
ACC (Figure 2C). All (100%) thalli of gametophytes treated with
50-mM or 500-mM ACC formed spermatangia clusters; however,
only 25.0% or 30.0% of the thalli produced them when
gametophytes were treated with or without (control) ethephon,
respectively (Figure 2D). The growth rates of gametophytes
cultured in media containing 50 and 500 mM ACC were 11.4%
d-1 and 9.2% d-1, respectively, whereas those of gametophytes
grown with ethephon or without treatment were 19.7% d-1 or
21.2% d-1, respectively (Figure 2E). The number of carpospores
released from the gametophytes treated with ACC was ca. 250,
whereas that of gametophytes treated with ethephon or without
treatment was 7 or 3, respectively (Figure 2F).

Next, we examined whether ACC analogs promote
spermatogenesis in gametophytes of P. yezoensis. All P. yezoensis
gametophytes that were cultured for 10 days in the presence of ACC
or ACBC formed spermatangia (Figure 3A). In contrast, only 6.6%
or 13.3% of thalli formed spermatangia when supplemented with
50 or 500 mM cycloleucine, respectively (Figure 3A). In addition,
ACBC treatment inhibited the growth of gametophytes, in
Frontiers in Plant Science | www.frontiersin.org 4
comparison with cycloleucine or non-ACC analog treatments,
which did not (Figure 3B). Gametophytes cultured in media
containing 50 and 500 mM ACC exhibited growth rates of 6.6%
d-1 and 4.2% d-1, respectively, while those of gametophytes grown
under ACBC treatment were 5.9% d-1 and 3.1% d-1, respectively. In
contrast, the growth rates of gametophytes cultured in media
containing 50-mM and 500-mM cycloleucine were 17.0% d-1 and
21.3% d-1, respectively.

We also investigated whether ACC analogs function in
oxidative stress tolerance, because gametophytes treated with
ACC show enhanced tolerance to oxidative stress (Uji et al.,
2016). In our experiments, thalli treated with 500 mM ACC or
500 mM ACBC demonstrated a high rate of survival at 7 days-
post treatment (ACC: 96.4%, ACBC: 99.1%) in 2 mM H2O2

(Figure 4). However, thalli that were treated with 500 mM
cycloleucine or left untreated (controls) exhibited a low rate of
survival at 7-day posttreatment (control: 0.0%, cycloleucine:
4.5%) in 2 mM H2O2 (Figure 4). These results indicate that
exogenously applied ACBC promoted sexual reproduction and
enhanced the antioxidant capacity of the gametophytes at the
same level as ACC but cycloleucine did not.

To determine a possible role for ROS in ACC signaling, we
determined the production of intracellular ROS during ACC
treatment using a ROS sensor, DCFH-DA. ACC treatment
increased the DCF fluorescence within 1 d (1.40-fold) and
peaked at 3 d (2.55-fold), following which it decreased at 7 d
(1.71-fold) (Figure 5A). In addition, we tested whether Rboh
activity is involved in ROS generation during ACC treatment.
The mRNA transcripts of the PyRboh gene increased
significantly after 1 d of treatment (5.06-fold), peaked at 3 d
(34.0-fold), and then decreased after 7 d (0.77-fold) (Figure 5B).

To examine the involvement of the redox state in ACC
signaling, we determined the effects of ACC application on the
redox state of AsA and GSH (Figure 6). The AsA content of
gametophytes significantly increased (1.66-fold) after 1 d of
ACC treatment and peaked at 7 d (2.06-fold), but the content
of DHA was not significantly changed during ACC treatment
(Figure 6A); however, the levels of GSH and GSSG gradually
decreased and the GSH content after 7 d of ACC treatment was
significantly lower than that of 0 d of ACC treatment (control)
(Figure 6B). Consistent with the content of AsA, the mRNA
transcripts of PyGalLDH, encoding galactono-1,4-lactone
dehydrogenase, which catalyzes the final step in the synthesis
of AsA in higher plants, increased significantly after 1 d of
ACC treatment (7.04-fold), peaked at 3 d (10.0-fold), and then
decreased gradually after 7 d (4.68-fold) (Figure 6C).
Conversely, the exogenous application of ACC resulted in
the down-regulation of PyGCL, encoding glutamate cysteine
ligase (also known as g-glutamylcysteine synthetase), which
catalyzes the rate-limiting step in the formation of GSH
(Figure 6D). The results indicate that ACC strongly
influences the cellular redox state by regulating the synthesis
of AsA and GSH.

