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Potassium use efficiency, a complex trait, directly impacts the yield potential of crop
plants. Low potassium efficiency leads to a high use of fertilizers, which is not only farmer
unfriendly but also deteriorates the environment. Genome-wide association studies
(GWAS) are widely used to dissect complex traits. However, most studies use single-
locus one-dimensional GWAS models which do not provide true information about
complex traits that are controlled by multiple loci. Here, both single-locus GWAS (MLM)
and multi-locus GWAS (pLARmEB, FASTmrMLM, mrMLM, FASTmrEMMA) models were
used with genotyping from 90 K Infinium SNP array and phenotype derived from four
normal and potassium-stress environments, which identified 534 significant marker-trait
associations (MTA) for agronomic and potassium related traits: pLARmEB = 279,
FASTmrMLM = 213, mrMLM = 35, MLM = 6, FASTmrEMMA = 1. Further screening of
these MTA led to the detection of eleven stable loci: q1A, q1D, q2B-1, q2B-2, q2D, q4D,
q5B-1, q5B-2, q5B-3, q6D, and q7A. Moreover, Meta-QTL (MQTL) analysis of four
independent QTL studies for potassium deficiency in bread wheat located 16 MQTL on 13
chromosomes. One locus identified in this study (q5B-1) colocalized with an MQTL
(MQTL_11), while the other ten loci were novel associations. Gene ontology of these loci
identified 20 putative candidate genes encoding functional proteins involved in key
pathways related to stress tolerance, sugar metabolism, and nutrient transport. These
findings provide potential targets for breeding potassium stress resistant wheat
cultivars and advocate the advantages of multi-locus GWAS models for studying
complex traits.
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INTRODUCTION

Potassium (K) plays a critical role in plant growth and development,
elucidated by its multidimensional capacity of regulating the plant
physiological systems such as enzymes activation, membrane
potential, osmoregulation, photosynthesis, and osmotic balance
(Clarkson and Hanson, 1980; Pettigrew, 2008; Wang and Wu,
2017). However, K-deficiency implicates restrictions in sustainable
plant growth and development (Rengel and Damon, 2008; Fageria
and Moreira, 2011; Wang and Wu, 2015). To fulfil the nutrient
demands of food crops and to achieve a higher grain yield, fertilizer
applications are widely used (Fageria et al., 2009; Fageria and
Moreira, 2011; Lotter, 2015). But the high application of fertilizers
is also a serious challenge to not only the environment but also the
economy of common farmers (Lægreid et al., 1999), for instance,
higher nutrient uptake leads to: (a) nutrient mining in low input
systems which results in leaching to water bodies, (b) higher
fertilizer demand in high input cropping systems which is farmer
unfriendly. A more affordable and sustainable approach adapted by
plant breeders to reduce the excessive fertilizer use is the
development of cultivars with high nutrient efficiency (Baligar
et al., 2001; Trehan, 2005; Hawkesford et al., 2016; Sarkar and
Baishya, 2017). As for K, different plant species or even the different
genotypes of the same species are known to have a varied K-uptake
and utilization efficiency (Pettersson and Jensen, 1983; Guoping
et al., 1999). This provides a possibility for the genetic dissection of
crop KUE (Wang and Wu, 2015). In the past, K-acquisition by
roots (K-uptake efficiency [KUpE]) was considered to be of primary
importance by the scientists. However, in calcareous agricultural
soils, nutrient uptake by plants is extremely limited (Fageria and
Nascente, 2014) due to a high nutrient fixation rate in the soil
(Friesen et al., 1997). Therefore, K-use efficiency (KUE) cannot be
increased by KUpE alone (Gamuyao et al., 2012), and thus the K-
utilization capacity of plants (KUtE) must also be improved to
achieve a higher KUE (Rose and Wissuwa, 2012). Plants with high
KUE have a higher KUpE and KUtE (El Bassam, 1997; Zhang et al.,
2007), thus KUE is defined as a product of the two (Sandaña, 2016).
Several studies in the past have reported the genotypic variation of
KUE in wheat (Guoping et al., 1999; George et al., 2002; Damon
and Rengel, 2007; Pettigrew, 2008; Rengel and Damon, 2008; Wang
andWu, 2015). This suggests that the genetic improvement of crops
can be carried out by selecting important quantitative trait loci
(QTL) associated to KUE. However, despite the importance of
genetic dissection of this complex trait, only a few QTL studies have
been reported in wheat using bi-parental mapping populations
(Guo et al., 2012; Kong et al., 2013; Zhao et al., 2014; Gong et al.,
2015). Genetic maps used in these various studies can be integrated
at one place to identify consensus genomic region called Meta-QTL
(MQTL), independent of population type and genotype/
environment interaction (Quraishi et al., 2017). This approach of
identifying MQTL by meta-analysis was first proposed by Goffinet
and Gerber (2000), and has since been applied in many crops
including wheat (Griffiths et al., 2009; Gegas et al., 2010; Quraishi
et al., 2017).

