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Phytoliths are silica bodies formed in living plant tissues. Once deposited in soils through
plant debris, they can readily dissolve and then increase the fluxes of silicon (Si) toward
plants and/or watersheds. These fluxes enhance Si ecological services in agricultural and
marine ecosystems through their impact on plant health and carbon fixation by diatoms,
respectively. Fertilization increases crop biomass through the supply of plant nutrients,
and thus may enhance Si accumulation in plant biomass. Si and phosphorus (P)
fertilization enhance rice crop biomass, but their combined impact on Si accumulation
in plants is poorly known. Here, we study the impact of combined Si-P fertilization on the
production of phytoliths in rice plants. The combination of the respective supplies of 0.52 g
Si kg–1 and 0.20 g P kg−1 generated the largest increase in plant shoot biomass (leaf, flag
leaf, stem, and sheath), resulting in a 1.3-fold increase compared the control group.
Applying combined Si-P fertilizer did not affect the content of organic carbon (OC) in
phytoliths. However, it increased plant available Si in soil, plant phytolith content and its
total stock (mg phytolith pot−1) in dry plant matter, leading to the increase of the total
amount of OC within plants. In addition, P supply increased rice biomass and grain yield.
Through these positive effects, combined Si-P fertilization may thus address agronomic
(e.g., sustainable ecosystem development) and environmental (e.g., climate change)
issues through the increase in crop yield and phytolith production as well as the
promotion of Si ecological services and OC accumulation within phytoliths.

Keywords: phytolith, crop yield, silicon-phosphorus fertilization, rice, silicon cycle
INTRODUCTION

Amorphous biogenic silica (SiO2·nH2O) can accumulate in living plant tissues during their growth
and development (Conley, 2002; Piperno, 2006). These silica bodies, named phytoliths, are released
into the soil after the decomposition of litter and plant residues (Smithson, 1956; Alexandre et al.,
1997; Fraysse et al., 2006). Depending on their chemical composition and structure, phytoliths can
accumulate in soils and sediments over centuries or millennia, or dissolve and then contribute to the
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pool of aqueous monosilicic acid (dissolved silicon: DSi), which
is available for plant root uptake (Bartoli, 1985; Meunier et al.,
1999; Fraysse et al., 2009; Struyf et al., 2010; Cornelis and
Delvaux, 2016). The elemental composition of phytoliths is
influenced by plant species and phytolith morphology (Bartoli
and Wilding, 1980; Li et al., 2014; Nguyen et al., 2014). Organic
carbon (OC) (0.2–6%) can be associated with phytoliths (Bartoli,
1985; Parr and Sullivan, 2005; Parr et al., 2010; Zuo and Lü, 2011;
Li et al., 2013c; Alexandre et al., 2015). In particular, the
occlusion of organic carbon (OC) within phytolith (PhytOC),
which is formed in plant tissues, has been proposed as a
mechanism which traps the photosynthesized molecules within
silica bodies (Parr and Sullivan, 2005; Santos et al., 2012;
Alexandre et al., 2015; Reyerson et al., 2016). The occurrence
of PhytOC has been reported in various studies (Parr and
Sullivan, 2005; Parr et al., 2010; Parr and Sullivan, 2011; Song
et al., 2012; Song et al., 2013; Li et al., 2013a; Li et al., 2013b;
Huang et al., 2014; Song et al., 2015; Guo et al., 2015; Sun et al.,
2016; Pan et al., 2017; Qi et al., 2017; Li et al., 2018a). However,
the biological processes leading to the occurrence of PhytOC has
not been demonstrated. Therefore, OC content in phytoliths
varies depending on the extraction procedure (Parr and Sullivan,
2014; Santos and Alexandre, 2017; Song et al., 2016). These
variations led to a debate on the scale of OC occlusion within
phytoliths, and on the significance of the PhytOC sink for the
global C cycle and climate change mitigation (Parr and Sullivan,
2005; Song et al., 2012; Hodson, 2016; Reyerson et al., 2016;
Lorenz and Lal, 2018; Crifò and Strömberg, 2019; Ramesh et al.,
2019; Song et al., 2016; Santos and Alexandre, 2017). In addition,
OC associated with phytoliths might have a non-photosynthetic
origin attributed to the uptake of organic molecules from soil
(Santos et al., 2012; Alexandre et al., 2015; Reyerson et al., 2016),
which could lead to erroneous C dating using phytoliths
(Hodson, 2016). Therefore, the accurate determination of the
phytolith OC content must not only completely eliminate
external OC, but also keep the phytolith structure intact and
the oxidation of C in the phytolith to a minimum (Parr and
Sullivan, 2014). Overoxidation may significantly underestimate
phytolith C sequestration and should be avoided (Parr and
Sullivan, 2014).

In any case, whether phytoliths sequester OC or not, the
increase in silicon (Si) uptake undoubtedly enhances plant
biomass, Si and phytolith content in plants [a.o. (Li et al.,
2018b; Li et al., 2019)]. The amount of OC that could be
associated with phytoliths would depend on plant Si
accumulation and thus phytolith content (Li et al., 2013c);
therefore, suggesting that regulating Si supply might increase
phytolith-associated OC in croplands. In this respect, the
combination of Si and phosphorus (P) fertilization may
enhance the contents of plant phytolith and OC associated
within phytoliths.

