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Cultivated olive (Olea europaea L. subsp. europaea var. europaea) is the most ancient and
spread tree crop in the Mediterranean basin. An important quality trait for the extra virgin
olive oil is the fatty acid composition. In particular, a high content of oleic acid and low of
linoleic, linolenic, and palmitic acid is considered very relevant in the health properties of
the olive oil. The oleate desaturase enzyme encoding-gene (FAD2-2) is the main
responsible for the linoleic acid content in the olive fruit mesocarp and, therefore, in the
olive oil revealing to be the most important candidate gene for the linoleic acid
biosynthesis. In this study, an in silico and structural analysis of the 5′UTR intron of the
FAD2-2 gene was conducted with the aim to explore the natural sequence variability and
its role in the gene expression regulation. In order to identify functional allele variants, the 5′
UTR intron was isolated and partially sequenced in 97 olive cultivars. The sequence
analysis allowed to find a 117-bp insertion including two long duplications never found
before in FAD2-2 genes in olive and the existence of many intron-mediated enhancement
(IME) elements. The sequence polymorphism analysis led to detect 39 SNPs. The
candidate gene association study conducted for oleic and linoleic acids content
revealed seven SNPs and one indel significantly associated able to explain a
phenotypic variation ranging from 7% to 16% among the years. Our study highlighted
new structural variants within the FAD2-2 gene in olive, putatively involved in the regulation
mechanisms of gene expression associated with the variation of the content of oleic and
linoleic acid.
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INTRODUCTION

Cultivatedolive (Olea europaeaL. subsp. europaeavar. europaea)
is the most ancient and spread tree crop in the Mediterranean
basin. Despite the economic, cultural, and ecological importance
of olive groves in theMediterranean area, now extending to other
regions, olive has been a poorly characterized species at genetic
and genomic level compared to other fruit tree crops. The species
is characterized by a very big genome size (1C = 1,400–1,500
Mbp) (Loureiro et al., 2007; Unver et al., 2017), a cross-
pol l inat ing reproduct ive bio logy leading to a high
heterozygosity (Dìez et al., 2011; Besnard et al., 2014; Kaya
et al., 2016) and a long generation time. All these aspects,
together with the scarce knowledge about the inheritance of
most genes controlling agronomical performance and quality
traits, have severely restricted breeding strategies to clonal or
varietal selection (Rugini et al., 2011). Understanding the basis of
quantitative traits may help plant breeders to improve crop
yields, resistance to abiotic and biotic stress conditions, end-
use quality, and other important characteristics that are
controlled by multiple genes exhibiting a quantitative
distribution of phenotypes (Kaya et al., 2016). Loci controlling
quantitative traits can be identified either by QTL mapping in a
biparental segregating population or by association mapping
(Belò et al., 2008) in natural populations (Flint-Garcia et al.,
2003). Until now, in olive several genetic maps have been built
(De la Rosa et al., 2003; Wu et al., 2004; El Aabidine et al., 2010;
Dominguez-Garcia et al., 2011; Atienza et al., 2014; Ipek et al.,
2016; Marchese et al., 2016) aimed to detect QTL-associated
markers for traits, such as fruiting (BenSadok et al., 2013;Atienza
et al., 2014), flowering (Ben Sadok et al., 2013), trunk diameter
(Atienza et al., 2014), and fatty acid composition (Hernández
et al., 2017) using different molecular markers and approaches.
However, biparental QTL mapping has many limitations in tree
species due to their long generation times and juvenile period,
high levels of heterozygosity, time-consuming trait evaluation,
slow physiological maturation, and high levels of genetic
variation between parents (Tian et al., 2014; Kaya et al., 2016).

In recent years, association mapping (AM) methods have
been developed to detect the correlations between genotypes and
phenotypes on the basis of linkage disequilibrium (LD) (Rafalski,
2010). AM has been a part of research on complex traits in
various fruit trees, including peach (Aranzana et al., 2010; Cao
et al., 2012), apricot (Olukolu, 2010), sweet cherry (Ganopoulos
et al., 2011; Khadivi-Khub, 2014), almond (Kadkhodaei et al.,
2011; Font i Forcada et al., 2015), grapevine (Barnaud et al.,
2010) and apple (Kumar et al., 2013).

Olive core collection construction has been reported (Belaj
et al., 2012; El Bakkali et al., 2013) and very recently new wide
SNP polymorphisms in the whole genome and candidate genes
were discovered (D’Agostino et al., 2018; Belaj et al., 2018;
Cultrera et al., 2019). However, genome data are still
incomplete and referred to a few genotypes (Cultrera et al.,
2019) while several transcriptomic experiments have been
already conducted leading to new candidate genes (García-
López et al., 2014; Leyva-Pérez et al., 2014; Carmona et al.,
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2015; Guerra et al., 2015; Koudounas et al., 2015; Gómez-Lama
Cabanás et al., 2015; González-Plaza et al., 2016; Iaria et al., 2015;
Alagna et al., 2016; Grasso et al., 2017; Leyva-Pérez et al., 2018).
Attempts of genome wide association studies were conducted
using molecular markers such as SSR, AFLP, RFLP, and SNP
(Ipek et al., 2015; Kaya et al., 2016; Ben-Ayed et al., 2017).
However, until high level of genome sequencing information will
be available and a whole oriented genome obtained, a candidate
gene association mapping seems the most promising approach.