Recent advances in molecular biology and next generation
sequencing along with the discovery of new genome analysis tools
have helped identifying high-throughput single nucleotide
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polymorphisms (SNPs) that are utilized to construct high
resolution genetic maps for genome-wide association study
(GWAS) (Hyten et al., 2010; Song et al., 2016; Su et al., 2016; Wu
et al., 2016). GWAS is considered as a significant approach to study
genetic variants in a large population as it saves time and cost of
developing a bi-parental population, deduces multi-allelic variations
to help identify the most favorable alleles of a target trait in a single
analysis, and it is more powerful and easy to fine map QTL due to a
higher resolution resulting from a high genetic diversity
(Breseghello and Sorrells, 2006; Atwell et al., 2010). GWAS takes
complete advantage of all the recombination events occurring in the
evolution of a natural population (Chang et al., 2018). GWAS has
been used to understand the genetic basis of complex traits in
various plant and animal species (Hirschhorn and Daly, 2005;
McCarthy et al., 2008; Ingvarsson and Street, 2011; Bush and
Moore, 2012). Conventionally used single-locus model for GWAS
is the mixed linear model (MLM) approach, the so-called Q+K
model, that uses the population structure (Q) and kinship matrix
(K) (Yu et al., 2006). Since the publication of MLM, many different
MLM models have been reported (Kang et al., 2008; Zhang et al.,
2010; Zhou and Stephens, 2012; Zhou et al., 2013). MLM models
conduct one-dimensional genome scanning to test one marker at a
time, these models can handle a large proportion of markers, e.g., up
to a million markers (Wang et al., 2016). However, most complex
traits such as nutrient use efficiency are usually controlled by
multiple loci, and thus MLM based models are never accurate to
estimate the marker effects for such traits. Another problem with
MLM based models is that the stringent criterion of significance for
marker selection such as Bonferroni correction does not allowmany
significant markers to be detected (Wang et al., 2016; Chang et al.,
2018). Multi-locus mixed linear models have been developed to
address this problem because they can be used to detect powerful
marker-trait associations (MTA) using lower significance criterion
as no Bonferroni correction is applied (Wang et al., 2016; Chang
et al., 2018; Lü et al., 2018; Ma et al., 2018; Peng et al., 2018; Zhang
et al., 2018). Ever since the first multi-locus random-SNP-effect
mixed linear model (mrMLM) was proposed byWang et al. (2016),
a series of models has been published in various studies, e.g.,
pLARmEB (Zhang et al., 2017), FASTmrMLM (Zhang and
Tamba, 2018), and FASTmrEMMA (Wen et al., 2018).

In this study, one single-locus GWAS (SL-GWAS) model and
four multi-locus GWAS (ML-GWAS) models were used to identify
significant MTA for KUE and agronomic traits in a historical bread
wheat diversity panel of Pakistan. Furthermore, a meta-analysis of
all the reported QTL studies (related to K-deficiency) was
performed to identify consensus loci for K-related traits. These
consensus MQTL regions are independent of environment ×
genotype interaction and population type, and hence along-with
the novel associations identified, will help in breeding wheat
cultivars for high K efficiency.
MATERIAL AND METHODS

Plant Material and Phenotyping
A historical bread wheat panel of 150 Pakistani spring wheat
varieties acclimated to irrigated, arid, and semi-arid climates was
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selected for sowing. The panel was categorized into four groups
on the basis of release time of cultivars: group-I consisted of 20
varieties of pre-green revolution release (1965 or earlier), group-
II consisted of 30 varieties of green revolution release (1965-
1979), while group-III and group-IV each had 50 cultivars
comprised of post-green revolution release and elite cultivars,
respectively (Table S1). Seeds of the panel were obtained from
National Agricultural Research Centre (NARC), Islamabad,
Pakistan and were evaluated for phenotypic purity by five
consecutive field trials during 2010-2014 (Ain et al., 2015;
Almas et al., 2018).

Cigar roll method proposed by Zhu et al. (2005) was adapted for
the hydroponic experiment. Five seeds of each variety were placed
on a germination paper of 20 × 20 cm after sterilization and the
paper was vertically rolled. Five beakers filled with 200 ml Hoagland
solution were prepared, each of which contained 25 cigar rolls for
both normal and low K conditions, i.e., 235 ppm-K and 117.5
ppm-K, respectively (Hoagland and Arnon, 1950). Experiment was
carried out in three replications for randomization. Plants were kept
in a growth chamber having a temperature of 18°C–25°C and 10-
hours of light exposure. At 21st day of germination, plants were
harvested for further physiological analysis.

Field trials were carried out for three consecutive years from
2016–2018 in triplicated alpha-lattice design for normal K
(Control, C) and low K (Treatment, T) conditions,
experiments were planted in PVC pipes. Two kg soil (soil to
sand ratio of 2:1) was added to each PVC pipe. Random soil
samples were tested according to Chen and Ma (2001); sand, silt,
and clay were observed at a ratio of 5:2:3, pH of the soil was 7.8,
organic matter was 0.70%, and dS/m mean EC value was 3.3. Soil
had NPK concentration as 0.73 mg/kg total N, 0.025 mg/kg
available P, and 0.06 mg/kg available K. Potash was applied as a
source of K, DAP as a source of P, and Urea as a source of N.
Plants under normal K conditions (C) were treated with 100% K
(0.18 g/kg of soil) while the plants under low K conditions (T)
with 50% K (0.09 g/kg of soil). Prior to sowing, seeds were surface
sterilized with 25% H2O2 for 5–10 min followed by washing with
distilled water before placing in petri dishes for germination.
Once germinated, three seeds were transplanted to field in PVC
pipes of 2-feet height and 5-inch diameter at the experimental
field of Plant Sciences department, Quaid-i-Azam University,
Islamabad, Pakistan (33.7476° N, 73.1381° E).