This study is how co-fertilization combining Si and
phosphorus (P) can affect Si availability and plant uptake, as
well as phytolith formation in rice. Si uptake improves the
growth of Si-accumulator cereals such as rice (Savant et al.,
1997; Ma et al., 2001; Ma et al., 2006; Liang et al., 2015). Si
Frontiers in Plant Science | www.frontiersin.org 2
fertilization can enhance rice resistance to biotic and abiotic
stresses (e.g., pests, water and heat stress, disease, etc.) (Liang
et al., 2007; Cooke et al., 2016; Cooke and Leishman, 2016;
Coskun et al., 2019), and thus promote rice crop yields and Si
accumulation (Savant et al., 1997; Ma et al., 2001; Keller et al.,
2012). However, P fertilization also plays an important role in
improving yields and promoting plant precocity (George et al.,
2001; Lambers et al., 2006; Hammond and White, 2008). In
paddy soils, Si and P fertilization could alleviate P deficiency,
increase P uptake by plants (Ma and Takahashi, 1990; Liang
et al., 2007; Hu et al., 2018), and enhance plant available Si in soil,
hence improving crop yields (Song et al., 2014; Klotzbücher et al.,
2015; Carey and Fulweiler, 2016; Li et al., 2019). Furthermore,
plant available Si content in soil may increase after P supply.
Besides, Si supply can increase P bioavailability in soil through
the competition between silicate and phosphate for sorption on
Al and Fe oxide surfaces that bear positive charges (Parfitt, 1989;
Su and Puls, 2003). Combined Si-P fertilization may thus
substantially influence Si and P biocycling in the soil-plant
system, as well as plant phytolith and chemical composition.

Through a pot experiment in controlled conditions, we aim to
address three interconnected questions: 1) does Si-P fertilization
increase rice biomass? 2) does increased biomass promote plant
phytolith formation? and 3) does combined Si-P supply impact
the amount of OC associated within phytoliths?
MATERIALS AND METHODS

The pot experiment was carried out at Zhejiang Agricultural and
Forestry University, Lin'an, Zhejiang Province, Eastern China
(29°56'–30°27'N, 118°51'–119°52'E). This region is characterized
by a mid-subtropical monsoon climate with a mean annual
precipitation of 1,500 mm, a mean annual temperature of 15.8°
C, 237 frost-free days, and an annual 1,939 h of sunshine.

Pot Experiment Design and Management
The soil used was a Cambisol, according to the World Reference
Base (WRB) key (IUSS, 2014), sampled from the agricultural
station at Zhejiang Agricultural and Forestry University. The soil
was air-dried, sieved at 2 mm, and mixed with Si-P fertilizers.
The soil physico-chemical properties were as follows (Lu, 2000):
pHwater = 5.34 ± 0.02, soil organic matter = 30.26 ± 4.28 g kg−1,
available Si = 155.59 ± 22.73 mg kg−1, available P = 113.87 ± 1.35
mg kg−1, available K = 10.33 ± 1.11 mg kg−1 and available N =
87.15 ± 2.47 mg kg−1 (Guo et al., 2015). The analytical methods
were described by Lu (2000). Here, plant available Si was assessed
using extracts of NaOAc and acetic acid. Jiayu 253 was selected as
the experimental rice (Oryza sativa) cultivar because of its high
yield and wide distribution in Zhejiang province.

The experiment was carried out using three fertilization
levels, zero (0), medium (m), and high (h), for Si (Si0: 0, Sim:
0.26, Sih: 0.52 g SiO2 kg

–1) using Na2SiO3, and P (P0: 0, Pm: 0.2,
Ph: 0.4 g kg–1) using P2O5. Nine treatments (Si0P0, Si0Pm, Si0Ph,
SimP0, SimPm, SimPh, SihP0, SihPm, and SihPh) and five replicates
per treatment were set up (Table 1). N and K fertilizers were
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applied in all treatments as, respectively, urea ammonium nitrate
(0.20 g N kg−1), and KCl (0.25 g K kg−1). All fertilizers were
added to soil before planting rice. Soil pH value and available Si
and P contents under different levels of Si and P supply were
Frontiers in Plant Science | www.frontiersin.org 3
determined by Sun et al. (2015), as presented in Table 2. Each
pot (0.24 m diameter, 0.28 m height) contained 8.5 kg air-dried
soil and was regularly irrigated using tap water (Si: 0.36 mg L–1) at
the same level until rice grain harvesting. After a first irrigation of
500 ml, 1,000 ml of water were supplied per pot during the whole
growing period, once every 2 days. Crop harvesting was done 4
months after planting. The rice plant parts were sampled
separately: sheath, leaf, flag leaf, and stem. Plant samples were
thoroughly washed with deionized water, and then oven dried at
75°C until a constant weight was attained, as equal to dry shoot
biomass. Rice grains, including rice husk, were also dried at 75°C
and weighed.

Plant Chemical Analysis
Dried plant samples were cut into small pieces by stainless steel
scissors for the analysis of Si and phytolith content. Plant
samples were fused with Li-metaborate at 950°C and dissolved
in nitric acid (HNO3 4%), prior to molybdenum blues
colorimetry to determine Si content (Lu, 2000).