An important quality trait for the extra virgin olive oil is the
fatty acid composition. In particular, a high content of oleic acid
and low on linoleic, linolenic, and palmitic acid is considered
very relevant in the health properties of the olive oil (Quintero-
Florez et al., 2015). Recently, it has been shown that dietary
supplementation with oleic acid reduces intestinal inflammation
and tumor development in mice (Ducheix et al., 2018). In olive,
oleic acid content ranges from 57% to 78%, while linoleic acid
varies between 7% and 19% (Salas et al., 2000). A significant
negative correlation exists between oleic and linoleic acid content
(Sabetta et al., 2013; Hernández et al., 2017) since linoleic acid is
directly formed by desaturation of oleic acid, which is catalyzed
by the oleate desaturase activity (Shanklin and Cahoon, 1998).
To date, oleate desaturase encoding gene (FAD2) has been
isolated and characterized from many plant species, such as
rapeseed (Yang et al., 2012), soybean (Heppard et al., 1996; Li
et al., 2007), sunflower (Hongtrakul et al., 1998; Martínez-Rivas
et al., 2001), peanut (Jung et al., 2000; Chi et al., 2011), flax
(Krasowska et al., 2007), safflower (Guan et al., 2012a; Guan
et al., 2012b; Cao et al., 2013), sesame (Jin et al., 2001), and
cotton (Liu et al., 1999; Zhang et al., 2009). Arabidopsis has only
a single FAD2 gene (Okuley et al., 1994), while most of other
plant species possess small or large gene families in which each
member is specifically or constitutively expressed in different
organs. For example, in grape, FAD2 is encoded by a small FAD2
gene family with two members (Lee et al., 2012), while in
safflower the FAD2 gene family is unusually large with 11
functionally diverse members (Cao et al., 2013).

In olive, two genes encoding microsomal oleate desaturases
(OepFAD2-1 and OepFAD2-2) have been described and well
characterized (Hernández et al., 2005; Hernández et al., 2009;
Hernández et al., 2011), whereas only one gene corresponding to
the chloroplast oleate desaturase (OeFAD6) has been reported
(Banilas et al., 2005; Hernández et al., 2011). The FAD2-2 gene
has been considered the main responsible for the linoleic acid
content in the olive fruit mesocarp until now (Hernández et al.,
2009) but recently in wild olive (Olea europaea L. subsp.
europaea var. sylvestris), usually named oleaster, five FAD2
genes were found (Unver et al., 2017). These authors named
FAD2-3 to the previously characterized FAD2-2 gene
(Hernández et al., 2005; Hernández et al., 2009).

The FAD2 gene is the most important candidate gene for the
linoleic acid biosynthesis in other species as well (Okuley et al.,
1994; Belò et al., 2008; Singh et al., 2009; Guan et al., 2012a; Guan
et al., 2012b; Font i Forcada et al., 2012);. Several studies focused
on this key gene in order to modify the enzyme activity for
enhancing the oleic acid content through natural or induced
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mutations in different species (Tanhuanpää et al., 1998; Hu et al.,
2006; Mroczka et al., 2010; Yang et al., 2012; Wells et al., 2014).

However, in the cultivated olive studies aiming to evaluate
natural allele variation in modulating the fatty acid composition
are still scarce (Ipek et al., 2015; Ben-Ayed et al., 2017; Cultrera
et al., 2019). Hernández et al. (2017) found the co-localized QTLs
for oleic and linoleic acids, as well as for monounsaturated and
polyunsaturated fatty acids, and for the oleic/linoleic ratio in
linkage group 20 of Arbequina cultivar. However, the authors did
not individuate a single segregating locus controlling the
biosynthesis of oleic and linoleic acids. Fine-mapping of this
QTL region and the analysis of sequence data are needed in order
to highlight the genetic-molecular mechanism underlying the
intra-specific natural variation of fatty acid composition in
olive oil.

Most of FAD2 genes isolated in several plant species carry out
in their 5′-UTR a large intron, which plays a role in the
enhancement of FAD2 gene expression (Kim et al., 2006;
Mroczka et al., 2010; Xiao et al., 2014; Zeng et al., 2017). In
sesame, cis-elements having a role for the intron-mediated
enhancement of FAD2 gene expression and the promoter-like
activity of the intron sequence were identified. The sesame and
Arabidopsis FAD2 introns conferred up to 100-fold
enhancement of GUS expression in transgenic tissues of
Arabidopsis as compared with intron-less controls (Kim
et al., 2006).

To clarify the molecular mechanism underlying the natural
variation of oleic and linoleic acid content in olive tree species,
the FAD2 5′UTR intron was analyzed in this work through a
bioinformatic, structural, and association study conducted in 97
olive varieties.
MATERIALS AND METHODS

Plant Materials
The research was carried out at the CREA Research Centre for
Olive, Citrus, and Tree Fruit official olive tree collection located
in Mirto Crosia, Cosenza, Italy on the Ionian coast (39° 37′ 00′′
North latitude, 16° 45′ 53′′ East longitude) at 6 m a.s.l. Olive trees
were planted since 1997 with four to five replicates for each
variety spaced with a regular planting pattern of 4 × 6 m. The
collection maintains more than 500 olive cultivars and accessions
collecting from other official collections and commercial
nurseries. The olive trees are grown using a vase training
system, pruned with a turn of 3 years and usually irrigated
during the summer with 1200 mc/ha on average using a localized
drip irrigation system. Soil management is mainly characterized
by permanent grass. All the cultivars here studied come from
Italy with different regional origin (Table S1).

Phenotyping
A set of 97 olive varieties was chosen in order to cover the largest
range of the phenotypic variability of fatty acid composition into
the olive germplasm available into the collection (Table S1).
Samplings of 10 to 15 kg drupes at the initial stage of veraison,
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were carried out from 1 or 2 replicate for each cultivar from 2003
to 2007 and olive oil was extracted within 6/12 hours from
harvest using a hammer mill “Oliomio 50” (Toscana Enologica
Mori). Olive oil samples were packed in 250-ml dark bottles and
stored in a fresh place until analysis. The determination of fatty
acid composition was evaluated according to the European
Commission Regulation. The fatty acid methyl esters (FAMEs)
were prepared following the method described by Christie et al.
(1998). FAMEs were obtained by treating 0.15 g of oil with 100 ml
of a methanolic solution of 2N potassium hydroxide and n-
hexane to make up a final volume of 1.5 ml. The resulting
solution was shacked vigorously for 5 min at room temperature.
Afterwards, an aliquot of the supernatant (0.2 ml) was dissolved
in n-hexane to make up a final volume of 2 ml from which 20 µl
were injected into a gas chromatographer (GC). The analyses
were conducted by means of an Agilent GC (6890N) equipped
with a capillary column SP-2340 (60 m × 0.25 mm i.d., 0.2 mm
f.t., Supelco) and a flame ionization detector (FID). Nitrogen was
used as carrier gas. The temperature of the column, injector, and
detector were set at 180°C, 230°C, and 260°C, respectively. The
separation of the analytes was carried out by programming the
temperature as follows: 110°C held for 5 min, increase of 3°C/
min to 150°C and held for 16 min, increase of 4°C/min to 230°C
and held for 27 min. Peaks were identified by comparing their
retention times with those of authentic reference compounds.
The results were expressed as relative area percent of total
FAMEs. Because of the high degree of correlation between
oleic and linoleic fatty acids (Sabetta et al, 2013; Hernández
et al., 2017), both fatty acids were taken in account.