Agronomic traits such as fresh weight (FW), shoot length
(SL), relative water content (RWC), and leaf area (LA) for
hydroponic experiment (_H) while days to maturity (DM), leaf
area (LA), plant height (PH), tiller number (TN), spikelet per
spike (SpS), grain yield (GY), thousand kernel weight (TKW),
biological yield (BY), and harvest index (HI) for field experiment
(_F) were measured according to Pask et al. (2012) and Ain et al.
(2015). Chlorophyll contents were measured in cigar trials at 14
days (Chl_14DAG) and 21 days (Chl_21DAG) after germination and
at heading stage in field trials. Chlorophyll meter, SPAD-502
Konica Minolta sensing Inc., was used to measure the
chlorophyll contents. Scanned root images were used to
estimate various root parameters (root length, root width, and
network area) using GiaRoots software.
Frontiers in Plant Science | www.frontiersin.org 3
Potassium Estimation
Accuracy evaluation of analytical methods was performed using
Duck weed BCR® (BCR-670) certified reference material (Sigma-
Aldrich). Oven dried leaf and grain samples (0.5 g) and certified
reference material were digested in separate 50 ml conical flasks
by adding 7.5 ml (65%) HNO3 and 2.5 ml (36%) HCl to each
sample. The mixtures were subjected to about 270°C by placing
the flasks on a hot plate, the mixtures started evaporating as
dense yellowish fumes. Once the yellowness of fumes started to
disappear, flasks containing mixtures were removed from the hot
plate. Distilled water was added to each flask to raise the final
volume to 25 ml. K concentration in leaf samples while zinc (Zn)
and iron (Fe) concentration in grain samples of both treatments
and certified reference material were all analyzed using atomic
absorption spectrometer model WFX-210 (Beijing Beifen-Ruili
Analytical Instrument Co., Ltd. China). No significant variation
was observed between the atomic absorption results of Duck
weed BCR® (BCR-670) certified reference material, i.e.,
0.90 g/kg, 20 mg/kg, and 5.39 mg/kg for Fe, Zn, and K,
respectively, and the certified values, i.e., 0.94 g/kg, 24 mg/kg,
and 5.79 mg/kg for Fe, Zn, and K, respectively. K utilization
efficiency (KUtE) was calculated as a ratio between biological
yield (grain yield in case of field trial) and K uptake. K uptake
efficiency (KUpE) was measured as a ratio between K uptake and
K available. Finally, the K use efficiency (KUE) was estimated as a
product of KUtE and KUpE (Sandaña, 2016).

Genotyping
DNA was extracted from 25 days old seedlings following
CIMMYT manual (Dreisigacker et al., 2012) and genotyped
using 90 K Infinium iSelect SNP array (Ain et al., 2015; Almas
et al., 2018). PowerMarker 3.0 was used for estimating genetic
similarities among wheat lines with a Dice coefficient based on
shared alleles proportion (Liu et al., 2005). Polymorphism
information content (PIC) was used to determine genetic
diversity at each locus. From 81,587 markers of the genotyped
data, markers having mediocre quality in sense of containing
indels (sequencing errors) or low raw base quality score (19,810),
monomorphic markers (36,765), and markers with less than 5%
MAF (4,159) were removed from the genotype dataset before
analysis, and finally 20,853 markers were used for association
analysis. A physical map of all 21 wheat chromosomes was
constructed using the 20,853 polymorphic markers projected
onto the newly released wheat reference map (IWGSC RefSeq
v.1.1), resulting in an average of 795 SNP markers per
chromosome. Marker density was highest for B sub-genome
and relatively lower for the D sub-genome. SNP dataset can be
requested via email for further research purposes.

Statistical Analysis
Phenotypes
Descriptive statistics, correlation among traits, and ANOVA were
estimated for all the traits using IBM SPSS Statistics 22. Graphical
representation of correlation among traits of interest along with
histograms and scatterplots was performed in an R package for data
visualization, GGally (an extension to ggplot2), in R 3.6.1.
February 2020 | Volume 11 | Article 70
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Population Structure, Linkage Disequilibrium (LD),
and Kinship Matrix
Population structure was analyzed using STRUTURE software,
while kinship analysis was carried out in TASSEL 5 software. LD
among the markers was estimated for the diversity panel in
TASSEL 5 using the observed vs. expected allele frequencies. The
r2 value was estimated for pairwise SNPs in a two Mb distance
and then averaged across the genome. The LD decay was
measured as the distance at which the average r2 between
pairwise SNPs dropped to half of its maximum value (Huang
et al., 2010). The detailed description of population structure,
polymorphism information content (PIC), and minor allele
frequencies (MAF) for SNPs was provided in two of our earlier
reports of the diversity panel (Ain et al., 2015; Almas et al., 2018).

Genome-Wide Association Study
GWAS was conducted by both SL-GWAS (MLM) model and the
ML-GWAS models for all the agronomic traits assessed in
hydroponic and field trials. The MLM model proposed by Yu and
Buckler (2006) was applied in TASSEL 5 to measure the association
between phenotype and genotype. Population structure and kinship
matrix, that had already been estimated, were used in MLM. Four
ML-GWAS models including mrMLM (Wang et al., 2016),
FASTmrMLM (Zhang and Tamba, 2018), FASTmrEMMA (Wen
et al., 2018), and pLARmEB (Zhang et al., 2017) were applied to the
data using an R package mrMLM (https://cran.r-project.org/web/
packages/mrMLM/index.html) for ML-GWAS analysis. Critical
threshold of significance was set at P ≤ 0.000001 (Bonferroni
significance threshold = P ≤ 0.000047) for SL-GWAS and LOD ≥
5 form ML-GWAS, normal significant threshold of ML-GWAS
model is LOD ≥ 3 since no Bonferroni is applied. Significance of
threshold was kept stringent to enhance the precision of candidate
genes identification (Lü et al., 2018). The loci identified by GWAS
were further validated for precision, accuracy, and novelty byMQTL
analysis. MTA loci were named according to the nomenclature
proposed by McCouch (1997). Genomic data visualization was
performed in a 2D track plot R package RCircos (https://cran.r-
project.org/web/packages/RCircos/index.html).