Lastly, we examined the expression of genes involved in the
AsA/GSH cycle under ACC treatment (Figure 7). There was no
major fluctuation in the expression of the genes, but the
February 2020 | Volume 11 | Article 60
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expression levels of PyGR, PyAPX1, and PyDHAR, were slightly
induced in the thalli under ACC treatment (1.14-fold –1.61-
fold), while the expression levels of PyAPX2, PyAPX3, and
MDHAR1 were repressed under ACC treatment (0.37-fold–
0.68-fold).
Frontiers in Plant Science | www.frontiersin.org 5
DISCUSSION

Ethylene is the gaseous plant hormone regulating many aspects of
plantgrowthanddevelopment inhigherplants (Linet al., 2009;Van
De Poel et al., 2015). In contrast to higher plants, information about
FIGURE 2 | Promotion of sexual reproduction in Pyropia yezoensis gametophytes by1-aminocylopropane-1-carboxylic acid (ACC) but not ethephon (ET). (A) Gametophytes
cultured in medium containing 0 or 500 mM ACC, or 500 mM ET. The thalli treated with ACC formed many spermatangia in the upper regions, which were clear or discolored.
Scale bar = 10 mm. (B) Microscopic view of upper parts from gametophytes in medium with containing 0 or 50, 500 mM ACC, or 500 mM ET. Scale bar = 50 mm. (C)
Microscopic view of carpospores accumulation at the bottom of culture flasks. Scale bar = 10 mm. (D) Formation rate of the clusters of spermatangia of gametophytes after
culture with 0, 50, or 500 mM ACC, or 500 mM ET. (E) Growth rate of gametophytes cultured with 0, 50, or 500 mM ACC, or 500 mM ET. (F) The number of carpospores
released from gametophytes cultured with 0, 50, 500 mM ACC, or 500 mM ET. Data are expressed as means ± SD of four independent experiments with five thalli for each
condition. Asterisks indicate significant differences at P < 0.05 between the controls and treatments.
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the physiological role of ethylene in macroalgae is scarce. For
example, the application of exogenous ethylene exhibited a loss of
chlorophyll a (Chl a) in the green macroalga Ulva intestinalis
(Plettner et al., 2005) and the ethylene exposure of red macroalga,
Pterocladiella capillacea, thalli promoted the maturation of
tetrasporangia (Garcia-Jimenez and Robaina, 2012). Our previous
studies revealed that the ethylene precursor ACC promotes the
formation of male and female gametes in P. yezoensis and P.
pseudolinearis (Uji et al., 2016; Yanagisawa et al., 2019). In the
present study, we found that there was no significant difference in
sexual reproductive activity between gametophytes that have or
havenotbeentreatedwithethephon,whichconverts toethylene, is a
widely used chemical replacement for ethylene treatment in higher
plants (Zhang et al., 2010), whereas the ACC analog, ACBC,
accelerated sexual reproduction in P. yezoensis in the same
manner as ACC. These results suggest that ACC itself can act as a
signal in red algae. ACC has also been reported to act as a primary
regulator of plant growth and development independently to
Frontiers in Plant Science | www.frontiersin.org 6
ethylene in higher plants (Tsuchisaka et al., 2009; Vanderstraeten
and Van Der Straeten, 2017). A recent study demonstrated that
ACC,butnotethylene,positivelymodulatesguardmothercellsofA.
thalianabycontrolling theexpressionof cell cycle regulators suchas
A-type cyclin andB-type cyclin-dependent kinase (Yin et al., 2019).
Our previous study revealed that the application of ACC increases
transcriptsofhomologousgenes toU-type cyclinandAurorakinase
inP.yezoensisgametophytes (Uji et al., 2016).Thus,ACCmightbea
regulator of the cell cycle and cell division in plants.