Climate parameters (average temperature and rainfall) were
registered under the same period, from April to November,
kindly provided by ARSAC, Agrometereology Service. Pearson
and Spearman correlation coefficients of the both climate and
phenotypic traits among years were calculated using the PAST
software (Hammer et al., 2001).

Population Structure Analysis
SSR analysis was conducted according to Ben Mohamed et al.
(2017) using a set of 21 microsatellite markers. A combination of
three SSR loci was used in multiplex PCR amplification strategy.
DCA3-6Fam, DCA18-6Fam, DCA8-VIC, DCA5-VIC, DCA11-
PET, DCA16-6Fam, DCA9-NED (Sefc et al., 2000), GAPU82-
NED, GAPU71B-6Fam, (Carriero et al., 2002), UDO4-VIC,
UDO12-NED, UDO15-NED (Cipriani et al., 2002) and
EMO090-NED (De la Rosa et al., 2002), OLEST1-6Fam,
OLEST7-PET, OLEST9-6Fam, OLEST12-6Fam, OLEST14-VIC,
OLEST15-VIC, OLEST20-NED, OLEST23-PET (Mariotti et al.,
2016) loci were used in this work. PCR products were separated on
an ABI PRISM Genetic Analyzer 3130xl (Applied Biosystems Inc.,
Foster City, CA, USA). Frantoio and Leccino authenticated
cultivars were included into the analysis as internal reference to
verify the correctness of molecular data. SSR fragments were
analyzed by GeneMapper 3.7 software (Applied Biosystems, USA).

The data obtained by scoring of SSR profiles were used to
evaluate the genetic structure of population using STRUCTURE
v.2.3.4 (Pritchard et al., 2000) software with K ranging from 1 to
12. The admixture model with correlated allele frequency, a
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burn-in length of 100.000 followed by 100.000 runs at each K,
with three iterations for very K, were used. The true value of K
was determined by the Evanno method (Evanno et al., 2005)
implemented in Structure Harvester web version 0.6.93 (Earl and
Von Holdt, 2012). The Wright’s inbreeding coefficient Fst was
calculated using PopGene 1.32.

Cloning and Sequence Analysis of FAD2-2
Genomic Clone Including 5′UTR Intron
Genomic DNA from young and healthy leaves collected from the
same 97 olive cultivars was prepared using the GenElute™ Plant
Genomic DNA Miniprep Kit (Sigma-Aldrich), according to the
manufacturer’s protocol. DNA quantification and quality evaluation
were carried out by the NanoDrop 2000 spectrophotometer
(Thermo Scientific) and samples were then diluted to 10 ng/µl.
OepFAD2-2 cDNA sequence isolated from olive by Hernández et al.
(2005) was used as template for drawing primer pairs for targeted
PCR gene-walking approach to isolate the complete FAD2-2 gene in
the olive cv. Nocellara Messinese. At first, two gene-specific primers
( F : 5 ′ - TGAAGGGCGAGCAGTGTGT - 3 ′ ; R : 5 ′ -
CAACTCATTTGATCTTCAACAACCA-3′) were drawn on the
5′ and 3′ terminals of the full-length cDNA sequence, available at
the NCBI database (accession n. AY733077.1). These primers
amplified the whole genomic region of the gene, which turned
out to be much longer than the cDNA sequence; different rounds of
nested PCRs followed by direct amplicon sequencing were then
performed until the entire genomic sequence was covered.
Amplification reactions were performed in a final volume of 20 µl
in the presence of 20 ng template DNA, 1× PCR buffer, 1.5 mM of
MgCl2, 0.5 µM of forward and reverse primers, 0.2 mM of each
deoxynucleotide, and 1U Taq DNA polymerase (Invitrogen by Life
technologies). Polymerase chain reactions were performed, using a
Verity™ Thermal Cycler (Applied Biosystems), as follows: 94°C for
3min followed by 35 cycles at 94°C for 45 s, 56°C for 30 s, 72°C for 1
min and 30 s, then 72°C for 10min. PCR products were analyzed on
1.2% agarose gel in 1X TAE. Subsequently, the olive FAD2-2 gene
was sub-cloned into six fragments of approximately 600 bp in PCR-
XL-TOPO® vector (Invitrogen by Life technologies) and the
recombinant vectors were transformed into competent E. coli
cells, following the manufacturer’s protocol. The primer list is
reported in Table S2.

Direct sequencing in both directions of the PCR products was
performed on an ABI3130 Genetic Analyzer (Applied
Biosystems-Hitachi, United States) using the ABI Prism
BigDye Terminator v.3.1. Ready Reaction Cycle Sequencing Kit
(Applied Biosystems). An overlapping region on both ends of at
least 100 bp from each gene fragment allowed the reconstruction
of the entire genomic sequence. The obtained sequences were
aligned to the reference cDNA sequence (Hernández et al., 2005)
and assembled by SeqMan v.7.0.0 (DNASTAR Lasergene)
leading to the two alleles of the gene. In order to confirm the
data about homozygous/heterozygous samples for the 117 bp
insertion/deletion obtained from the sequence alignment, a gene-
specific primer pair (F:5′-CAAGGGATGTTAGGTTGCAG-3′;
R:5′-GAGAAATATCAACATCTGTAGGC-3′) was drawn on
the sequence fragment containing the insertion/deletion, the
Frontiers in Plant Science | www.frontiersin.org 4
DNA of the remaining 96 cultivars was amplified and the
corresponding PCR products were analyzed on 1.2% agarose
gel in 1X TAE.