MQTL Characterization
Meta-analysis was performed for four independent studies that had
reported QTL for agronomic traits in wheat under K stress (Guo
et al., 2012;Kong et al., 2013; Zhao et al., 2014;Gong et al., 2015).Guo
et al. (2012) identified 655 QTL linked to nutrient efficiency (N, P,
andK) and agronomic traits in recombinant inbred lines (RILs) from
a cross Chuan 35050 × Shannong 483. Kong et al. (2013) used 131
RILs derived from a bi-parental cross Chuan 35050 × Shannong 483
to map 167 QTL across hydroponic, pot, and field environments.
Frontiers in Plant Science | www.frontiersin.org 4
Zhao et al. (2014) used 168 double haploid lines from a cross Huapei
3×Yumai 57 to detect 65QTLacross all chromosomes excluding 2B,
5A, and 7B. Gong et al. (2015) used the set of 131 RILs from a cross
Chuan 35050 × Shannong 483 to map 127 QTL across 20
chromosomes, except 4D. The detailed description of QTL
mapping populations is given in Table 1. Relatively high frequency
QTL or QTL clusters (130) identified in these four studies were
projected to reference genetic map WCGM2017 (Quraishi et al.,
2017), having at least 75% commonmarkers with the maps used for
QTL detection, before performing MQTL analysis using
BioMercator software (Goffinet and Gerber, 2000). Although these
four studies evaluated different populations in various hydroponic/
pot/field experiments and environmental conditions, their
integration provided us a comprehensive view of QTL identified in
wheat grown under K stress conditions. QTL clusters belonging to at
least two different populations were considered as MQTL, as
described by Goffinet and Gerber (2000). The WCGM2017 data is
accessible to the scientific community through a web platform
allowing to navigate between the genetic regions up to the synteny
with grass relatives and ultimately candidate genes. The public web
interface named PlantSyntenyViewer available at http://
urgi.versailles.inra.fr/synteny-wheat can be used to identify the
genetic (markers, QTL, MQTL) and associated genomic (wheat
syntenome and syntenic genes from related grasses) data for a
translational research approach.

Candidate Gene Mining
Genes associated with stable loci from GWAS were predicted on
the basis of LD using the EnsemblPlants database available at
http://plants.ensembl.org/Triticum_aestivum/Info/Index and
the International Wheat Genome Sequencing Consortium
(IWGSC) RefSeq v1.1 annotations (Appels et al., 2018),
available at https://wheat-urgi.versailles.inra.fr/Seq-Repository/
Annotations. Nearby genes in the linkage regions of stable
SNP-trait associations with putative functions that could be
related to the trait were selected as candidates.
RESULTS

Phenotypic Analysis of Agronomic Traits
ANOVA showed significant variation between genotypes within
a treatment and between different treatments for most of the
agronomic traits. ANOVA results for important phenotypic and
physiological traits along with descriptive statistics are presented
in Table 2. SpS, TN, GpS, GY, BY, FW, RL, and K-related traits
were observed to vary significantly (P < 0.001***) between
different treatments across field and hydroponic environments.
TABLE 1 | The description of various QTL studies (related to K-deficiency in bread wheat), used for QTL meta-analysis.

Map Parent 1 Parent 2 Population Markers Marker Type QTL

Guo et al. (2012) Chuan35050 Shannong483 RIL 719 Dart, SSR, EST-SSR 655
Kong et al. (2013) Chuan35050 Shannong483 RIL 719 Dart, SSR, EST-SSR 167
Zhao et al. (2014) Huapei 3 Yumai 57 DH 323 SSR, EST, iSSR, HMW-GS 65
Gong et al. (2015) Chuan35050 Shannong483 RIL 719 Dart, SSR, EST-SSR 127
February 2020 | Volume 11 | Artic
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The four groups of genotypes (landraces, green revolution era
cultivars, post-green revolution era cultivars, and elite cultivars)
showed a variation in K uptake. Elite cultivars and post green
revolution era cultivars generally had a higher K-uptake, green
revolution era cultivars had a moderate K-uptake, while
landraces had the lowest K-uptake in most of the treatments.
An elite cultivar Punjab-11 had a consistently higher K-uptake
across all environments on an average basis, i.e., 142.7625 (mg/
kg), 95.9675 (mg/kg), 171.22 (mg/kg), 186.6 (mg/kg), 198.1214
(mg/kg), and 147.3462 (mg/kg) in K_C_H, K_T_H, K_C_2017,
K_T_2017, K_C_2018, and K_T_2018, respectively (Figure 1). These
results provide indications of selection for complex traits during
the process of breeding improvement. However, to ensure that
the sub-populations are not structured in a biased manner for
target traits, we performed Shapiro-Wilk and Jarque-Bera
normality tests which indicated a normal distribution of target
traits across the entire population (Table S2).

Correlation analysis indicated significant relationships
between the traits of interest. In hydroponic experiment, KUE
was positively correlated with CHL, RWC, K, and KUtE in
control (0.18, 0.24, 0.24, and 0.54, respectively). In stress
condition, KUE had a significant positive correlation with
CHL, RWC, RL, K, and KUtE (0.23, 0.31, 0.12, 0.13, and 0.41,
respectively). KUtE showed a negative correlation with RL under
stress (-0.27), while a highly negative correlation with K in both
control and stress treatment (-0.51 and -0.77, respectively). K
showed a significant positive correlation with RL in both
treatments (0.41 in control, 0.33 in stress), while other
relationships were either nonsignificant or slightly significant.
Correlation analysis for all the agronomic traits in hydroponic
experiment are presented in Figure 2 and Table S3.

In field experiments, KUE positively correlated with BY
across all treatments in years 2017 and 2018 (0.83 in C_2017,
0.61 in T_2017, 0.67 in C_2018, and 0.36 in T_2018). Similarly, KUE
showed a highly positive correlation with TKW under both
control and stress conditions in 2018 (0.53 in C_2018 and 0.35
in T_2018) while a less significant positive correlation with TKW
in 2017 (0.14 in C_2017 and 0.16 in T_2017). KUtE had an
extremely positive correlation with KUE across all treatments
(0.81 in C_2017, 0.75 in T_2017, 0.68 in C_2018, and 0.8 in T_2018)
while a completely reversed relationship with K under both
treatments in 2017 and 2018 experimental seasons (-0.56 in
C_2017, -0.46 in T_2017, -0.32 in C_2018, and -0.36 in T_2018). K
showed significant positive correlation with RL in C_2017 (0.36),
T_2017 (0.74), C_2018 (0.21), and T_2018 (0.68). Similarly, K and
BY were positively correlated in T_2017, C_2018, and T_2018 with
the r values of 0.3, 0.4, and 0.31, respectively. TKW and K
showed a highly positive correlation in T_2017 (0.35), C_2018

(0.44), and T_2018 (0.33). The detailed analysis of correlation
among all the agronomic and physiological traits across all the
field environments is presented in Figure 3 and Table S4.