Microwave digestion in combination with Walkley–Black
digestion was used to isolate the phytoliths from plant material
(Walkley and Black, 1934; Parr et al., 2001), in order to remove
extraneous organic materials thoroughly (Li et al., 2013c). We
first checked the presence of phytoliths by optical microscopy to
ensure that all extraneous organic materials had been removed
(Li et al., 2013c). Then, we further assess the purity of phytolith
extract using the scanning electron microscope (SEM) images
and energy-dispersive spectroscopy (EDS) (Figure 1). The
phytoliths were then oven dried at 75°C for 24 h, cooled and
weighed. Phytolith particles were dissolved in HF 1 M at 45°C
during 100 min, so that associated OC could be released in the
acidic solution (Li et al., 2013c). Associated OC content was
determined using the potassium dichromate procedure and the
soil standard reference GBW07405, ensuring a relative precision
below 5% (Li et al., 2013c). Using plant dry matter, OC and
phytolith contents, we computed OCphyt and OCpdm, as the OC
TABLE 2 | Soil pH value and available silicon (Si) and phosphorus (P) contents

under different levels of Si and P supply*.

Treatments pH Available P Available Si Available N Available K

mg kg−1

Si0P0 5.47d 10.25d 102.45cd 103.37c 10.25d
Si0Pm 5.50d 14.58c 112.23c 104.19bc 14.58c
Si0Ph 5.59cd 17.84b 110.23c 107.40bc 17.84b
SimP0 5.67c 14.23c 123.48bc 98.81c 14.23c
SimPm 5.71c 17.22b 132.79b 117.87b 17.22b
SimPh 5. 77c 19.27a 133.28b 127.00a 19.27a
SihP0 6.49a 14.29c 142.14ab 98.17c 14.29c
SihPm 6.22b 18.06ab 153.83a 98.75c 18.06ab
SihPh 6.38ab 20.33a 155.22a 111.13b 20.33a
*The data were collected from Sun et al., 2015.
FIGURE 1 | (A) Scanning electron microscope (SEM) image of rice leaf phytolith. (B) Semi-quantitative element concentration (wt. %, n = 5) measured by SEM-
energy-dispersive spectroscopy (EDS) of the selected area.
TABLE 1 | The pot experimental design, as designed following silicon (Si) and
phosphorus (P) levels. Different lowercase letters indicate significant differences
among all treatments [least significant difference (LSD) test; p < 0.05, n = 5].

Number Treatments SiO2 fertil-
izer quantity

(g kg−1)

Si fertil-
izer
levels

P2O5 fertil-
izer quantity

(g kg−1)

Phosphoric
fertilizer
levels

1 Si0P0 0.00 Low 0.0 Low
2 Si0Pm 0.00 Low 0.2 Medium
3 Si0Ph 0.00 Low 0.4 High
4 SimP0 0.26 Medium 0.0 Low
5 SimPm 0.26 Medium 0.2 Medium
6 SimPh 0.26 Medium 0.4 High
7 SihP0 0.52 High 0.0 Low
8 SihPm 0.52 High 0.2 Medium
9 SihPh 0.52 High 0.4 High
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contents per mass unit of, respectively, phytolith and plant
dry matter.

Data Treatment
Phytolith stock (mg pot−1) = phytolith content (mg g−1) ×
biomass of dry plant tissue (g pot−1) where phytolith stock is
used to refer to the mass of phytoliths per pot (mg pot−1);
phytolith content is used to refer to the mass of phytoliths per
gram of dry plant tissue (mg g−1); biomass of dry plant tissue is
used to refer to the mass of dry plant tissue per pot (g pot−1).

A two-way analysis of variance of was performed to assess the
effects of combined Si-P fertilization levels using SPSS (24.0).
Fisher's least significant difference (LSD) test was used to
compare the average values of the contents of SiO2, phytolith,
OCphyt, OCpdm in the different plant parts (leaf, flag leaf, sheath,
and stem) (at P < 0.05 level, n = 5). Origin 8.0 software was used
to plot the figures.
RESULTS

Rice Shoot Biomass and Grain Yield
The rice shoot biomass (g pot−1) significantly varied from 168 in
Si0P0 to 213 in SimPm or SimPh (Table 3). Among the Si0
treatments, there was a significant increase in shoot biomass
between Si0P0 and Si0Ph whereas Si0Pm was intermediate
between and not significantly different from the other two
treatment levels (Table 3). At the given level Pm = 0.2 g kg−1,
increasing Si application rate from Si0 to Sim increased the leaf
and shoot biomass (Table 3). At the same Pm level, rice grain
yield increased from Si0 to Sim and from Si0 to Sih (Table 3).

Content and Stock of Phytoliths Formed in
Rice Plants
Considering all plant parts, phytolith content significantly varied
(p < 0.05) from 4.73 to 59.12 mg g–1 (Tables 4–6). At all given
levels of Si0, Sim, and Sih, the increase in P application rate did
TABLE 3 | Effect of silicon-phosphorus (Si-P) levels on biomass in different plant
parts and rice dry shoot.