Characterization of the genes disrupted in mutants is leading to
the discovery of ethylene signal transduction pathway components
in higher plants (Ju and Chang, 2015). In contrast, the molecular
mechanism by which the ACC signaling pathway acts via the ACC
receptor and downstream signaling components remains unclear.
The majority plant hormone functions are tightly linked with ROS-
mediated signaling (Xia et al., 2015; Mittler, 2017; Noctor et al.,
2018) and Tsang et al. (2011) hypothesized that the production of
FIGURE 3 | Effect of 1-aminocylopropane-1-carboxylic acid (ACC) analogs
on sexual reproduction in Pyropia yezoensis gametophytes. (A) Formation
spermatangia clusters on gametophytes during 10 days of culture with 1-
aminocyclobutane-1-carboxylic acid (ACBC) or cycloleucine. (B) Growth rate
of gametophytes during 10 days of culture with ACBC or cycloleucine. Data
are expressed as means ± SD of four independent experiments with five thalli
for each condition. Asterisks indicate significant differences at P < 0.05
between controls and treatments.
FIGURE 4 | Effect of 1-aminocylopropane-1-carboxylic acid (ACC) analogs on
tolerance to oxidative stress in Pyropia yezoensis gametophytes. (A)Magnified view
of gametophytes subjected to 2 mMH2O2 (oxidative stress) after treatment with 0
(control) or 500 mMACC, 500 mM 1-aminocyclobutane-1-carboxylic acid (ACBC),
or 500 mM cycloleucine. Scale bar = 50 mm (B) The survival rate of gametophytes
subjected to 2 mMH2O2 (oxidative stress) after treatment with 0 (control) or 500 mM
ACC, 500 mMACBC, or 500 mM cycloleucine. Data are expressed as means ± SD
of three independent experiments with five thalli for each condition. Asterisks
indicate significant differences at P < 0.05 between controls and treatments.
February 2020 | Volume 11 | Article 60
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ROS regulated by auxin might be required downstream of ACC
signaling to control root elongation in higher plants. For
macroalgae, knowledge about the interplay between ROS and
plant hormones in development and stress responses remains
scarce. However, a few studies suggest that methyl jasmonate-
induced ROS play a crucial role in the defense response,
conferring resistance against algal endophytes by modulating
Rboh activity in red and brown algae (Collén et al., 2006; Hervé
et al., 2006: Küpper et al., 2009). ROS generation in the
Frontiers in Plant Science | www.frontiersin.org 7
gametophytes treated with ACC was accompanied by an increase
in PyRboh transcripts, indicating that Rboh-mediated ROS
production plays an important role in ACC-induced
gametogenesis and tolerance to oxidative stress in P. yezoensis.

The AsA-GSH cycle is a major pathway for scavenging ROS,
which consist of two antioxidants, AsA and GSH, and four
antioxidant enzymes, namely, APX, MDHAR, DHAR, and GR
(Pandey et al., 2015). In higher plants, the concentrations of AsA
and GSH and the expression of antioxidant enzymes can be
tightly regulated under abiotic and biotic stress conditions (Foyer
and Noctor, 2011). The AsA content in P. yezoensis
gametophytes greatly increased during ACC treatment,
whereas the GSH content decreased gradually. However, there
was no major fluctuation in the expression of genes encoding
antioxidant enzymes involved in the AsA-GSH cycle. Thus, the
role of the AsA-GSH cycle in redox modulation of ACC signaling
remains unclear in Pyropia. In addition to the AsA-GSH cycle,
AsA plays a protective role in photoinactivation by serving as a
photosystem II (PSII) electron donor, which can alleviate
photodamage, a rapid inactivation and degradation of PSII
reaction centers, by accumulating ROS under heat and light
stress in higher plants and green algae (Tóth et al., 2009; Tóth
et al., 2011). The gametophytic thalli of P. yezoensis generally
produce spermatia and carpogonia at the beginning of spring
and, after fertilization, carpospores germinate into sporophytes,
which grow in the summer when exposed to high temperatures
and strong light. These findings suggest that the increase of AsA
during sexual reproduction is critical to the acclimation to the
habitat required for the sporophytic stage and may protect
against the photoinactivation of PSII.