SNP Marker Analysis, Population
Structure, and LD
A total of 20,853 SNP markers with MAF ≥ 0.05 was used for
GWAS analysis. These markers were obtained after trimming the
original set of 81,587 SNPs for missing values, inadequate quality
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Safdar et al. Genomic Loci for Potassium Deficiency Stress
FIGURE 1 | Genotypic distribution of potassium-uptake in historical bread wheat panel of Pakistan. Historical panel consists of four groups of genotypes: EC (elite
cultivars), PGR (post green revolution era cultivars), GR (green revolution era cultivars), and LR (landraces). *cf. Trait nomenclature is presented in Table 2 legends.
FIGURE 2 | QQ scatterplots, histograms, coefficient of correlation, and box plots between K-use efficiency (KUE) traits from hydroponic experiment. Lower half of
matrix and the center line cutting the figure into two triangles represent histograms for each trait. Box plots are presented at the extreme right of upper triangle. Between
the histograms in lower triangle are QQ scatter plots. Between the box plots and histograms in the upper triangle are coefficient of correlation (r2 values) in control and
treatment; x and y axes of histograms and scatter plots represent phenotypic distribution of traits. *cf. Trait nomenclature is presented in Table 2 legends.
Frontiers in Plant Science | www.frontiersin.org February 2020 | Volume 11 | Article 706

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Safdar et al. Genomic Loci for Potassium Deficiency Stress
markers (with sequencing errors, indels), and markers with MAF
≤ 0.05. Population structure analysis divided the panel into seven
subgroups of cultivars, details were provided in our previous
report on the diversity panel (Ain et al., 2015). The extent of LD
was estimated for the diversity panel using TASSEL software. It
indicated the B sub-genome to have highest LD, followed by D
and A sub-genomes, respectively. LD decreased with the increase
in physical distance between marker loci. Average LD decay was
observed after 300 kb in A sub-genome, after 800 kb in B sub-
genome, and after 500 kb in D sub-genome (Figure 4).

MTA and Loci Identification
SL-GWAS method (MLM) identified 661 MTA. Out of these, six
MTA with -log10p ≥ 5 were considered as significant and used
for further analysis (Table S5). ML-GWAS identified 1,319 MTA
for all the traits across all four experimental environments. Four
ML-GWAS models were used for association analysis;
pLARmEB identified highest number of MTA with 567,
FASTmrMLM 477, mrMLM 192, and FASTmrEMMA
identified 83 MTA. These MTA were screened for significance
of threshold at LOD score ≥ 5 which resulted in 528 significant
MTA. These 528 MTA included all four GWAS models;
pLARmEB identified 279 MTA, FASTmrMLM 213, mrMLM
35, while FASTmrEMMA identified only one MTA with LOD
score greater than five (Table S6).
Frontiers in Plant Science | www.frontiersin.org 7
Among the 534 significant SNPs from both SL-GWAS and
ML-GWAS, 54 were detected by at least two different GWAS
models (Table S7). These 54 SNPs distributed over 52 loci on
wheat genome; 21 loci on sub-genome A, 20 on sub-genome B,
and 11 on sub-genome D (Table S8). These 52 loci were
identified on 18 wheat chromosomes, excluding 3D, 4A, and
4B. Among the 52 significant loci, 11 were consistent across more
than one experimental environment. These 11 loci, detected by
multiple GWAS models and consistent across multiple
environments, were considered as stable loci for candidate
gene prediction. These stable genomic regions were present on
eight wheat chromosomes; 1A, 1D, 2B-I, 2B-II, 2D, 4D, 5B-I, 5B-
II, 5B-III, 6D, and 7A (Figure 5, Table 3). MTA loci were named
according to the nomenclature assigned by McCouch (1997) e.g.,
q1A refers to the stable locus on chromosome 1A, q2B-1 refers to
the 1st stable locus on chromosome 2B, while q2B-2 refers to the
2nd stable locus on chromosome 2B, and so on.

MQTL Identification
Genetic maps used for the QTL studies (cf. material and
methods) were projected on to WCGM2017 consensus map,
with at least 75% common markers between any single genetic
map of linkage analysis (QTL) and WCGM2017. Before doing
the meta-analysis of different populations, meta-analysis of each
population to identify consensus regions within the population
FIGURE 3 | QQ scatterplots, histograms, and coefficient of correlation between K-use efficiency (KUE) traits from field experiments. The plots in center cutting the
figure into upper and lower triangles represent histograms. Lower triangle represents QQ scatter plots and upper triangle represents coefficient of correlations
(r2 values) in different treatments in all field environments; x and y axes of histograms and scatter plots represent phenotypic distribution of traits. *cf. Trait
nomenclature is presented in Table 2 legends.
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Safdar et al. Genomic Loci for Potassium Deficiency Stress
FIGURE 5 | A 2D track plot visualizing genomic data. The outermost track represents heatmap of marker density in the genotype data used for genome-wide
association studies (GWAS) and the placement of stable loci on wheat chromosomes with respect to their physical position. Scatterplots represent significant
marker-trait associations (MTA) with lower to higher -log10p from inside out. The innermost line plots represent the LOD score threshold of significant MTA.
FIGURE 4 | Linkage disequilibrium (LD) decay plot of wheat sub-genome A, B, and D; x-axis represents distance between single nucleotide polymorphisms (SNPs)
in kb, y-axis represents average r2 between pairwise SNPs.
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Safdar et al. Genomic Loci for Potassium Deficiency Stress
was also conducted. The QTL cluster belonging to two or more
different mapping populations was subjected to meta-analysis for
the calculation of MQTL. Overall, 130 QTL (Table S9) were used
to calculate 16 MQTL on 13 wheat chromosomes; 1A, 1B, 1D,
2A, 3A, 3B-I, 3B-II, 4A-I, 4A-II, 4B, 5B-I, 5B-II, 6A, 6B, 7A, and
7B (Figure 6, Table 4). These 16 MQTL regions, independent of
genotype × environment interaction, are of immense genetic
importance considering their stability across multiple
populations and environments. One out of the 11 SNP loci
(i.e., q5B-1) from GWAS resided close to MQTL_11 present on
chromosome 5B. This SNP was detected by two GWAS models
(pLARmEB and FASTmrMLM) with a LOD score of 12.2 and
-log10p 13.19 and associated with two K related traits in two
environments (KUtE_T_2017, KUE_C_2018). All other 10 MTA
were novel associations.