Treatments Leaf Flag
leaf

Stem and
sheath

Grains* Rice dry
shoot

g pot−1

Si0P0 12.40c 5.65bc 55.62b 102.20c 175.88b
Si0Pm 15.46a 6.20ab 53.64b 117.05bc 192.35ab
Si0Ph 15.76a 5.53b 51.53b 130.39a 203.21a
SimP0 9.98d 4.81c 42.80c 110.55c 171.70ab
SimPm 15.22a 5.30bc 55.81b 136.42a 212.92a
SimPh 13.34b 5.60bc 49.36bc 141.69a 210.99a
SihP0 12.39c 4.72c 47.91bc 117.60bc 182.61ab
SihPm 15.59a 7.08a 59.55ab 129.51ab 210.07ab
SihPh 15.15a 5.50bc 62.28a 114.23bc 197.15ab
Frontiers in Pl
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The data of rice organ (leaf, flag leaf, stem and sheath) collected from Sun et al., 2015;
Different lowercase letters represent significant differences of rice shoot biomass
(Duncan's multiple range test; at p < 0.05 level, n = 5).
*Grains including rice husk.
4

TABLE 4 | Contents of SiO2, phytolith, organic carbon (OC) associated with
phytolith as expressed per unit mass of phytolith (OCphyt) and of plant dry matter
(OCpdm) in different plant parts (leaf, flag leaf, sheath, and stem).

Rice
organs

Treatment SiO2

content in
plant parts

Phytolith
content

OCphyt OCpdm

Si
treatment

P
treatment

(mg g–1)

Leaf Si0 P0 35.28 ±
5.25Ba

28.35 ±
3.69Ca

14.48 ±
1.62Aa

0.41 ±
0.10Ba

Pm 34.47 ±
4.21Ca

31.52 ±
0.70Ba

14.50 ±
0.41Aa

0.46 ±
0.02Ba

Ph 33.46 ±
5.88Ba

29.39 ±
3.03Ba

15.16 ±
1.93Aa

0.45 ±
0.10Aa

Sim P0 42.35 ±
5.76Ba

42.37 ±
6.98Ba

15.48 ±
2.86Aa

0.67 ±
0.23ABa

Pm 42.92 ±
0.62Ba

38.61 ±
4.07Ba

13.77 ±
0.53Aa

0.53 ±
0.08ABa

Ph 44.74 ±
3.95Aa

34.80 ±
5.08Ba

13.73 ±
2.47Aa

0.49 ±
0.16Aa

Sih P0 67.05 ±
2.84Aa

59.12 ±
1.39Aa

14.71 ±
3.51Aa

0.87 ±
0.23Aa

Pm 54.31 ±
5.03Ab

50.56 ±
4.86Ab

13.11 ±
1.67Aa

0.67 ±
0.15Aab

Ph 49.55 ±
0.45Ab

43.55 ±
0.30Ac

11.16 ±
0.92Aa

0.49 ±
0.04Ab

Mean ±
s.d.

44.90 ±
10.86A

39.82 ±
10.33A

14.01 ±
1.30A

0.56 ±
0.15A

Sheath Si0 P0 21.85 ±
0.95Ca

19.47 ±
1.49Bb

16.74 ±
4.08Aa

0.33 ±
0.10Aa

Pm 23.99 ±
0.09Ba

21.73 ±
3.79Bb

18.04 ±
0.10Aa

0.39 ±
0.07Aa

Ph 24.31 ±
0.43Ca

23.44 ±
0.49Ca

18.17 ±
1.96Aa

0.43 ±
0.05Aa

Sim P0 35.85 ±
1.87Ba

32.00 ±
1.84Aa

14.79 ±
0.73Aa

0.47 ±
0.05Aa

Pm 28.87 ±
1.90Bb

25.85 ±
2.85Bb

12.27 ±
3.05Ba

0.32 ±
0.11Aa

Ph 35.12 ±
0.20Aa

26.88 ±
0.33Bb

12.77 ±
1.07Ba

0.34 ±
0.03Aa

Sih P0 47.82 ±
1.18Aa

32.80 ±
1.20Aa

14.53 ±
4.69Aa

0.48 ±
0.17Aa

Pm 37.13 ±
1.53Ab

35.33 ±
6.33Aa

15.48 ±
2.11ABa

0.56 ±
0.17Aa

Ph 30.93 ±
0.66Bb

29.79 ±
0.10Aa

14.06 ±
1.93Ba

0.42 ±
0.06Aa

Mean ±
s.d.