In order to evaluate the polymorphisms in the 5′UTR intron,
four fragments of about 550 nucleotides length in the intron
region of the FAD2-2 gene were amplified with a set of specific
primers (Table S3) and sequenced by Sanger method in the 96
olive cultivars selected. Sequence alignment was conducted using
the same software above described and SNPs, indels mutations
were identified excluding rare SNPs and Indel with a
frequency <5%.

The two allelic forms of FAD2-2 gene of the cv. Nocellara
messinese were aligned between them by Clustal Omega Mega-
Multiple Sequence Alignment with the Neighbor-joining method
(https://www.ebi.ac.uk/Tools/msa/clustalo/10122018), then they
were aligned to cv. Farga (Cruz et al., 2016) (https://blast.ncbi.
nlm.nih.gov/Blast.cgi/10122018) and var. sylvestris (Unver et al.,
2017) whole genomes. A publicly available web database,
PlantCARE (http://bioinformatics.psb.ugent.be/webtools/
plantcare/html/10112018), was used to locate Cis-Acting
Regulatory Elements in the intron sequence. The intron region
of the two allelic forms of FAD2-2 isolated in Olea europaea and
in some other plant species (Sesamum indicum, Glycine max,
Arabidopsis thaliana, Brassica napus, Perilla frutescens, Camelina
sativa, Carthamus oxyacanthus, Carthamus persicus, Carthamus
tinctorius, Salvia hispanica, Sinapis alba) was analyzed by IMEter
v2.0 software, its algorithm is a good predictor of how well the
intron sequence will enhance gene expression (Parra et al., 2011).

Polymorphism, Linkage Disequilibrium
Estimation and Single SNP-Based
Association Analysis
DnaSp v6. software was used for DNA polymorphism analysis,
haplotype reconstruction from unphased data, intragenic
recombination (IR) and linkage disequilibrium (LD) degree.
For haplotype reconstruction, the algorithm provided by
PHASE (Stephens et al., 2001; Stephens and Donnelly, 2003)
was used with 1,000 iterations, thinning intervals equal to 10 and
1,000 burn-in iterations. LD between polymorphic sites was
estimated by the correlation coefficient (r) calculated from
inferred haplotypes. Both the Fischer’s exact test and Chi-
square test were used for evaluating significant pairwise
associations and Bonferroni correction was also applied.
Linkage disequilibrium decay was calculated with the software
R 3.4.1 (R Core Team, 2017) by using r2 parameters.

Single SNP association analysis was conducted using oleic and
linoleic acid content data from 2003 to 2007 years. The mixed
linear model (MLM) in Tassel 5.2.51v was implemented with the
kinship matrix (K matrix) and the Q matrix, in order to take into
account the effects of relatedness among varieties and population
structure. The K matrix was calculated using Past software from
the 21 SSR markers used for the population structure analysis.
Correction for multiple testing was carried out using the
estimated false discovery rate (FDR) values (Storey and
Tibshirani, 2003) in the R package using function p.adjust.
Markers with FDR ≤ 0.05 were considered significant.
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Manhattan plots were visualized using TASSEL 5.2.51v for the
single SNP association study. The indels found in the 5′UTR
intron were treated as a single polymorphism and computed in
association analysis. The TASSEL 5.2.51v software calculates
genotypic effect and not allele effect as deviations from the
estimated value of the genotypic class with lowest frequency.
The class with lowest frequency is set as zero effect, then the
other genotype effects are given as deviations between their
estimated values and the lowest frequency class.
RESULTS

Phenotyping: Fatty Acid Composition
Variation
Average rainfall and temperature registered were in a range
between 240 (2004) and 658 mm (2005) and 20°C (2005) to 23°C
(2003) (Figure S1) under the period 2003 to 2007. Highly
significant correlations were obtained for temperature among
the years with a Pearson’s correlation index ranging from 0.95 to
0.99 while no significant correlations were observed for rainfall
among the year except for 2003, 2004 versus 2007 year (Table 1),
indicating a large rainfall fluctuation over the years. A wide range
of variation was observed for the acidic composition (oleic acid:
53–78%; linoleic acid: 3.4–22.5%) covering a large part of the
natural variation described for olive (Table S1).

Since the frequency of phenotypic data showed an
asymmetric distribution (Figure 1), correlation indexes were
calculated using a nonparametric statistical test (Spearman’s
correlation index). High significant correlations were observed
for both oleic and linoleic acid content among the years at high
significance level (P = 0.01). The Spearman’s correlation index
ranged from 0.65 to 0.9 and from 0.61 to 0.9 for oleic and linoleic
acid, respectively (Table 1).

Population Structure Analysis
The population structure analysis conducted on the 97 olive
varieties using a set of 21 SSR markers leaded to 2 main groups,
here named ‘Red’ and ‘Green’ (Figure S2). A differentiation
Frontiers in Plant Science | www.frontiersin.org 5
related to geographic origin was discovered for Sicily and
Sardinia cultivars belonging mainly to the red group, while
almost all the Abruzzo and Molise cultivars were clustered in
the green group. Worthy to note, that almost all the cultivars
from Abruzzo clustering in the green group showed a reduced
oleic acid content on average (63.64%) in respect of cultivars
from Sicilia and Sardinia belonging to the red group showing on
average oleic acid content of 68.7% and 68.9% respectively.
However, the red and green groups showed a weak difference
each other for the oleic acid content, on average 69.3% and
67.5% respectively.

Not a clear differentiation related to geographic origin was
highlighted for the other varieties and a lot of admixed genotypes
were found. Membership >0.9 was found for the following group
of varieties: “Ghiannara,” “Procanica,” “Reale,” “Corsicana da
olio,” “Nostrale di Fiano Romano,” “Ottobrina,” “Gaggiolo,” and
“Mignolo.” This group of cultivars was considered of clonal
origin and excluded from association analysis except one of them
(“Mignolo”) considered as reference cultivar.

The Wright’s inbreeding coefficient Fst (Fst = 0.033)
confirmed a low degree of population differentiation.