Candidate Gene Prediction and Annotation
Putative genes related to traits in the associated genomic regions of
11 stable MTA loci were selected as candidates that resulted in 20
genes on the wheat reference genome assembly IWGSC RefSeq
v1.1 (Table 5). Among these, eighteen genes were annotated for
functional protein involved in key cellular and biological pathways
in wheat and its grass relatives, two genes resulted in hypothetical
Frontiers in Plant Science | www.frontiersin.org 9
proteins. Annotated proteins included essential proteins for plant
growth and development, and sustainability under abiotic stress
environments: CCAAT-binding transcription factor A, Cytochrome
P450 superfamily, COBRA-like protein, GLU1B, RING-type E3
ubiquitin transferase, Arginase, Bidirectional sugar transporter
SWEET, Calmodulin-binding family protein, Serine/threonine
kinase, UTP–glucose-1-phosphate uridylyltransferase, Photosystem
II reaction center protein L, Auxin-responsive protein, and
Acyl-transferase.
DISCUSSION

Significance of ML-GWAS Models
Most of the complex traits like KUE are dominated by major genes,
the one-dimensional model can not detect associations with the
variation of polygenes due to the limitations of the model (Lü et al.,
2018). Several shortcomings of the single-locus models have been
discussed in the recent years, e.g., the general linear models do not
use kinship as co-variates (Pace et al., 2015), which results in the
high proportion of false positives. The problem with the mixed
linear models is that they use a highly stringent criteria of
TABLE 3 | Stable marker-trait associations (MTA) identified by different genome-wide association studies (GWAS) models.

MTA Loci SNP ID† Trait
a

GWAS Model
b

Chr Position
c

-log10p value LOD score

q1A IWB20856 SpL_C_2018 pLARmEB 6.77 5.94
FW_T_H FASTmrMLM 1A 485002381 12.64 11.67

q1D IWB41036 HI_C_2017 FASTmrMLM 7.87 7.01
RL_C_H pLARmEB 7.44 6.58
FW_T_H FASTmrMLM 1D 336365267 11.88 10.92
FW_T_H pLARmEB 7.39 6.54

q2B-1 IWB4614 KUE_T_2017 pLARmEB 2B 180616389 7.69 6.83
SpL_C_2018 FASTmrMLM 5.80 5.01
SpL_C_2018 pLARmEB 6.01 5.20

q2B-2 IWB7106 KUtE_C_2017 pLARmEB 2B 783226928 7.08 6.24
CHL_T_2016 MLM 5.11

q2D IWB740 KUE_C_2017 FASTmrMLM 2D 14395525 14.38 13.39
KUE_T_2018 FASTmrMLM 6.25 5.44
KUE_T_2018 pLARmEB 6.54 5.72

q4D IWA410 KUE_T_2017 pLARmEB 12.60 11.63
KUE_C_2018 FASTmrMLM 4D 453220983 15.95 14.94
KUE_C_2018 pLARmEB 6.44 5.62
SW_T_H FASTmrMLM 11.69 10.74

q5B-1 IWB58160 KUtE_T_2017 pLARmEB 5B 64733088 13.19 12.21
KUE_C_2018 FASTmrMLM 5.89 5.09

q5B-2 IWB38863 KUtE_T_2017 pLARmEB 9.52 8.61
KUE_C_2018 FASTmrMLM 9.33 8.43
KUE_C_2018 pLARmEB 5B 536515270 15.95 15.06

q5B-3 IWB7750 KUtE_C_2017 pLARmEB 6.06 5.25
KUE_T_2018 FASTmrMLM 5B 558346572 6.59 5.76

q6D IWB35315 FW_C_H FASTmrMLM 6D 309588003 6.98 6.15
Na+_C_2018 pLARmEB 6.06 5.25

q7A IWB33486 DM_C_2018 mrMLM 7.20 6.35
DM_C_2018 FASTmrMLM 7.20 6.36
DM_C_2018 pLARmEB 7.20 6.36
FW_T_H pLARmEB 7A 1699666 11.01 10.07
Fe
bruary 2020 | Volume 11
†Universal IDs of SNP markers from IWGSC RefSeq v1.1.
aTrait nomenclature is presented in Table 2 legends.
bModels highlighted in bold detected SNP with highest LOD.
cPosition of SNP marker from IWGSC RefSeq v1.1.
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Safdar et al. Genomic Loci for Potassium Deficiency Stress
Bonferroni correction that, often results in the loss of many
significant SNPs (Gordon et al., 2016). Multi-locus models help
ramifying these restrictions caused by single-locus models. In
present study, highly significant SNPs identified by different
models were: FASTmrEMMA = 1, MLM = 6, mrMLM = 35,
FASTmrMLM = 213, and pLARmEB = 279 (Tables S5 and S6).
These results indicate and further validate the argument that ML-
GWAS models are comparatively better to study the effects of
maximum genetic variants in a population. Several studies have
Frontiers in Plant Science | www.frontiersin.org 10
individually illustrated the quality and effectiveness of all of these
ML-GWAS models (Wang et al., 2016; Zhang et al., 2017; Wen
et al., 2018; Zhang and Tamba, 2018).
Variation Among Different ML-GWAS
Models
Four ML-GWAS models detected 1319 significant SNPs with a
logarithm of odds three or higher that were later screened for a
more stringent criterion for gene prediction. However, among
these four models, pLARmEB detected the greatest number of
MTA with 567 MTA that had LOD score ≥ 3 (279 with LOD ≥ 5),
FASTmrMLM identified 477 MTA with LOD score ≥ 3 (213 with
LOD ≥ 5), mrMLM detected 192 MTA with LOD score ≥ 3 (35
with LOD ≥ 5), while FASTmrEMMAdetected the lowest number
of 83 MTA with LOD score ≥ 3 (1 MTA with LOD ≥ 5). The
highest maximum LOD score was observed in pLARmEB (15.19),
while the lowest maximum was detected in FASTmrEMMA (5.3).
All methods except FASTmrEMMA had a maximum LOD score
of greater than 10 for at least one of the associated SNPs. All these
findings were consistent with the study of Lü et al. (2018) who
usedML-GWAS models to dissect photosynthesis-related traits in
soybean. The maximum r2 was observed in FASTmrMLM
(60.18%), followed by pLARmEB (57%), mrMLM (56.16%), and
FASTmrEMMA (17.62%). Overall, these results suggest the
dominance of pLARmEB over the other models used in this
study. However, the minimum r2 observed in mrMLM was r2 =
3.9, while the minimum value for all other models was less than
0.01, which indicates that mrMLM can detect major and effective
SNPs as compared to other models.
TABLE 4 | Meta-QTL (MQTL) identified on WCGM for Potassium related traits.