31.76 ±
8.20AB

27.54 ±
5.41AB

13.67 ±
1.72A

0.37 ±
0.06B

Stem Si0 P0 5.86 ±
1.45Ba

4.73 ±
0.67Ba

14.34 ±
2.53Aa

0.07 ±
0.02Ba

Pm 7.07 ±
2.51Aa

5.59 ±
1.34Ba

17.59 ±
0.70Aa

0.10 ±
0.02Aa

Ph 8.60 ±
3.73Aa

7.00 ±
3.11Ca

17.69 ±
4.49Aa

0.13 ±
0.09Aa

Sim P0 11.85 ±
1.94Aa

10.41 ±
0.78Aa

13.50 ±
2.98Ab

0.14 ±
0.04Aa

Pm 6.58 ±
1.61Ab

5.56 ±
1.84Bb

17.60 ±
0.47Aa

0.10 ±
0.03Aab

Ph 7.87 ±
0.51Ab

5.55 ±
0.40Bb

11.91 ±
1.60Ab

0.07 ±
0.01Ab

Sih P0 11.06 ±
1.75Aa

10.17 ±
0.85Aa

12.96 ±
1.35Aa

0.13 ±
0.02Aa

Pm 9.83 ±
2.74Aa

8.79 ±
0.73Aa

14.80 ±
4.79Aa

0.13 ±
0.05Aa

(Continued)
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not significantly increase phytolith content regardless of plant
part, while this effect was not true for sheath with a significant
increase from Si0P0 to Si0Pm (Table 5). Yet at given levels P0, Pm,
and Ph, the increase in Si application rate significantly increased
phytolith content in all plant parts (Table 5). Phytolith content
in leaves was the highest, and varied from 28.36 to 59.12 mg g–1,
with an average of 39.82 mg g–1 (Table 4). As compared to the
other plant parts, stem phytolith content was the lowest, with an
average value of 7.11 mg g–1. Considering all plant parts, the
stock of phytolith formed during the experimental period varied
significantly from 152.6 to 1,002.7 mg pot−1 (Figure 2). Si-P
fertilization increased the stock of phytoliths formed in all plant
parts, including plant shoot biomass (Figure 2). At all given
levels of Si0, Sim, and Sih, the increase in P application rate did
not significantly increase phytolith stock regardless of plant part,
including in plant shoot biomass (Figure 2; Table 5). Yet at given
levels P0, Pm, and Ph, the increase in Si application rate
significantly increased phytolith stock in all plant parts,
including plant shoot biomass. The mean phytolith stock was
the highest in sheath (758.3 mg pot−1), followed by leaf (621.0 mg
TABLE 6 | Two-way analysis of variance (ANOVA) of silicon-phosphorus (Si-P)
levels on the rice shoot biomass, stock of phytolith, and OCpdm in rice shoot.

Total amount (mg pot–1) Main factor F p

Biomass Si fertilization 0.192 0.827
P fertilization 2.774 0.089

Si × P fertilization 0.270 0.894
Phytolith Si fertilization 30.343 0.000

P fertilization 1.920 0.202
Si × P fertilization 2.440 0.123

OCpdm Si fertilization 41.540 0.000
P fertilization 3.322 0.059

Si × P fertilization 14.340 0.000
February 2020 | V
olume 11 | Art
TABLE 4 | Continued

Rice
organs

Treatment SiO2

content in
plant parts

Phytolith
content

OCphyt OCpdm

Si
treatment

P
treatment

(mg g–1)

Ph 9.05 ±
1.48Aa

6.20 ±
0.68Ab

11.76 ±
1.24Aa

0.07 ±
0.02Aa

Mean ±
s.d

8.64 ±
2.02C

27.54 ±
5.41AB

13.67 ±
1.72A

0.37 ±
0.06B

Flag
leaf

Si0 P0 23.63 ±
1.86Cb

19.04 ±
2.35Ca

14.13 ±
0.68Aa

0.27 ±
0.05Ba

Pm 25.09 ±
3.40Ca

19.72 ±
1.44Ba

15.57 ±
4.25Aa

0.31 ±
0.11Aa

Ph 24.02 ±
2.28Ca

19.59 ±
3.18Aa

16.04 ±
0.33Aa

0.31 ±
0.06Aa

Sim P0 35.21 ±
0.33Ba

32.00 ±
0.69Ba

12.02 ±
1.30Ab

0.39 ±
0.05ABa

Pm 26.02 ±
3.66Bb

28.53 ±
4.15Aa

11.38 ±
0.74Ab

0.33 ±
0.07Aa

Ph 37.20 ±
4.46Aa

27.48 ±
6.25Aa

15.23 ±
1.14Aa

0.42 ±
0.13Aa

Sih P0 48.16 ±
6.87Aa

42.08 ±
4.89Aa

13.34 ±
3.14Aa

0.57 ±
0.20Aa

Pm 35.88 ±
5.59Ab

32.00 ±
5.26Ab

11.74 ±
0.17Aa

0.38 ±
0.07Aa

Ph 31.14 ±
1.48Bc

26.33 ±
0.75Ab

13.54 ±
4.26Aa

0.36 ±
0.12Aa

Mean ±
s.d.

31.82 ±
8.15AB

27.48 ±
7.45AB

15.21 ±
2.11A

0.41 ±
0.09AB
Different lowercase letters indicate significant differences among the treatments in different
P treatments and rice plant parts at a given Si level, respectively [least significant difference
(LSD) test; p < 0.05, n = 5]. Different uppercase letters indicate significant differences
among the treatments in different Si treatments and rice plant parts at a given P level,
respectively (LSD test; p < 0.05, n = 5). Uppercase letters of bolded texts indicate
significant differences among different plant parts (leaf, flag leaf, sheath, and stem).
TABLE 5 | Two-way analysis of variance (ANOVA) of silicon-phosphorus (Si-P) levels on the contents of SiO2, phytolith, organic carbon (OC) associated with phytolith
as expressed per unit mass of phytolith (OCphyt) and of plant dry matter (OCpdm), as well as the stock of phytolith and OCpdm in different plant parts (leaf, flag leaf,
sheath, and stem).