Genomic Organization, Polymorphisms
and Cis-Regulatory Elements of the Olive
FAD2-2 Gene 5′UTR Intron
The molecular cloning of FAD2-2 gene in cv. Nocellara
messinese, led to isolate two heterozygous allelic forms, here
named OeFAD2-2a and OeFAD2-2b of 3535 bp and 3624 bp
length characterized by 2143- and 2242-bp single introns in the
5′UTR, respectively (Figure 2A). Their sequences were deposited
in GenBank database (Accession numbers MN586855 and
MN586856 respectively). The alignments of OeFAD2-2a and
OeFAD2-2b to both wild and cultivated olive whole genomes
allowed to locate OeFAD2-2 on chromosome 17 (Unver et al.,
2017) and scaffold Oe6_s00121 (Cruz et al., 2016).

The alignment of the intron regions between the two allele
forms revealed three indels: 117, 13, and 5 bp length (Figure 2A).
The insertion of 117 bp showed two long duplications of 49 and
53 bp (Figure 2B) and allowed to distinguish 10, 31, and 45
TABLE 1 | Pearson correlation indexes (A, B) for climate parameters and Spearman correlation indexes (C, D) for fatty acid composition among years. The asterisks
indicate the significance of statistical test.

A C

Temperature 2003 2004 2005 2006 Oleic acid 2003 2004 2005 2006

2004 0.95*** 2004 0.83***
2005 0.95*** 0.95*** 2005 0.9*** 0.88***
2006 0.97*** 0.98*** 0.98*** 2006 0.69*** 0.65*** 0.71***
2007 0.97*** 0.98*** 0.98*** 0,99*** 2007 0.83*** 0.88*** 0.9*** 0.67***
B D

Temperature 2003 2004 2005 2006 Oleic acid 2003 2004 2005 2006

2004 −0.04 2004 0.8***
2005 −0.05 0.04 2005 0.8*** 0.9***
2006 −0.05 0.33*** −0.05 2006 0.6*** 0.61*** 0.6***
2007 0.15* 0.07 −0.04 0.07 2007 0.7*** 0.6*** 0.86*** 0.61***
February 2020
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*significant (P = 0.05); ***high significant (P = 0.01).
rticle 66

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Salimonti et al. Association Study in Olea europaea L.
cultivars in homozygous deletion, homozygous insertion, and
heterozygous status, respectively.

Intron sequences showed standard splicing borders GT …
AG and were located 11bp from the ATG translation initiation
codon. The GC content was 31% indicating a rich component of
A+T typically found in other 5′UTR introns (Lozinsky
et al., 2014).

The OeFAD2-2b intron sequence was analyzed for known cis-
acting elements through a web search of publicly available
database (PlantCARE). Several cis-acting regulatory elements
were found (Figure 3, Table S4), most of them similar to
those found in the SeFAD2 promoter, leading us to speculate a
promoter-like role for intron sequence in olive too. The analysis
of the intron region of the two allelic forms OeFAD2-2a and
OeFAD2-2b by IMEter v2.0 software revealed a score of 18.11
and 18.24 respectively, higher than Sesamum indicum (11.65)
and Brassica napus (11.76) scores as reported in (Table S5). The
higher the IMEter score, the more likely the intron is expected to
enhance gene expression; in particular, introns that moderately
enhance expression tend to have IMEter v2.0 scores above 10 and
introns that strongly enhance expression tend to have scores
above 20. The pentamer CGATT appears to be an important part
of the Intron-Mediated Enhancement (IME) signal, in fact is one
of many pentamers used by the IMEter to score introns, and it is
Frontiers in Plant Science | www.frontiersin.org 6
the pentamer which shows the biggest difference in frequency
between a set of promoter-proximal and promoter-distal introns
(Parra et al., 2011). This sequence was detected twice in the 5′
UTR intron sequence of OeFAD2-2, within TATA box and
TGACG-motif/TATAbox, respectively (Figure 3).

The SNPs and indel analysis conducted on the 5′UTR intron
of the 97 olive cultivars detected 39 SNPs (Figure 3).
Considering a whole length of the longest of the 5′UTR intron
(2242 bp) and excluding indels, a SNP frequency of 1/53 bp was
observed. All the selected SNPs were considered common (minor
allele frequency > 5%). Among the 39 SNPs individuated, 7 were
located within or in close vicinity of cis-regulatory elements
(Figure 3).

Polymorphism Diversity and Linkage
Disequilibrium Estimation
Nucleotide diversity (p) was estimated at 0.0038 indicating a
high genetic diversity within the population sample further
encouraging the association study. The number of the
reconstructed haplotypes by using the DnaSP software was
115. The level of LD between pairs of loci using the inferred
haplotypes data of the association population, provided high
significant correlations among 16 SNP polymorphisms (Table 2)
with a range of R from −0.17 to 1. Negative signals indicated a
negative correlation between SNPs frequency. The highest
positive correlations were found among the following
polymorphisms: SNP9, SNP13, SNP14, SNP15, SNP20 with a
range of R varying from 0.81 to 1 and between SNP23 and SNP26
with a 0.87 correlation index (Table 2). LD decay calculated
using inferred haplotypes showed a very quickly decay with a R2

dropping to < 0.1 at least 200bp distance within the 5′UTR
intron of FAD2-2 gene (Figure 4). The intragenic recombination
test confirmed this pattern indicating 174 different
recombination events in the 115 calculated haplotypes with 19
minimum number of recombination events. Tajima neutrality
test was not statistically significant (D = 0.84) indicating no
selection pressure for the 5′UTR intron.