MQTL Map Name QTL Chr Position
a

MQTL_1 Kong et al. (2013); Gong et al. (2015) 13 1A 23-40
MQTL_2 Guo et al. (2012); Gong et al. (2015) 8 1B 40-48
MQTL_3 Kong et al. (2013); Zhao et al. (2014); Gong

et al. (2015)
5 1D 40-69

MQTL_4 Zhao et al. (2014); Gong et al. (2015) 5 2A 149-160
MQTL_5 Kong et al. (2013); Gong et al. (2015) 6 3A 60-67
MQTL_6 Zhao et al. (2014); Gong et al. (2015) 4 3B 19-35
MQTL_7 Zhao et al. (2014); Gong et al. (2015) 5 3B 63-88
MQTL_8 Guo et al. (2012); Gong et al. (2015) 2 4A 103-114
MQTL_9 Zhao et al. (2014); Gong et al. (2015) 6 4A 140-160
MQTL_10 Guo et al. (2012); Zhao et al. (2014); Gong

et al. (2015)
6 4B 80-100

MQTL_11 Zhao et al. (2014); Gong et al. (2015) 3 5B 96-100
MQTL_12 Zhao et al. (2014); Gong et al. (2015) 2 5B 176-197
MQTL_13 Kong et al. (2013); Gong et al. (2015) 4 6A 146-152
MQTL_14 Kong et al. (2013); Gong et al. (2015) 3 6B 30-37
MQTL_15 Guo et al. (2012); Gong et al. (2015) 3 7A 42-66
MQTL_16 Zhao et al. (2014); Gong et al. (2015) 3 7B 178-200
aQTL position (cM) on WCGM 2017.
FIGURE 6 | Meta-QTL (MQTL) identified on wheat consensus genetic map 2017 (WCGM2017) using four independent quantitative trait loci (QTL) studies. One
stable locus from genome-wide association studies (GWAS) results colocalizes with an MQTL at chromosome 5B (q5B-1 with MQTL_11), only three detected loci are
present on chromosomes harboring MQTL. *cf. Information of QTL studies is presented in materials and methods.
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Novel SNP-Trait Associations and MQTL
The ultimate goal of all the breeding programs is to achieve a
high grain yield in moderate to stress environments (Pont et al.,
2013; Ain et al., 2015). Therefore, the identification of major loci
associated to yield components, for instance KUE in K-stress
environment, and their integration with meta-analysis provides
an extremely useful breeding approach. Here, 11 loci from
GWAS and 16 MQTL from meta-analysis were cross checked
to see if the associations from this study were close to the MQTL
regions. Only one locus q5B-1 (IWB38863) was detected in a
close proximity to MQTL_11 while the other 10 loci were novel
associations, eight loci were identified on different chromosome
from MQTL. These 11 loci from GWAS were critically screened
to reduce the possibility of false positives and are thus presumed
as true genetic variants. MQTL are also an important target for
breeding potential as they reduce the confidence interval by
integrating different independent analyses in one place.
Narrowing down a QTL confidence interval is a key step
towards a precise search of candidate genes.

The 11 identified loci were associated with important
agronomic traits such as biological yield, root architecture,
chlorophyll, and potassium use efficiency (Table 3). Seven loci
including q2B-1, q2B-2, q2D, q4D, q5B-1, q5B-2, and q5B-3
associated to KUE and KUtE along with other agronomic
traits. This provides a compelling evidence that KUE and
KUtE have a major influence on the grain yield. Plants invest a
greater proportion of photosynthates in the roots and altering
the root morphology to enhance exploration of the soil volume
(Hermans et al., 2006; Bucher, 2007; Hammond and White,
2008). IWB41036 (q1D) was associated with RL, HI, and FW,
which implicates the role of root architecture in KUE and overall
plant growth. Another stable locus q2B-2 (IWB7106) encoded
Frontiers in Plant Science | www.frontiersin.org 11
KUtE_C_2017 and CHL_T_2016, which indicate that K plays a key
role in photosynthesis (D T Clarkson and Hanson, 1980;
Pettigrew, 2008; Wang and Wu, 2017). Ion channels regulate
osmotic balance during environmental stress (Haynes, 1990),
SNP IWB35315 at q6D was linked to FW_C_H and Na+_C_2018.
Moreover, enhancing K acquisition improves salinity tolerance
of plants by Na+ exclusion (Chakraborty et al., 2016). Five of the
11 stable loci had SNPs from hydroponics as well as field traits
(Table 3), which suggests that the hydroponic experiment for K-
deficiency stress can be used to evaluate a large-scale field study.