Parameters Main factor Leaf Flag leaf Stem Sheath

F p F p F p F p

SiO2 content (mg g–1) Si fertilization 64.341 0.000 30.634 0.000 3.840 0.041 390.371 0.000
P fertilization 4.342 0.029 7.191 0.005 1.537 0.242 56.941 0.000

Si × P fertilization 4.825 0.008 7.798 0.001 2.618 0.070 68.887 0.000
Phytolith content (mg g–1) Si fertilization 66.384 0.000 36.186 0.000 7.773 0.004 33.205 0.000

P fertilization 7.929 0.003 0.578 0.571 6.197 0.009 7.123 0.005
Si× P fertilization 3.534 0.027 4.059 0.016 6.938 0.001 3.829 0.020

OCphyt (mg g–1) Si fertilization 1.781 0.197 6.544 0.007 3.643 0.047 3.025 0.074
P fertilization 1.375 0.278 0.044 0.957 3.674 0.046 1.984 0.167

Si × P fertilization 0.883 0.494 0.619 0.655 1.194 0.347 0.681 0.614
OCpdm (mg g–1) Si fertilization 6.257 0.009 2.942 0.078 0.234 0.794 3.889 0.039

P fertilization 3.606 0.048 0.245 0.785 0.809 0.461 1.054 0.369
Si × P fertilization 1.736 0.186 1.775 0.178 2.749 0.060 1.797 0.173

Phytolith stock (mg pot–1) Si fertilization 13.068 0.002 14.071 0.002 2.880 0.108 12.156 0.003
P fertilization 0.796 0.481 0.826 0.469 0.910 0.437 2.016 0.189

Si × P fertilization 0.608 0.667 1.664 0.241 1.893 0.196 0.859 0.524
OCpdm stock (mg pot–1) Si fertilization 22.866 0.000 25.016 0.000 1.850 0.186 14.224 0.000

P fertilization 4.383 0.028 3.851 0.041 4.015 0.036 9.072 0.002
Si × P fertilization 5.426 0.005 7.127 0.001 8.494 0.000 3.158 0.039
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pot–1), flag leaf (374.3 mg pot–1), and stem (average 289.1 mg
pot–1). Considering shoot biomass and including rice grains, the
stock of phytolith significantly varied from 1,296.6 to 2,778.6 mg
pot−1, the latter and maximal value being measured at SihPm level
(Figure 2).

Organic Carbon Content Associated With
Phytoliths Formed in Rice Plants
Considering all plant parts, OCphyt ranged from 11.16 to 18.17
mg g–1, but did not differ between Si-P treatments and plant parts
(Tables 4–6). OCphyt content did not vary following P
application irrespective of the Si supply (Si0, Sim, and Sih),
while this effect was not true for stem and flag leaves with a
significant increase from SimP0 to SimPm and SimP0 to SimPh,
respectively (Table 5). At a given level Sih in leaf, and a given
level Sim in stem, the increase in P application rate significantly
decreased their OCpdm content (Table 5). At a given level Si0, the
increase in P application rate significantly increased the OCpdm

stock in all plant parts as well as plant shoot biomass except
leaves, while at a given level Sih level, the increase in P application
rate significantly decreased the OCpdm stock in all plant parts as
well as plant shoot biomass except sheath (Table 6 and Figure 3).
However, OCpdm content and its stock significantly increased
with increasing Si application rate due to the increased phytolith
Frontiers in Plant Science | www.frontiersin.org 6
content and phytolith stock in all plant parts, respectively (Table
4 and Figure 3).
DISCUSSION

Effects of Silicon-Phosphorus Supply on
Rice Shoot Biomass and Yield
Our experimental data show that the addition of P alone
increased biomass and grain yield (a significant increase from
Si0P0 Si0Pm Si0Ph); but when a combined Si-P fertilization were
applied there was no significant increase in biomass and yield
except that at SimPm and SimPh (Table 3). This supports the
results of previous experiments carried out either in the field (Liu
et al., 2014; Liang et al., 2015; Song et al., 2015) or in pots
(Agostinho et al., 2017; Liang et al., 1994; Ma and Takahashi,
1990). Si fertilizer supply increased the stock of bioavailable Si
that is crucial for sustainable paddy rice yield production
(Klotzbücher et al., 2015). Furthermore, once available Si is
taken up by plant roots, the accumulation of phytoliths in
plant tissues can enhance the efficiency of plant photosynthesis
and water use (Meunier et al., 2017), as well as their tolerance to
biotic stresses (Epstein, 1994; Cooke and Leishman, 2016;
Coskun et al., 2019). On the other hand, P supply likely
FIGURE 2 | Phytolith stock (mg pot−1) at a two-way analysis of variance of silicon-phosphorus (Si-P) levels in the different plant parts. (A) Leaf; (B) flag leaf;
(C): stem; (D): sheath; (E) rice shoot. Error bars represent the standard deviations of the means. Different lowercase letters indicate significant differences among the
treatments in different P treatments and rice plant parts at a given Si level, respectively [least significant difference (LSD) test; p ≤ 0.05, n = 5]. Different uppercase
letters indicate significant differences among the treatments in different Si treatments and rice plant parts at a given P level, respectively (LSD test; p ≤ 0.05, n = 5).
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increased plant growth and fecundity as well as root growth
(Lambers et al., 2006; Brown et al., 2012). Indeed, low P levels
(i.e., SimP0 or SihP0; Table 3) did not significantly increase rice
biomass regardless of plant part (Tables 2 and 3), confirming
that rice growth was clearly limited at low P supply (Ma and
Takahashi, 2002; Ma, 2004; Cooke and Leishman, 2016;
Agostinho et al., 2017; Hu et al., 2018) even with increasing
the addition of Si fertilizer. Excessive inorganic P within rice
plant inhibits enzyme reactions, induces abnormal osmotic
pressure in plant cell, which further decreases rice growth (Ma
and Takahashi, 1990). As reported by Ma and Takahashi (1990),
the levels of bioavailable P and Si in soil influence plant P
content. At Si0 level, the increase in P supply did not result in
a change of stem, sheath and flag leaf biomass (Table 3) likely
because the positive side-effects of P nutrition were limited at a
high P supply, as mentioned here above. However, these side-
effects may have been enhanced by low Si level. Yet once
available P content increases up to 17.8–20.3 mg kg−1 at Ph
level (Table 2), the increase in bioavailable Si is beneficial to rice
plants by decreasing P uptake (data not shown; Ma and
Takahashi, 1989; Owino-Gerroh and Gascho, 2005; Greger
et al., 2018), which, in turn, decreases plant P content (Ma and
Takahashi, 1990). This Si-induced decrease in plant P uptake can
also result from the molecular mechanism of down-regulating
the expression of P transporter gene, OsPT6 in rice (Hu et al.,
2018). The Si-P interaction thus contributes to increase rice
Frontiers in Plant Science | www.frontiersin.org 7
biomass at SimPm, SimPh, and SihPh levels (Table 5), suggesting Si
supply may alleviate excessive P application.