Trait-Marker Association Analysis
The association analysis, carried out between 39 SNPs and oleic
and linoleic acid content for 4 years, using the mixed linear
model (MLM) with Q matrix and kinship included, allowed to
individuate 20 significant associations (P< 0.05) after correction
for multiple testing, for 7 SNPs (Figure 5). The SNP3, SNP23,
SNP26 and SNP29 resulted significantly associated in three years,
the SNP16 in two years, while the SNP2 and the SNP19 were
significant only for one year (Figure 5). Among the indels
analyzed, only the 13bp indel was significantly associated to
both oleic and linoleic acid but only in 2006 year (data not
shown). Marked differences in oleic acid content were observed
between homozygous and heterozygous genotypes for SNP3,
SNP23, and SNP26 (Figure 5) for all three years where they
resulted significantly associated. This pattern of gene action
suggested an over- or under dominance effects. Homozygous
genotypes decreased oleic acid content with the same pattern for
all three years with a negative effect of −3 and −10 for TT and CC
FIGURE 1 | Frequency distribution of the 97 olive varieties for oleic acid (A)
and linoleic acid (B) content.
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FIGURE 2 | (A) Alignment of a fragment of the intron region of OeFAD2-2a and OeFAD2-2b from cultivar Nocellara messinese. Three long indels of 13 bp, 117 bp
and 5 bp, respectively, are underlined. (B) Partial view of OeFAD2-2b intron region spanning the 117 nucleotide-long insertion (highlighted in grey). Two stretches of
49 nucleotides (underlined with a solid black line) and 53 nucleotides (dashed black line) are duplicated. Polymorphic bases within duplications are marked in bold
italic. * Similar nucleotide.
Frontiers in Plant Science | www.frontiersin.org February 2020 | Volume 11 | Article 667

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Salimonti et al. Association Study in Olea europaea L.
FIGURE 3 | Partial nucleotide sequence of the OeFAD2-2b 5′UTR from olive cultivar Nocellara messinese. In italics the sequence regions analyzed in other 96
cultivars and in bold single-nucleotide polymorphisms (SNPs). In the boxes, the GT and AG dinucleotides at both ends of the intronic region and ATG as translational
initiation are shown. The insertion of 117bp, not present in the sequence of the OeFAD2-2a allele, is shaded grey. In dark grey the pentamer CGATT belonging to
IME signals. Moreover, several potential cis-regulatory elements are underlined and designated with the names of each of the motifs.
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genotypes, respectively, versus the heterozygous genotype in the
SNP3. Similar values of genotype effects were observed for both
the SNP23 and SNP26, with −5 and −6 values for the CC and TT
homozygous genotypes. Less marked differences were observed
for linoleic acid content (Figure 5), probably due to the minor
range of variation. Interestingly, genetic population structure
analysis clustered almost all the Abruzzo cultivars in a single
group showing the CC/TT homozygous genotype for both the
SNP23 and SNP26 except the cultivar Dritta showing
heterozygous genotype for the latter SNP.

The SNP26 was located within the joint elements box-W1/
TATA box (Figure 3). The SNP2 resulted significantly associated
only to the linoleic acid in 2004 with a gene action pattern
consistent with an additive effect. The SNP16 seemed to show a
similar pattern too. The SNP19 had a pattern probably consistent
with an over dominance effect considering the great increment of
linoleic acid by heterozygous genotype in respect of that of two
homozygous one. The indel of 13bp resulted significantly
associated after multiple testing correction (data not shown)
for 10 individual polymorphisms contributing to explain 13%
and 9% phenotypic variance for the oleic and linoleic acid
content, respectively. The proportion of phenotypic variation
explained by the associated SNPs and indel varied among the
years ranging from 7% to 16% (Figure 5). On average SNP3,
SNP23, SNP26 explained the major phenotypic variance with
9.7%, 9.6% and 11% for oleic acid content.
DISCUSSION

In this work, starting from the cDNA of the FAD2-2 gene
isolated from Hernández et al. (2005), a complete genomic
clone was isolated by a gene-walking approach and four
fragments of the 5′UTR intron were characterized through an
in silico and structural analysis with the aim to explore the
natural allelic variability of FAD2-2 in 97 olive varieties and its
role in the gene expression regulation. The molecular cloning of
FAD2-2 gene allowed to distinguish two allelic forms, OeFAD2-
2a and OeFAD2-2b. A single intron in the 5′UTR was isolated,
and three indels were individuated. In particular, the insertion of
117 bp showed very interestingly two long duplications of 49 and
53 bp. No duplications have been previously individuated in the
5′UTR intron of FAD2-2 genes in olive. Similarly, Cultrera et al.
(2019) analyzing polymorphisms of different gene fragments
belonging to crucial metabolic pathways, found a tandem
duplication made up of a 166 bp motif within OeSUT1 exon in
olive. Zeng et al. (2017) found a transposable element insertion at
position −26 bp in the 5′ upstream region from the translation
start codon in FAD2 gene in Sinapis alba. Martínez-Rivas et al.
(2001) and Cao et al. (2013) asserted the FAD2 genes family
evolved by duplication from constitutive expressed FAD2 genes,
and recently, it was confirmed in wild olive (Unver et al., 2017).

In this work, the hypothetical mechanisms concerning the
origin and evolution of introns have not been explored, but the
presence of two duplications within the 5′UTR intron led us to
speculate other mechanisms could be occurred in the
Frontiers in Plant Science | www.frontiersin.org 9
differentiation of FAD2 genes, such as the multiplication of a
preexisting intron by tandem duplication or creation of a new
intron by internal gene duplication (Gao and Lynch, 2009; Ma
et al., 2016).

It is known that the presence of a 5′UTR intron can enhance
gene expression depending on different characteristics of the
intron: i) different size of the intron; ii) distribution of the motifs
dispersed throughout the 5′ intron region iii) position of intron
with respect to the 5′UTR and the translation start site (Chung
et al., 2006). The 5′UTR lengths vary dramatically among
individual genes in higher eukaryotes and can range from a
few to thousands of base pairs. This large range of 5′UTR lengths
suggests that there may be greater regulation of specific mRNA
subsets (Leppek et al., 2018). Without any doubt, the duplication
event here found, increased the size of the intron in the 5′UTR of
the FAD2-2 gene in olive.