In contrast to AsA, the content of GSH declined in the
gametophytes of P. yezoensis exposed to ACC in a time-
dependent manner. GSH is a transducer that integrates
environmental information into the cellular network, thereby
affecting protein structure and activity through changes in the
thiol-disulfide balance (Noctor et al., 2012). In higher plants,
GSH depletion significantly increases the redox potentials of the
nucleus and cytosol and influences root development in
Arabidopsis by regulating gene expression linked to altered
hormone responses (Schnaubelt et al., 2015). In addition,
abscisic acid and methyl jasmonate decrease GSH contents, which
lead to enhanced stomatal closure in A. thaliana (Okuma et al.,
2011; Akter et al., 2012). There has been no report of roles for GSH
in development or plant hormone signaling in red algae, but the
results of this study suggest that alterations in the glutathione status
participate in the signal transduction cascades of the ACC response
during sexual reproduction in Pyropia.

The L-galactose pathway is considered to be the principal
pathway for synthesis of AsA in higher plants. The final step, the
oxidation of L-galactono-1,4-lactone into AsA, is catalyzed by
GalLDH (Smirnoff, 2000). A number of reports suggest that
GalLDH is an important regulatory enzyme in the accumulation
of AsA in higher plants (Tamaoki et al., 2003; Pateraki et al.,
2004; Rodriguez-Ruiza et al., 2017). Wheeler et al. (2015)
suggested that multicellular red algae use the AsA biosynthetic
pathway of higher plants, except that they employ an
FIGURE 5 | 1-aminocylopropane-1-carboxylic acid (ACC) induced
production of reactive oxygen species (ROS) via NADPH oxidase in Pyropia
yezoensis gametophytes. (A) Time course of ACC-induced ROS generation in
gametophytes. Gametophytes were subjected to 5 mM 2',7'-
dichlorofluorescein diacetate (DCFH-DA) after treatment with ACC for 1, 3, or
7 d. The results are presented as the relative fluorescence intensity compared
with that of nontreated gametophytes (0 d). Asterisks indicate significant
differences at P < 0.05 between controls and treatments. The data are
presented as means ± SD of four independent experiments. (B) Relative
expression levels of respiratory burst oxidase homolog in P. yezoensis
(PyRboh) gene in gametophytes in response to ACC. Asterisks indicate
significant differences at P < 0.05 between controls and treatments. The data
are presented as means ± SD of three independent experiments.
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unidentified enzyme to generate L-galactose from GDP-L-
galactose instead of GDP-L-galactose phosphorylase (VTC2).
In the present study, we found that the exogenous application
of ACC significantly increased the content of AsA, which
accompanied higher levels of PyGalLDH expression (Figure
6C). The results suggest that GalLDH is the rate-limiting
enzyme for AsA synthesis in red algae.