Genes–Putative Candidates
Plants respond to environmental stress such as nutrient
deficiencies by a multigene regulation. Putative genes selected
as candidates were annotated for some key proteins involved in
plant growth, sugar metabolism, nutrient transport, and
immunity to abiotic/biotic stress factors. TraesCS1A02G288500
was found in the region of IWB20856 (q1A, LOD 11.67), this
gene has 4 splicing variants and was annotated for CCAAT-
binding transcription factor A. This protein increases grain yield
of wheat in low nutrient input cropping systems (Qu et al., 2015).
IWB4614 (q2B-1) encoded TraesCS2B02G201400 and
TraesCS2B02G201500 genes responsible for COBRA-like
protein which has been reported to increase grain yield in
maize (Hochholdinger et al., 2008) and grain yield and
nutrient uptake in rice (Li et al., 2003). GLU1 protein is coded
by 4 genes in wheat genome: GLU1A, GLU1B, GLU1C, and
GLU1D (Uniprot: Q1XIR9, Q1XH05, Q1XH04, and D5MTF8).
This gene has been characterized in wheat and rye (Sue et al.,
2006), its beta-glucosidase activity helps in sugar metabolism and
defense against pathogens which makes it an important
candidate as a grain yield enhancer during abiotic
TABLE 5 | Annotation of candidate genes associated to stable single nucleotide polymorphism (SNP) variants.

Gene Var
a

Chr Start End SNP ID
b

LOD Score Annotation
c

TraesCS1A02G288500 4 1A 485359631 485363435 IWB20856 11.67 CCAAT-binding transcription factor A
TraesCS1D02G245600 1 1D 337217074 337219376 IWB41036 10.92 Cytochrome P450 superfamily
TraesCS2B02G201400 1 2B 180558389 180560528 IWB4614 6.83 COBRA-like protein
TraesCS2B02G201500 1 2B 180568362 180572362 IWB4614 6.83 COBRA-like protein
TraesCS2B02G599800 1 2B 782533511 782538118 IWB7106 6.24 GLU1B
TraesCS2B02G601300 1 2B 784268263 784269876 IWB7106 6.24 RING-type E3 ubiquitin transferase
TraesCS2D02G034900 2 2D 13439965 13444862 IWB740 13.38 Arginase
TraesCS2D02G042400 1 2D 15193845 15197322 IWB740 13.38 Bidirectional sugar transporter SWEET
TraesCS2D02G042500 1 2D 15228745 15230408 IWB740 13.38 Bidirectional sugar transporter SWEET
TraesCS2D02G042600 1 2D 15264456 15266348 IWB740 13.38 Bidirectional sugar transporter SWEET
TraesCS4D02G281600 1 4D 452795390 452798654 IWA410 14.94 Calmodulin-binding family protein (At)
TraesCS5B02G059000 2 5B 64731218 64744679 IWB58160 12.21 Serine/threonine kinase
TraesCS5B02G356300 2 5B 536045679 536052111 IWB38863 15.06 UTP–glucose-1-phosphate uridylyltransferase
TraesCS5B02G380100 1 5B 558109705 558109821 IWB7750 5.76 Photosystem II reaction center protein L
TraesCS5B02G381500 1 5B 559763470 559765063 IWB7750 5.76 Non-specific serine/threonine protein kinase
TraesCS5B02G381800 1 5B 559778240 559779074 IWB7750 5.76 Auxin-responsive protein
TraesCS5B02G381900 1 5B 559990916 559992903 IWB7750 5.76 Auxin-responsive protein
TraesCS6D02G219200 1 6D 309040962 309042473 IWB35315 6.15 metal ion binding
TraesCS6D02G219600 1 6D 309949038 309951388 IWB35315 6.15 cellular biosynthesis
TraesCS7A02G002700 1 7A 1690697 1692368 IWB33486 10.07 Acyl-transferase
aAlternate splicing variants (mRNA).
bUniversal IDs of SNPs associated with candidate genes.
cUnderlined annotations are functional roles of hypothetical proteins.
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environmental s tress . GLU1B was annotated from
TraesCS2B02G599800 present at q2B-2 (IWB7106). Another
gene at this locus annotated RING-type E3 ubiquitin
transferase, an associated QTL is reported for grain width and
weight in rice (Song et al., 2007). SWEET (sugar will eventually
be exported transporters) family proteins regulate plant nectar
production and seed development, these are also involved in
nutrition of pathogens and symbionts that help plants in nutrient
uptake (Chen et al., 2010). A major locus q2D (IWB740)
associated to KUE_C_2017 and KUE_T_2018 was found in linkage
with 3 genes (TraesCS2D02G042400, TraesCS2D02G042500, and
TraesCS2D02G042600) encoding Bidirectional sugar transporter
SWEET. IWA410 at q4D (KUE_T_2017, KUE_C_2018, and SW_T_H)
harbored TraesCS4D02G281600, Calmodulin-binding family
protein has been characterized in arabidopsis ortholog of this
gene. Calmodulin proteins regulate ion channels such as KCa
channel, their expression is enhanced in response to abiotic
stresses (Virdi et al., 2015). SNP IWB38863 at q5B-2 was
identified with the highest LOD score among stable loci, its
corresponding gene TraesCS5B02G356300 encoded UTP–
glucose-1-phosphate uridylyltransferase which is a highly
conserved gene among eukaryotes and regulates glucose
metabolism and is therefore a key component of cellular
respiration and energy production (Roeben et al., 2006).
Auxins are involved in a multitude of plant growth regulation
pathways and are present in almost all parts of plant including
stem, leaf, flower, and roots, they are the first plant hormones to
be discovered (Kazan, 2013). TraesCS5B02G381800 and
TraesCS5B02G381900 at q5B-3 linked to IWB7750 encoded
Auxin-responsive protein. Auxin responsive proteins have been
observed to play a key role in root development to enhance
nutrient acquisition under stress (Kiba et al., 2010).

Functional validation of candidate genes identified here, 11
loci, and 16 MQTL are potential breeding targets for future
studies. Moreover, these findings suggest that ML-GWAS
models can target more true genetic variants as compared to
SL-GWAS models and the integration of these models with
meta-analysis will lead towards the precise dissection of
complex traits.
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