The IMEter score here found for OeFAD2-2a and OeFAD2-2b
introns indicated a medium-high induction of the gene
expression. Genes with the most powerful IME signals appear
to be highly and widely expressed housekeeping genes (Parra
et al., 2011). A phylogenetic analysis of FAD2 and FAD6
enzymes conducted by Hernández et al. (2005) led to classify
OeFAD2-2 gene as housekeeping-type. Expression analysis of
olive FAD2-2 gene showed that it is highly expressed in mesocarp
and seed during the ripening period of olive fruit (Hernández
et al., 2009). Different authors reported a constitutively
expression of FAD2-2 genes but with a differentiated spatial
and temporal expression level regulation as well (Jin et al., 2001;
Zhang et al., 2009; Dar et al., 2017). FAD2 genes seem to play a
key role for some crucial processes for the plant survival such as
fatty acid synthesis, plant development, cold and salt tolerance
(Dar et al., 2017). In olive, FAD2-2 gene was shown to be the
main gene responsible for the oleic acid desaturation with a
differentiated gene expression during the ripening stages well
correlated with linoleic acid biosynthesis pattern (Hernández
et al., 2009). Furthermore it seems involved in cold tolerance
(Matteucci et al., 2011). It was also shown in olive a different
expression level between two olive cultivars, Picual and
Arbequina, induced by low and high temperature, darkness,
and wounding, without changing the oleic and linoleic acid
contents in the mesocarp (Hernández et al., 2011). In addition,
in Arbequina cultivar, FAD2-2 is involved in the response to
draught (Hernández et al., 2009). Expression levels of olive FAD2
genes have also been studied in relation to regulated deficit
irrigation and salt stress (Hernández et al., 2018; Moretti
et al., 2019).”

The in silico analysis of the 5′UTR intron in the FAD2-2 gene
showed cis-acting elements putatively involved in above
described responses. Additional cis-acting elements found in
the duplications such as TATA box and CAAT box; TGACG-
motif and the Box 1 involved to abscisic acid (ABA) and light
response, respectively were found and seem to indicate an
evolutionary pathway toward an enhancing of the expression
level rather than new functionalization. In fact, it could also have
to do with the evolutionary option aiming to maintain high the
energetic and time costs to transcribe and splice introns, option
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TABLE 2 | Results of the LD analysis where the distance between pair of SNPs and their significant pairwise associations were calculated using both the statistical D′
and R.

SNP1 SNP2 Dist D′* R*

SNP5 SNP9 324 −1 −0.175
SNP5 SNP13 383 −1 −0.183
SNP4 SNP9 437 −0.833 −0.186
SNP13 SNP167 1338 −0.835 −0.186
SNP14 SNP167 1313 −1 −0.193
SNP15 SNP167 1312 −1 −0.193
SNP5 SNP20 513 −1 −0.195
SNP12 SNP23 194 −1 −0.196
SNP12 SNP26 337 −1 −0.199
SNP4 SNP14 521 −1 −0.201
SNP4 SNP15 522 −1 −0.202
SNP2 SNP12 653 0.696 0.203
SNP2 SNP25 908 0.228 0.227
SNP4 SNP13 496 −1 −0.233
SNP2 SNP4 169 −0.458 −0.236
SNP6 SNP14 394 0.35 0.239
SNP6 SNP15 395 0.35 0.239
SNP12 SNP25 255 −1 −0.241
SNP2 SNP168 2023 0.636 0.245
SNP14 SNP23 157 −1 −0.263
SNP15 SNP23 156 −1 −0.264
SNP14 SNP26 300 −1 −0.266
SNP15 SNP26 299 −1 −0.267
SNP5 SNP23 565 −0.816 −0.27
SNP4 SNP5 113 0.349 0.273
SNP13 SNP23 182 −0.894 −0.273
SNP5 SNP26 708 −0.819 −0.274
SNP11 SNP12 32 1 0.277
SNP6 SNP20 499 0.333 0.281
SNP2 SNP11 621 −0.329 −0.284
SNP9 SNP23 241 −1 −0.291
SNP20 SNP23 52 −0.905 −0.294
SNP9 SNP26 384 −1 −0.295
SNP11 SNP168 1402 −0.895 −0.298
SNP20 SNP26 195 −0.906 −0.298
SNP6 SNP9 310 0.404 0.306
SNP13 SNP26 325 −1 −0.309
SNP25 SNP168 1115 0.817 0.313
SNP6 SNP13 369 0.401 0.318
SNP4 SNP26 821 −0.754 −0.323
SNP14 SNP25 218 −1 −0.323
SNP15 SNP25 217 −1 −0.324
SNP25 SNP167 1095 0.564 0.337
SNP20 SNP25 113 −0.851 −0.339
SNP11 SNP20 174 0.741 0.34
SNP13 SNP25 243 −0.917 −0.343
SNP4 SNP11 452 0.576 0.344
SNP167 SNP168 20 0.546 0.351
SNP9 SNP25 302 −1 −0.357
SNP11 SNP167 1382 −0.7 −0.362
SNP5 SNP11 339 0.781 0.366
SNP11 SNP13 44 0.856 0.369
SNP4 SNP23 678 −0.875 −0.37
SNP11 SNP15 70 1 0.371
SNP11 SNP14 69 1 0.372
SNP2 SNP6 296 0.673 0.385
SNP2 SNP26 990 0.466 0.387
SNP5 SNP25 626 −0.964 −0.392
SNP23 SNP168 1176 0.845 0.397
SNP6 SNP12 357 0.789 0.402
SNP9 SNP11 15 1 0.412
SNP4 SNP25 739 −0.804 −0.417

(Continued)
Frontiers in Plant Science | www.frontier
sin.org
 10
 February 2020 | Volume 11 | A
rticle 66

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Salimonti et al. Association Study in Olea europaea L.
that could be significant enough to influence the organism’s
phenotype. For instance, some highly expressed genes are found
under strong selection to remain intron-poor for transcriptional
efficiency, whereas other genes are found to have longer and
numerous introns to enhance expression (Lozada-Chávez et al.,
2018). No relationships were found when the 117 bp insertion
was analyzed for significant associations with the acidic content
Frontiers in Plant Science | www.frontiersin.org 11
variation, but other biological processes, here not studied, could
be involved.