ACC, ACBC, and cycloleucine bind to NR1, the glycine binding
subunit of the ionotropic glutamate receptor (iGluR), which is the
N-methyl-D-aspartate (NMDA) receptor in mammals and is
important to fast excitatory synaptic transmission (Nahum-Levy
et al., 1999; Sheinin et al., 2002; Inanobe et al., 2005); however, ACC
and ACBC are partial agonists and cycloleucine is an antagonist
and they have dramatically different affinities for the NR1 ligand
binding core. Displacement experiments indicate that ACC binds
with a 5.5-fold higher affinity than glycine and ACBC and
cycloleucine bind much more weakly than glycine with 31-fold
and 580-fold lower affinities, respectively (Inanobe et al., 2005). In
Frontiers in Plant Science | www.frontiersin.org 8
the present study, ACBC induced gametogenesis and enhanced
tolerance to oxidative stress at the same level as ACC, suggesting
that the affinity of ACBC on an unidentified ACC receptor may be
equal to ACC affinity. In contrast, cycloleucine has no effect on the
promotion or inhibition of sexual reproduction, suggesting that
cycloleucine is neither an agonist nor antagonist to the ACC
receptor in P. yezoensis.

The activation of the NMDA receptor from mammals is
required for the binding of both glycine and glutamate (Johnson
and Ascher, 1987). As described above, ACC functions as a partial
agonist at the glycine site of the NMDA receptor. Furthermore, the
role of ACC and GLRs in root morphogenesis, as well as the strong
expression of GLRs in root hair systems in A. thaliana, suggest
that ACC is likely to be a ligand of plant GLRs on the ligand
binding domain in higher plants (Le Deunff and Lecourt, 2016). In
terms of red algal GLRs, two GLR homologs have been found in
the genomes of the multicellular red algae Porphyra umbilicalis
and Gracilariopsis chorda. In addition, we found two GLR
FIGURE 6 | Changes in ascorbate (AsA) and glutathione (GSH) homeostasis in response to 1-aminocylopropane-1-carboxylic acid (ACC) in Pyropia yezoensis gametophytes.
(A) Changes in AsA and dehydroascorbate (DHA) levels in the gametophytes in response to ACC. Compounds are expressed in micromoles per gram of fresh weight (FW).
The data are presented as means ± SD of four independent experiments. (B) Changes in GSH and oxidized glutathione (GSSG) levels in the gametophytes in response to
ACC. Compounds are expressed in micromoles per gram of FW. The data are presented as means ± SD of four independent experiments. (C) Relative expression levels of
galactono-1,4-lactone dehydrogenase from P. yezoensis (PyGalDH) gene in the gametophytes in response to ACC. (D) Relative expression levels of glutamate cysteine ligase
from P. yezoensis (PyGCL) gene in the gametophytes in response to ACC. The data are presented as means ± SD of three independent experiments. Asterisks indicate
significant differences at P < 0.05 between controls and treatments.
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homologs that showed significant similarity to Branchiostoma and
Octopus in the draft P. yezoensis genome sequence (Data not
shown). There is no information on the characterization of GLRs
from red algae or amino acid signaling, but PyGLRs may be
involved in the ACC-based signaling regulation of sexual
reproduction in P. yezoensis. Intriguingly, our recent study
Frontiers in Plant Science | www.frontiersin.org 9
demonstrated that exogenous glycine or glutamate promoted
sexual reproduction by inducing ACC-responsive genes
(Onodera et al. unpublished). Thus, further research on the
relationship between ACC and PyGLRs is required to elucidate
the mechanisms that regulate the switch between the vegetative
and sexually reproductive phases in P. yezoensis.
FIGURE 7 | Relative expression levels of genes associated with the ascorbate-glutathione (AsA-GSH) cycle in Pyropia yezoensis gametophytes in response to ACC.
The data are presented as means ± SD of three independent experiments. Asterisks indicate significant differences at P < 0.05 between controls and treatments.
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In conclusion, we show that ACC stimulates the formation of
sexual cells and protects against oxidative stress in gametophytes
of P. yezoensis independently of ethylene signaling. ACC
regulates the redox state generating ROS through NADPH
oxidase and antioxidants such as AsA and GSH during sexual
reproduction. These findings provide new insights into not only
the regulation of the red algae life cycle but also the evolutionary
perspective of the functions and signaling of plant hormones.
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