Effects of Silicon-Phosphorus Supply on
the Production of Phytoliths
At a given P level, Si2O content significantly increased with
increasing Si application rate compared to control (Si0),
regardless of plant part. Thus, the addition of Si fertilizer as
monosilicic acid (H4SiO4) taken up by roots resulted in silica
accumulation in plant tissues through the formation of
phytoliths (Figure 4A). This significant increase was due to the
addition of Si fertilizer that can improve the well-observed
increase in plant available Si in soils (Table 2). The DSi release
from highly soluble Na2SiO3, wollastonite and other Si fertilizers
(Haynes et al., 2013; Haynes, 2014; Keeping, 2017; Li et al.,
2018b; Li et al., 2019) largely contributed to the pool of
bioavailable Si, from which it was taken up by plant roots to
accumulate around plant transpiration termini. As expected, P
fertilizer supply did not change the concentration of available Si
in Si0 level (Table 2), and thus of phytolith content, regardless of
plant part (Table 4). Interestingly, our data further show that, at
given levels Sim and Sih, the increase in P application rate
decreased the formation of phytoliths, but not always
significantly, and regardless of plant part, except in flag leaf at
Sih treatment (Table 4). This trend is in accordance with Ma and
Takahashi (1990) who reported that Si content of rice shoots
FIGURE 3 | Stock of OCpdm (mg pot−1) at two-way analysis of variance of silicon-phosphorus (Si-P) levels in the different plant parts. (A) Leaf; (B) flag leaf;
(C): stem; (D): sheath; (E) rich shoot. Error bars represent the standard deviations of the means. Different lowercase letters indicate significant differences among the
treatments in different P treatments and rice plant parts at a given Si level, respectively [least significant difference (LSD) test; p < 0.05]. Different uppercase letters
indicate significant differences among the treatments in different Si treatments and rice plant parts at a given P level, respectively (LSD test; p < 0.05, n = 5).
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decreased with increasing P availability in soil (Tables 2 and 3).
As here discussed above, this trend of decreasing Si deposition in
plant tissues resulted from dilution caused by increased plant
growth following P application and the molecular mechanism of
Frontiers in Plant Science | www.frontiersin.org 8
down-regulating the expression of P transporter gene, OsPT6 in
rice (Hu et al., 2018). Since shoot biomass significantly increased
following P addition, our data thus suggest that combined Si-P
fertilization contributes to increased Si bioavailability in soil, Si
FIGURE 4 | Plot of: (A) phytolith content of plant parts against SiO2 content considering all silicon-phosphorus (Si-P) treatments (leaf: y = 0.9151x−1.2668,
R2 = 0.9254 P < 0.01; flag leaf: y = 0.8248x + 1.3865, R2 = 0.8035 P < 0.01; Sheath: y = 0.5457x + 10.337, R2 = 0.6938 P < 0.01; Stem: y = 1.0171x−1.6823,
R2 = 0.8929 P < 0.01). (B) OCpdm content of plant parts against phytolith content considering all Si-P treatments (leaf; y = 0.0134x + 0.0233, R2 = 0.8557 P < 0.01;
flag leaf; y = 0.011x + 0.1038, R2 = 0.8097 P < 0.01; sheath; y = 0.008x + 0.1541; R2 = 0.6845 P < 0.01; stem; y = 0.0121x + 0.0166; R2 = 0.7924 P < 0.01).
(C) OCpdm content of plant parts against C content of phytoliths (OCphyt) considering all Si-P treatments (leaf; y = 0.019x + 0.29, R2 = 0.0273 P > 0.05; flag leaf;
y = −0.0079x + 0.5291; R2 = 0.0329 P > 0.05; sheath; y = −0.003x + 0.4191; stem; y = 0.0027x + 0.0629; R2 = 0.0491 P > 0.05).
February 2020 | Volume 11 | Article 67
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root uptake, phytolith formation, and rice plant biomass, which,
in turn, increases the stock of phytolith production in plants,
while this effect is limited at the high P levels.