A double presence of the pentamer CGATT as part of IME
signals, the very near location of the intron (11bp) to the
translational starting site and the duplications within the
sequence probably could contribute overall to enhance the
gene expression level (Chung et al., 2006; Lozinsky et al., 2014).
TABLE 2 | Continued

SNP1 SNP2 Dist D′* R*

SNP2 SNP23 847 0.513 0.421
SNP26 SNP167 1013 0.59 0.426
SNP26 SNP168 1033 0.922 0.428
SNP23 SNP167 1156 0.667 0.488
SNP12 SNP20 142 1 0.604
SNP12 SNP13 12 1 0.644
SNP11 SNP26 369 −0.905 −0.648
SNP9 SNP12 47 1 0.674
SNP23 SNP25 61 0.832 0.679
SNP11 SNP23 226 −0.968 −0.685
SNP12 SNP14 37 1 0.746
SNP12 SNP15 38 1 0.746
SNP25 SNP26 82 0.917 0.757
SNP11 SNP25 287 −0.874 −0.759
SNP9 SNP20 189 0.903 0.81
SNP14 SNP20 105 1 0.81
SNP15 SNP20 104 1 0.81
SNP13 SNP20 130 0.91 0.854
SNP13 SNP14 25 1 0.863
SNP13 SNP15 26 1 0.863
SNP23 SNP26 143 0.88 0.87
SNP9 SNP14 84 1 0.903
SNP9 SNP15 85 1 0.903
SNP9 SNP13 59 0.952 0.91
SNP14 SNP15 1 1 1
February 2020 | Volume 11 | A
*Significant pairwise associations using both the Fischer’s exact test and Chi-square test and Bonferroni correction.
FIGURE 4 | LD decay calculated on inferred haplotypes using r2 parameters.
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The SNP frequency detected in the 5′UTR intron was lower
than those found in intron region of genes belonging to the same
primary biosynthetic pathway such as acyl carrier protein (ACP)
genes (Cultrera et al., 2019), even if this author found on average
a higher SNP frequency than other species. Although in this
study the neutrality test was not significant, it is worthy to note
that 5′UTR introns may be subject to different selective forces
Frontiers in Plant Science | www.frontiersin.org 12
from the introns in CDSs and 3′UTRs, possibly due to a specific
regulatory role in gene expression (Chung et al., 2006). For
instance, differences in the rate of evolution of FAD2 5′UTR were
found in Gossypium species (Liu et al., 2001) suggesting that the
selection pressure on these regions could be really different.

Although the Wright’s inbreeding coefficient indicated a low
degree of population differentiation in general confirmed also by
FIGURE 5 | Genotypic effects of the significantly associated SNPs on oleic and linoleic acid content in different years. The X-axis indicates the genotype status of cultivars
(letters) and the absolute frequency of genotypes (number). R2: is the statistical used for association analysis and p is the Benjamini-Hochberg Adjusted p value.
February 2020 | Volume 11 | Article 66

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Salimonti et al. Association Study in Olea europaea L.
a weak difference in oleic acid content between red and green
group, interesting correlations were observed among almost all
the Abruzzo cultivars, (clustering in the green group), their allelic
homozygous status for the both SNP23 and SNP26 and oleic acid
content. Moreover, the same average oleic acid content found in
Sicilian and Sardinian cultivars clustering in the same group,
suggested a strong genetic relationship as found also by other
authors (Baldoni et al., 2006). Similarly, other authors found a
correlation between phenotypic traits and genetic population
structure in olive (D’Agostino et al., 2018; Zhu et al., 2019)
confirming a high heritability of the analyzed traits (D’Agostino
et al., 2018).

The correlation between alleles in a population is stated by LD
(Myles et al., 2009). The pattern and extent of LD determines the
resolution of association mapping studies (Flint-Garcia et al.,
2003). For outcrossing species like most trees, rapid LD decay
was reported (Krutovsky and Neale, 2005; Ingvarsson, 2005;
Wegrzyn et al., 2010) and for these species, a large number of
markers are required to detect significant marker-trait
associations (Flint-Garcia et al., 2003; Myles et al., 2009). In
fact, a high number of recombination events have been here
found and very quick LD decay has been observed, but if the
physical position of mutations was known, probably a slower LD
decay would had expected as observed by Cultrera et al. (2019).

The association study allowed to individuate 7 SNPs
significantly associated to the oleic and linoleic content
variation. Some of these associations were confirmed along the
years although rainfall fluctuations were observed. These results
confirmed the high heritability of fatty acid composition (Ripa
et al., 2008; Dabbou et al., 2010; De la Rosa et al., 2016). However,
a low number of genotypes associated with a few SNPs (SNP3,
SNP16 and SNP19) for the trait “low oleic/high linoleic content”
were observed due to a sampling bias of the population that
explains in fact the asymmetric distribution of the frequency
classes for oleic and linoleic acid traits. This pattern of
distribution of phenotypic variation will need to be enlarged in
the future studies.

All the SNPs significantly associated, were located near or
outside of the cis-acting elements putatively involved in fatty acid
biosynthesis regulation. The 5′ and 3′ untranslated regions
(UTRs) are non-coding and do not directly contribute to the
protein sequence. Free from the constraints of encoding proteins,
UTRs can form considerable Watson–Crick and non-canonical
base pairing that can potentially impact every step of translation
(Leppek et al., 2018). Despite the evolutive conservation of the 5′
UTR intron, the high structural variability found among and
within the species makes difficult to speculate about a specific
regulation mechanism (Lozinsky et al., 2014).

All the associations identified in this study explained a small
proportion of the phenotypic variance. These small effects
attributed to individual SNPs were consistent with earlier
studies in accordance with polygenic quantitative models of
plant traits (Eckert et al., 2009; Tian et al., 2014).

Although a higher number of genotypes probably are needed
in olive, two SNPs in high LD seem to give a contribute to the
Frontiers in Plant Science | www.frontiersin.org 13
oleic acid increasing/linoleic acid reduction in a genotypic way
referring to a under/over-dominance effect of the heterozygous
CT genotypes. These results are consistent with the high
heterozygous status of the olive genome (Muleo et al., 2016)
and led us to speculate that acidic composition variation within
Olea europaea L. species might be regulated by mutations within
the FAD2-2 5′UTR intron.

In conclusion, our work confirmed the presence of a large
intron within the 5′UTR of the FAD2-2 gene also in the olive
tree, highlighting the presence of a double duplication. The in
silico analysis addressed us toward a putative role of the 5′UTR
intron in the regulation of gene expression showing several cis-
regulatory elements. Furthermore, the LD and association
analysis showed that the SNP23 and SNP26 resulted strictly
associated each other and seemed to contribute to the increase of
oleic acid/reduction of linoleic acid. These results will be
validated by an analysis of gene expression in order to confirm
the putative regulation mechanisms here raised.
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