Effects of Silicon-Phosphorus Fertilization
on Carbon Associated With Rice
Phytoliths
Considering all plant parts (Figure 4), our data suggest that
OCpdm may be controlled by phytolith accumulation in plant
tissues (Figures 4A, B), during which the incorporation of OC
seems to be constant (Figure 4C) and therefore does not
influence the OC content of phytoliths, OCphyt, in line with
previous hypotheses (Li et al, 2013c). Evidently, the increase in
phytolith stock increases the stock of OCpdm, i.e., the quantity of
OC associated with phytolith in living plant tissues.

Si-P fertilization does not affect OCphyt content, regardless of
plant part and biomass whereas it affects OCpdm (Table 4). SEM-
energy dispersive X-ray spectroscopy (EDX) image (Figure 1)
illustrates that OC can be associated with the extracted
phytoliths. However, the associated OC levels, irrespective of
its source, do not change with the fertilizer treatments. SEM-
EDX is semi quantitative, and thus, we used this technique not to
quantify but to check the OC content as determined chemically.
Therefore, we may not conclude about the possible entrapment
of OC during polymerization of biogenic amorphous silica as
previously proposed (Hodson et al., 1985; Parr and Sullivan,
2005; Zuo and Lü, 2011; Parr and Sullivan, 2014; Alexandre et al.,
2015; Alexandre et al., 2016; Reyerson et al., 2016; Hodson, 2016;
Song et al., 2016). Similarly, the hypothetical ability of plant
phytoliths to occlude OC does not vary depending on the
application rate (this study) and type of Si supply: basalt
powder (Guo et al., 2015) or slag-based silicate (Song et al.,
2015). According to Zhao et al. (2016), increased N supply in
degraded grasslands decreased the phytolith content in grass
shoots, while significantly increased OC content of their
phytoliths. These authors hypothesized that the increase in
OCphyt was probably caused by improved cell growth, partly
enlarged cell volume and decrease in the specific surface area of
phytoliths. Similarly, Gallagher et al. (2015) reported, that
growing conditions impact the OC content of phytoliths in
Sorghum bicolor irrespective of the type and rate of application
of inorganic fertilizers. These growth conditions, referring to
different nutritive regimes of N, P, K, and microelements,
affected the plant transpiration stream, and thus Si
accumulation (Gallagher et al., 2015), which in turn, affect the
OC content of phytolith (Blackman, 1969; Hodson et al., 1985).
In addition to the growth conditions, the nature of plant part or
organ might influence the phytolithic OC content through its
impact on phytolith morphology and specific surface area (Li
et al., 2013c and Li et al., 2014; Table 4).

Although Si-P fertilization did not increase OCphyt, the
application of Si and P fertilizer can substantially improve the
OCpdm content in rice plant through increasing phytolith
accumulation (Figures 2 and 3; p < 0.001). Our data further
show that the content of phytolithic OC in rice plants mainly
depends on Si supply. Indeed, phytolith accumulation in rice plant
Frontiers in Plant Science | www.frontiersin.org 9
tissues significantly increased with increasing supply of Si fertilizer.
Thus, regulating Si supply promoted the OC content associated
within phytolith by increasing phytolith accumulation in plant
notably through the increase in biomass production.
Consequently, increasing crop productivity could play a crucial
role in increasing the stock of phytolithic OC, while the processes
explaining OC associated within phytoliths are still debated. Here
the largest rice biomass was obtained at SihPm level (Si = 0.52 g
kg–1; P = 0.2 g kg–1), regardless of plant part (Table 3). The level
SihPm largely contributed to double the stock of phytolithic OC
(mg pot−1) from 18.9 at Si0P0 to 36.8 at SihPm (Figure 3E). Another
lesson is that P should not be neglected if rice productivity is to be
improved as discussed above. Thus, regulating Si-nutrient supply
combined with optimal P supply is promising to enhance both
phytolith formation and associated organic carbon in Si-
accumulating plants, as well as crop productivity.
CONCLUSION

Our experimental results show that i) phytolith concentration
increases with increasing Si fertilization, ii) phytolithic OC
concentration does not depend on Si or P fertilization, iii) as
the biomass increases with Si fertilization, the stocks of phytolith
and phytolithic OC increase, iv) P fertilization has no clear
impact either on phytolith or phytolithic OC concentration,
but increases plant biomass and grain yield. Despite the
occurrence of OC associated within phytoliths, we cannot be
sure of OC occlusion within phytoliths. We conclude that the
combined Si-P fertilization increases the phytolith stock by
increasing the biomass and phytolith content of rice plants.
Through these positive effects, combined Si-P fertilization may
thus address agronomic (e.g., sustainable ecosystem
development) and environmental (e.g., climate change) issues
through the increase in crop yield and phytolith production as
well as the promotion of Si ecological services and OC
accumulation within phytoliths.
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